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Abstract: Although fully automated volumetric approaches for monitoring brain tumor response
have many advantages, most available deep learning models are optimized for highly curated, multi-
contrast MRI from newly diagnosed gliomas, which are not representative of post-treatment cases
in the clinic. Improving segmentation for treated patients is critical to accurately tracking changes
in response to therapy. We investigated mixing data from newly diagnosed (n = 208) and treated
(n = 221) gliomas in training, applying transfer learning (TL) from pre- to post-treatment imaging
domains, and incorporating spatial regularization for T2-lesion segmentation using only T2 FLAIR
images as input to improve generalization post-treatment. These approaches were evaluated on
24 patients suspected of progression who had received prior treatment. Including 26% of treated
patients in training improved performance by 13.9%, and including more treated and untreated
patients resulted in minimal changes. Fine-tuning with treated glioma improved sensitivity compared
to data mixing by 2.5% (p < 0.05), and spatial regularization further improved performance when used
with TL by 95th HD, Dice, and sensitivity (6.8%, 0.8%, 2.2%; p < 0.05). While training with ≥60 treated
patients yielded the majority of performance gain, TL and spatial regularization further improved
T2-lesion segmentation to treated gliomas using a single MR contrast and minimal processing,
demonstrating clinical utility in response assessment.

Keywords: glioma; post-treatment; segmentation; deep learning

1. Introduction

Gliomas are the most common form of primary central nervous system (CNS) tumors
in adults [1,2], comprising 81% of all malignant CNS tumors in the US with 21,440 average
annual cases from 2016 to 2020 [3]. The prognosis of this cancer varies, with five-year me-
dian survival rates ranging from 5% to 73% [4–6] and expected survival projections reaching
as low as 6 months in the most aggressive cases of glioblastoma (GBM) [4]. To assess re-
sponse to treatment, spatial measurements from anatomical MRI, including T1-weighted
images pre- and post-injection of a gadolinium-based contrast agent, T2-weighted images,
and T2 Fluid Attenuated Inversion Recovery (FLAIR) images, are typically used in response
assessment according to the Response Assessment in Nero-Oncology (RANO) criteria [7].
These criteria are still based on the 2D product of maximum bidimensional diameters of
contrast-enhancing tumor and qualitative evaluation of T2 FLAIR hyperintensity [7] and
suffer from inter- and intra-rater variability associated with their manual determination,
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which are improved using fully automated volumetric assessments. Volumetric approaches
are also more correlated to patient outcomes and are more sensitive to subtle longitudinal
changes [8–11].

Although progression is typically defined on T1-weighted contrast-enhanced imaging [12]
for IDH-wildtype and higher grade IDH-mutant gliomas, the importance of tracking
changes in the volume of T2 FLAIR hyperintensity is apparent in terms of both response
assessment in non-enhancing tumors [7] and its ability to predict overall survival in post-
operative glioma more accurately [13] because T2 FLAIR hyperintensity represents, in
part, tumor infiltration into normal brain tissue [14,15]. As new therapies emerge and
subsequent imaging biomarkers are established, quantifying volumetric changes in both T1
post-contrast and T2 FLAIR tumor volume for clinical evaluation and treatment planning
is essential.

Deep neural networks have provided rapid, highly accurate segmentations for newly
diagnosed, often treatment-naïve gliomas [8,9,16–34]. Currently, the most prevalent and
high-performing methods in the computer vision literature for automated tumor segmenta-
tion use a variety of encoder–decoder-based architectures in an end-to-end approach to
generate lesion masks directly from MR image inputs [30,32,35]. These methods are pri-
marily inspired by the pioneering developments of convolutional neural networks (CNNs)
capable of 3D segmentation in works like U-net [19] and V-net [20], with more recent ad-
vances employing techniques such as multi-task learning [22–24], generative modeling for
augmenting training data or adversarial approaches [26,36–41], hybrid machine learning
approaches [27,42], domain adaptation and transfer learning [29,43–53], task-specific loss
modification [18,25,27,31,34,54], diffusion models [41,55–57], and attention mechanisms
like transformer modules [58–60], as well as federated learning approaches [34,61–63] to
improve performance.

Despite the promising segmentation accuracy and time savings when employing
deep learning models in untreated patients, the same level of accuracy has not been re-
ported after treatment, with previous work showing decreased accuracy in post-treatment
anatomy [37], and a greater frequency of failure to generate lesion annotations after
treatment [8]. This is partly because many of the prevailing neural networks for brain
tumor lesion segmentation require four anatomical imaging contrasts to segment even just
the T2 lesion, and they have been optimized for performance in the ongoing Multimodal
Brain Tumor Segmentation (BraTS) challenge dataset for Adult Glioma [16,28], which cur-
rently consists of radiologist-annotated images from newly diagnosed glioma patient scans
before surgery or treatment. Leading performances of T2-lesion segmentation models have
reported Dice scores of the whole tumor above 0.9 and 95th Hausdorf Distances below
3 mm [64]. T2 FLAIR hyperintense lesions from newly diagnosed gliomas, however, tend to
have better boundary signal delineation from healthy tissue and lack the subtle variations
in contrast observed compared to surrounding normal-appearing brain that results from
adjuvant treatment or disease progression [65]. The utility of deep learning models used
in monitoring longitudinal tumor progression and treatment response [10,11] is directly
dependent on the accuracy of these models to perform well on treated gliomas. Although
a few more recent studies have achieved equivalent performance in segmenting treated
gliomas [66–69], they still either require multiple (4) image contrasts as input to segment
multiple tumor compartments simultaneously, necessitate multiple image preprocessing
steps (i.e., co-registration/skull stripping), use very few post-operative patients for training
and testing, neglect edema and infiltration seen on T2-weighted images, or report low Dice
scores (<0.65).

To overcome these challenges, this study took a multi-pronged approach to evaluate
strategies for developing a more practical tool for segmentation of the T2 hyperintense
lesion at time points relevant to clinical practice by (1) using only T2 FLAIR images
as input; (2) employing a robust but easily implemented variational autoencoder net-
work (VAE) model architecture that won the BraTS challenge in 2018 [21]; (3) training
on a diverse dataset of pre-treatment patients and post-treatment patients at the time of
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suspected progression; (4) applying transfer learning from pre- to post-treatment imaging
domains; and (5) employing spatial distance-based loss function weightings to specifi-
cally improve segmentation performance near low contrast lesion boundaries where prior
models have struggled.

2. Materials and Methods
2.1. Patient Data

3D T2 FLAIR images (TE: 114 ms–127 ms, TR: 5850 ms–6400 ms, ETL:148–200,
1 × 1 × 1.5 mm resolution; additional details in Appendix A) acquired on 3T GE MR
750 scanners from 429 patients with glioma (208 newly diagnosed; 221 post-treatment with
no overlap) were retrospectively used to train and evaluate modified versions of NVIDIA’s
2018 BraTS challenge winning VAE [21] to predict manually annotated T2-hyperintense
lesions from a single input image. Extra care was taken to ensure that the labels of our
testing dataset of 24 post-treatment patients were as accurate as possible by using multiple
expert readers for review. Segmentation masks were generated manually by TLL, reviewed
by JE, and then further confirmed or revised as needed by both JEV-M and JML. Unlike
the BraTS dataset, the images were not skull-stripped before training. This was carried
out to eliminate a preprocessing step that can introduce variability dependent on the brain
extraction algorithm and allow for more versatile training strategies in situations where
skull stripping may not be available. The imaging data were all acquired at UCSF within
48 h before a patient underwent surgical resection. All previously treated patients had
undergone prior standard-of-care treatment, which included surgical resection, and various
combinations of radiation and chemotherapy. As a result, these lesions also contained
a mixture of recurrent tumor and treatment-induced injury, which is typical of what is
observed in clinical practice. All patients provided informed consent for their images to be
used in research.

2.2. Network Architecture and Hyperparameters

Our network was adapted from the NVIDIA GPU Cloud catalog. The original network
consisted of a modified V-net with a variational branch that encodes the original input
image during training and employed Kullback–Leibler (KL) divergence and L2 loss [21].
We modified the network’s configuration to use a single contrast 3D T2 FLAIR image
input and generate only the T2-hyperintense lesion mask (and reconstruct a single channel
only using the VAE branch) in contrast to the original configuration requiring four image
contrasts as input, resulting in a three-channel lesion segmentation output. Crop size in
preprocessing was increased from [160 × 192 × 128] to [224 × 224 × 128] to retain potential
contextual structures relevant to segmentation and ensure the vast majority of the image
remained since only one input channel was used. This led to a smaller overall encoding
size of the network ([128 × 28 × 28 × 16] instead of [256 × 20 × 24 × 16]). Sixteen initial
filters were used instead of 32 to fit into the available GPU capacity. Otherwise, the network
architecture and hyperparameters were unchanged compared to the original model [21].
A schematic of the modified network architecture is shown in Figure 1.
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Figure 1. Modified VAE [21] architecture with larger crop size, single input/output channel, fewer
convolutional kernels, and smaller latent space. Spatial weighting penalizations for the cross-entropy
term and overall loss function are shown.

2.3. Preprocessing and Augmentation

Random center cropping from [256 × 256 × 140] to [224 × 224 × 128], random spatial
flipping, normalizing non-zero intensities, and scale shifting intensities from the original
VAE model [21] were applied as pre-transforms during training. Distance maps were
generated before training to reduce the computational cost of implementing the additional
spatial boundary penalizations described in Appendix B. These maps were used only to
compute the loss and thus only needed to be generated for training and not while using
the model for inference.

2.4. Loss Function

The loss function was modified to penalize the network based on spatial weighting
schemes utilizing these distance maps. Drawing heavily from the work carried out by
Caliva et al. [70] this was accomplished by incorporating a weighted cross entropy term
into the total loss function by adding it to Dice loss and the two VAE branch penalty terms,
KL divergence and L2. Each term was added with weightings of λ3, λ2 = 0.1, and λ1 = 1.0 to
form the final loss function:

Ltot = λ1LDice + λ2LCE + λ3LKL + λ3LL2, (1)

LCE = − 1
N ∑N

i=0 w(y i)·[(y i)log
(
y′i
)
+ (1 − yi)·log

(
1 − y′i

)
], (2)

where w(yi) is the weighting defined by the spatial relationship of each pixel to either the
boundary of the T2 lesion [w(yi) = 1 + Medge(yi)] or the post-surgical resection cavity
[w(yi) = 1 + Mcavity_distance(yi)] shown in Figure 1. One is added to these terms to mitigate
the problem of vanishing gradients. This operation is performed during the preprocessing
of the distance maps, as shown in Appendix B. These modifications were chosen to handle
the imbalance of edge pixels and bias the network towards the non-geometric and heteroge-
nous borders of T2 lesions on FLAIR images that are distinctive of gliomas post-treatment.
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Code for generating the spatial regularization weightings and applying the calculation
to the loss can be found at https://github.com/LupoLab-UCSF/SpatialRegularization
(accessed on 13 March 2024).

2.5. Training

Training was first performed on 192 newly diagnosed patients using NVIDIA’s Clara-
Train software (v1-v3) on two V100-32GB GPUs. The proportion of training images from
treated gliomas was then increased while maintaining 80%/20% train/validation splits.
Models were tested on a separate set of 24 patients with post-treatment glioma. Next,
training was performed with training/validation/test splits beginning with 153/39/24
volumes from treated patients and successively adding 50 newly diagnosed patients into
training/validation until 208 were included. The exact training dataset breakdown for
these experiments is shown in Table 1. Models were trained for 300 epochs, and the models
with the highest Dice scores in validation were selected for testing.

Table 1. Data mixing splits.

Pre-Tx
Training

Pre-Tx
Validation

Post-Tx
Training

Post-Tx
Validation

Post-Tx/
Total

Pre-Tx/
Total

Training
Total

153 39 0 0 0 -- 192
134 33 20 5 0.13 -- 192
114 28 40 10 0.26 -- 192
77 19 77 19 0.5 -- 192
51 13 103 25 0.67 -- 192
0 0 153 39 1 0 192

40 10 153 39 -- 0.21 242
80 20 153 39 -- 0.34 292
120 30 153 39 -- 0.44 342
166 42 153 39 -- 0.52 400

Transfer learning (TL) experiments were performed with a combined ratio of 25/167
post- to pre-treatment patients in training using the same hyperparameters. This ratio was
systematically increased to 128/64 post- to pre-treatment patients, and another model was
trained using the same dataset and hyperparameters but instead using the TL approach.
The TL model was first pre-trained on the newly diagnosed data for 300 epochs and then
fine-tuned for another 300 epochs with the same proportion of post-treatment patients as
the combined model. The TL and combined models were trained deterministically using
the same random seeds. Models with the highest Dice scores in validation were selected
for testing. The training breakdown for these experiments is shown in Table 2.

Table 2. Transfer learning and loss function training splits.

Pre-Tx
Training

PreTx
Validation

Post-Tx
Training

Post-Tx
Validation

Post-Tx/
Total

Training
Total

TL
Pre-Train

TL
Fine-Tune

TL splits 134 33 20 5 0.13 192 167 25
114 28 40 10 0.26 192 172 50
77 19 77 19 0.5 192 96 96
51 13 103 25 0.67 192 64 128

Loss splits -- -- 158 39 -- -- -- --

TL + Loss splits 166 42 158 39 0.49 405 208 197

To compare the effects of using spatial loss weightings, models were first trained using
the 197 post-treatment patients with edge loss, cavity distance loss, and standard Dice
loss, each three times using different random seeds. Evaluation metrics were averaged
across each patient from models produced from all initializations. These models were

https://github.com/LupoLab-UCSF/SpatialRegularization
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compared while fine-tuning our pre-treatment model that was trained for 300 epochs with
a training/validation split of 166/42 patients. Next, using the different loss functions, our
pre-treatment model was fine-tuned with all 197 of the post-treatment patients. These
models were compared to the TL model that was fine-tuned with the standard loss function
and the model trained on the total combined dataset of pre- and post-treatment patients
with the standard loss function. Training was performed over 300 epochs, and the models
with the highest Dice scores in validation were selected for testing. These models were also
trained three times with different random seeds, and the evaluation metrics for each patient
in the test set were averaged for each model produced by the different initializations and
compared. If a seed diverged before 10,000 steps for either spatially weighted loss model,
a new one was chosen for all methods. Training curves are shown in Appendix C.

2.6. Evaluation Metrics

Models were evaluated based on mean Dice score, 95th percentile Hausdorff Distance
(HD) [71], sensitivity, and specificity compared to the radiologist annotation of the post-

treatment test set of 24 patients. The Dice score was calculated as
2·[(∑I

i=0 yiy
′
i)+ε]

[(∑I
i=0 y2

i )+(∑I
i=0 y′2i )+ε]

,

with top and bottom smoothing values of ε = 0.001 during the evaluation of the test
set to prevent penalization of segmentations that were correctly predicted as containing
no lesion. These values were set to 0 and 1 × 10−5 in training. Since the calculation of
Dice weights all voxels evenly, it may not adequately reflect segmentation accuracy at
the lesion boundary, which is most important when defining longitudinal changes after
treatment. As traditional HD, defined as the maximum distance between the set of nearest
points between two objects [71], has been shown to provide a more reflective metric of
boundary errors and shape by matching segmentation shape near the boundary, but can be
oversensitive to outliers [71–73], we quantified the 95th percentile HD using a DeepMind
implementation [74] in conjunction with Dice score, sensitivity, and specificity to enable
evaluation of overall segmentation accuracy and more focused shape evaluation at the
lesion boundary. Wilcoxon signed-rank tests implemented with SciPy 1.9.1 were used to
test for statistical significance between methods, averaging metrics across models from
experiments repeated using three seeds. Slicer4 was used to visualize segmentation mask
overlays.

3. Results
3.1. Data Mixing

With no post-treatment patients included in the training, the model performed seg-
mentation of the T2 lesion on the treated test set with an average Dice score of 0.68. After
26% of post-treatment patients (60 patients) were included in training with the total number
of patients fixed, the Dice scores sharply increased by 13.9% to 0.78, and then gradually
increased with greater post-treatment patient ratios until plateauing at 0.82. A similar
trend was observed in the 95th HD, with an initial mean value of 26.4 mm to 12.1 mm after
26% inclusion and a steady improvement of 8.3 mm. Dice scores remained steady with
a slight improvement to 0.84 when starting with 192 post-treatment patients in training and
adding intervals of 50 newly diagnosed patients, with the corresponding 95th HD following
a similar trend, improving from 8.3 mm to 7.1 mm. These changes in performance patterns
with the inclusion of post-treatment patients into the training set can be seen in Figure 2A,B;
example segmentations are shown in Figure 2C.
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Figure 2. Effect of mixing pre- and post-treatment data into training. (A) Fixed 192 patients with
an increasing ratio of post-Tx glioma (x-axis plots the percentage of patients with treated gliomas
that were included in the training set with respect to the total number of treated and treatment-
naïve patients). (B) Starting with 192 post-Tx gliomas and adding intervals of 50 newly diagnosed
gliomas until equal proportions (x-axis plots the percentage of patients with newly diagnosed,
treatment-naïve gliomas that were included in the training set with respect to the total number
of treated and treatment-naïve patients). (C) Example comparison of segmentation masks (green
contours) at test time with different proportions of post- and pre-treatment data in training. The
post-treatment domain-specific model appears to capture areas near the edges of the lesion with
lower hyperintensities on the T2 FLAIR images than the newly diagnosed or mixed domain-trained
model for this case.

3.2. Transfer Learning

Throughout the increase in the proportion of treated patients into training (13%, 26%,
50%, and 67%), the models initialized with newly diagnosed patients and fine-tuned with
post-treatment patients showed little difference in Dice score compared to their combined
trained counterparts, as shown in the plot in Figure 3A. The transfer learning models
increased in mean Dice score from 0.78 to 0.83, while the combined trained counterpart
models increased from 0.76 to 0.83. While the difference in Dice scores was minimal, the
mean 95th HD was improved in the TL models (from 18.0 mm to 11.3 mm) following
26% inclusion of post-treatment patients. This trend continued through 66% inclusion of
post-treatment patients (improvement of HD from 9.9 mm to 7.9 mm), with the difference
in the 95th HD between the two methods decreasing as the post-treatment dataset size was
increased. This trend is shown in Figure 3B, with the resulting segmentations shown in
Figure 3C.
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Figure 3. Comparison of testing Dice scores (A) and 95th percentile Hausdorff Distances (HD) (B)
for a fixed number of patients (192) with varied training strategies of combined training or transfer
learning (TL) at different ratios of post-treatment patients in training. There was little difference in
the Dice scores but an observable improvement in the 95th HDs using the TL strategy. (C) Example
comparisons of segmentation using TL with a ratio of 25% post- to pre-treatment data. Example
comparison of segmentation masks at test time for transfer learning (TL) and no TL with a ratio
of 25% post- to pre-treatment data. Fine-tuned model to post-treatment domain appears to better
capture areas of the lesion near the opposite ventricle (C Top Row) and near edges of the lesion with
lower hyperintensities on the T2 FLAIR images (C Bottom Row) for these cases.

3.3. Loss Modification

For models trained only on 192 post-treatment patients, incorporating spatial weight-
ings in the loss function did not improve overall performance. Both the cavity distance and
edge-weighted loss models had significantly lower Dice scores (p = 0.004, p = 0.007), and
the cavity distance loss had substantially higher 95th HD (p = 0.015). However, there was
notable disagreement between the 95th HD and Dice scores for six patients in the test set,
indicating a reduction in extreme errors by the models trained with spatial weightings, as
shown in Figure 4. When the model was trained with Dice loss alone (plus the conventional
KL and L2 terms), it resulted in very high 95th HDs when the model incorrectly segmented
normal tissue located far away from the lesion, where signal gradients mimicked those
of the less hyperintense signal present at the leading edge of the lesion. Training with
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edge loss improved 95th HD for 42% of patients, whereas training with cavity distance loss
improved 95th HD for 21% of test patients compared to models trained with Dice alone.
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Figure 4. (A) Testing 95th percentile Hausdorff Distances (HD)s of models trained with varied loss
functions on post-treatment data only and ordered by lesion size. The mean for all models is shown
in dashed and dotted lines and two times the standard deviation as a dashed line. Samples for the
edge loss models are connected to the same samples for Dice loss models with dotted lines. Samples
above the mean 95th HD are encircled in cyan when edge loss is better and pink when Dice loss
is better. Spatial weightings show a reduction in extreme errors with HD metric on post-treatment
data. (B) Testing Dice scores of models trained with varied loss functions on post-treatment data
only. Models using spatial distance-based regularization did not improve Dice scores. Both distance-
weighted loss models had significantly lower Dice scores (p < 0.05), and the cavity distance loss had
significantly higher 95th HD (p < 0.05).

For models fine-tuned with post-treatment data using variable loss functions, a signifi-
cant improvement in the 95th HD was observed both for models fine-tuned with edge loss
and cavity distance loss when compared to the combined trained models using standard
Dice loss (from 7.8 mm to 6.9 mm for edge loss, p = 0.02; and from 7.8 mm to 7.0 mm
for cavity loss, p < 0.05) as shown in Figure 5A. Utilizing a cavity distance loss function
significantly reduced 95th HD compared to fine-tuning with Dice loss alone (7.4 mm;
p = 0.03). The Dice scores for the models trained with cavity distance (0.85) and edge loss
(0.86) were also significantly higher than the combined (0.84; p = 0.02, p = 0.004) and TL
models (0.85; p < 0.02, p = 0.002) trained with Dice alone (Figure 5B). The sensitivity of
the models trained with cavity distance (0.82) and edge loss (0.83) was also significantly
improved compared to the combined (0.79; p < 0.0002, p = 0.00005) and TL models (0.81;
p = 0.006, p = 0.0005) trained with Dice alone, and the model fine-tuned with Dice alone
was significantly more sensitive than the combined training with Dice (p = 0.02), as shown
in Figure 5C. Although a significantly inverse trend was also observed for specificity, the
differences between models were all less than 0.00015. A summary of all performance
metrics combined is reported in Table 3.
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Figure 5. (A) Testing 95th percentile Hausdorff Distances (HD)s, (B) specificities, (C) Dice scores,
and (D) sensitivities of transfer learning (TL) models initialized on pre-treatment data and then
fine-tuned with varied loss functions on post- and pre-treatment data. The metrics are averaged
across three seeds for each model. Means are shown in dotted lines, and medians are solid lines.
Spatial weightings show improved HD, Dice, and sensitivity metrics on post-treatment data when
used with TL, and TL showed improvement over combined training.

Table 3. Summary of results for comparing loss functions for different training strategies with means
± 95% confidence intervals.

Spatial Weighting
Post-Treatment Only Dice Loss Cavity Loss Edge Loss

Dice score 0.849 ± 0.011 0.837 ± 0.013 0.845 ± 0.012
95th HD 10.23 ± 1.81 8.97 ± 1.60 7.23 ± 0.98
Sensitivity 0.811 ± 0.016 0.786 ± 0.020 0.802 ± 0.019
Specificity 0.99940 ± 0.00010 0.99948 ± 0.00012 0.99945 ± 0.00012

Transfer Learning (TL)
+ Spatial Weighting TL + Dice Loss TL + Cavity Loss TL + Edge Loss no TL + Dice Loss

Dice score 0.850 ± 0.010 0.855 ± 0.011 0.857 ± 0.011 0.842 ± 0.013
95th HD 7.35 ± 0.96 7.00 ± 0.97 6.88 ± 0.88 7.81 ± 0.89
Sensitivity 0.809 ± 0.016 0.821 ± 0.017 0.827 ± 0.017 0.789 ± 0.02
Specificity 0.99945 ± 0.00010 0.9994 ± 0.00012 0.99937 ± 0.00012 0.9995 ± 0.00012

All models trained using pre- and post-treatment patients showed significantly high
correlations between predicted lesion volume and the actual lesion volume shown in
Figure 6A. This indicates high consistency with manual definitions of volume critical for
longitudinal tracking. For these models, there were relatively low correlations between
95th HD and Dice metrics, with the best-performing model fine-tuned on post-treatment
data with edge-weighted loss, which had the lowest correlation between the two metrics,
as shown in Figure 6B.
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Figure 6. (A) All models fine-tuned on post-treatment anatomy or trained on a combination with
a sufficiently large quantity of post-treatment patients showed significantly good agreement with the
true lesion volumes, indicating utility for volumetric tracking in response to treatment. R-squared
values shown are all significant (p < 0.05). Slopes: Dice loss: 0.9001, edge loss: 0.9431, cavity distance
loss: 0.9281, Dice loss -TL: 0.8997. (B) Disagreement between evaluation metrics for each TL model.
The size of the points indicates the size of the lesion. The best-performing model overall (edge
loss with transfer learning (TL)) showed the lowest correlation between the Dice score and the
95th Hausdorff Distance (HD), indicating the importance of using both metrics to evaluate model
performance. Smaller lesions appear more susceptible overall to deviations from the correlations in
metrics. R-squared values shown are all significant (p < 0.05). Slopes; Dice loss: −5.95 × 10−3; edge
loss: −5.30 × 10−3; cavity distance loss: −6.54 × 10−3; Dice loss -TL: −9.75 × 10−3.

4. Discussion

As the vast majority of model development for brain tumor segmentation still focuses
on using publicly available datasets that mainly consist of newly diagnosed or post-surgery
(but still prior to adjuvant treatment) MR imaging, unsurprisingly, these models do not
generalize well when applied clinically in the post-treatment setting, where their utility
is needed most for monitoring response. This study sheds light on the dichotomy be-
tween typical training sets utilized and utility for clinical implementation, offers insight
into effectively leveraging the widespread availability of pre-treatment data with smaller
amounts of post-treatment data, and demonstrates the benefit of incorporating relatively
simple but effective modifications to training strategies to tailor T2-lesion segmentation
of gliomas to effectively monitor response to treatment. Overall, our model achieved
a performance that was on par with results from similar deep learning-based studies of
segmenting gliomas post-treatment as shown in Table 4, while using a single MR contrast
and minimal processing [10,66–68,75–78].

From our data mixing experiments, we found that including 60 post-treatment images
in training greatly improved the accuracy of the models in testing on post-treatment
patients within this distribution. Less performance gain was observed from including
additional post-treatment patients in training or increasing the total number of patients
in training. This supports the hypothesis that there is a domain shift between post- and
pre-treatment images that must be addressed when training deep learning models for
application to treated patients and that training with ~30% post-treatment patients will aid
in the generalization of T2-lesion segmentation models to the post-treatment setting.
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Table 4. Summary of current performance of state-of-the-art post-treatment deep learning glioma segmentation.

Study Tumor Component Dice Score HD (mm) Year Method N Imaging Modality Preprocessing

Post-operative glioblastoma
multiforme segmentation with
uncertainty estimation [68]

T1 enhancement
(Whole Tumor) * 0.81 29.56 2022 3D nnUNet + manual

uncertainty threshold

340 post-treatment
patients (270 train,
70 test)

T1 post
gadolinium contrast
enhancement

Bias field correction
+ skull stripping

Segmentation of glioblastomas in
early post-operative multi-modal
MRI with deep neural networks [67]

Residual Tumor
Volume * 0.5919 22.56 (95th HD) 2023 3D nnUNet 956 post-treatment

patients (73 testing)

T1 + T1 post
gadolinium contrast
enhancement

Alignment

A Fully Automated Post-Surgical
Brain Tumor Segmentation Model for
Radiation Treatment Planning and
Longitudinal Tracking [66]

Radiotherapy
Targets (Gross
Tumor Volume 1)

0.72 12.77 2023 3D UNet 255 patients (202 train,
23 validation, 30 test)

T1 post
gadolinium contrast
enhancement + T2
FLAIR

Skull stripping +
alignment

Longitudinal Assessment of
Posttreatment Diffuse Glioma Tissue
Volumes with Three-dimensional
Convolutional Neural Networks [10]

Whole Tumor
Post-treatment 0.86 6.9 (95th HD) 2022 3D nnUNet

298 patients
post-treatment (198 train,
100 test)

T1 + T1 post
gadolinium contrast
enhancement + T2 +
T2 FLAIR

Skull stripping +
alignment

Development and Practical
Implementation of a Deep
Learning–Based Pipeline for
Automated Pre- and Postoperative
Glioma Segmentation [77]

Whole Tumor
Post-treatment 0.83 N/A 2022

Autoencoder
regularization–cascaded
anisotropic CNN

437 patients
post-treatment (40 test,
397 training)

T1 + T1 post
gadolinium contrast
enhancement + T2 +
T2-FLAIR

Skull stripping +
alignment

A Deep Learning Approach for
Automatic Segmentation during
Daily MRI-Linac Radiotherapy of
Glioblastoma [76]

Whole Tumor
Post-treatment 0.67 N/A 2023 Mask R-CNN

36 patients (imaging pre-
and 30 times during
treatment totaling
930 images; 9-fold cross
validation with 80:10:10
train:val:test)

Predominantly
T2-weighting low
field (0.35T) bSSFP

None

Towards Longitudinal Glioma
Segmentation: Evaluating combined
pre- and post-treatment MRI training
data for automated tumor
segmentation using nnU-Net [75]

Whole Tumor
Post-treatment 0.8 N/A 2023 3D nnUNet

Pre-treatment training
cases: (N = 502).
Post-treatment training
cases: (N = 588).
Combined cases:
(N = 1090). Test cases
from pre-treatment:
(N = 219); and
post-treatment:
(N = 254).

T1 post
gadolinium contrast
enhancement + T2
FLAIR

Alignment +
denoting + N4 Bias
correction + skull
stripping

This manuscript Whole Tumor
Post-treatment 0.86 6.88 (95th HD) 2024

Transfer learning 3D
VAE with spatial
regularization

Pre-treatment training
cases: (N = 208).
Post-treatment training
cases: (N = 197).
Post-treatment test cases:
(N = 24).

T2 FLAIR None

* Only contrast-enhancing lesion, not to be compared with T2-lesion segmentation.
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Our results also support using domain-specific fine-tuning instead of training on larger,
more diverse datasets for this task. Although transfer learning appeared to improve 95th
HDs compared to the combined training approach at most mixing ratios, the highest per-
formance gains were observed when the number of post-treatment patients in the training
set was roughly 25%, which is similar to the findings of Ghaffari et al. [69]. Sensitivity, Dice
scores, and 95th HD were also improved when fine-tuning on all available post-treatment
patients after initially training on all available pre-treatment patients as opposed to the
combined training approach. This supports TL as a valuable method for domain adaptation
to treated patients, specifically in situations where the model can only access a few treated
training examples. This insight is particularly relevant for federated learning, a strategy
for which models are trained across many private datasets without moving the data away
from the institution [35,61–63,78,79]. Our experiments support the idea that if there is
a significant shift in the task imaging domain, or there is not sufficient representation of
the desired domain, it may be helpful to then fine-tune a model to a more specific dataset
tailored to the clinical use case, as was seen with post-treatment T2-lesion segmentation.

Although the models trained only on the post-treatment images with loss functions
that include relevant spatial information did not perform as well as those trained using Dice
loss alone, they did limit outliers in the 95th HD. For the 24 patients in the test set, models
trained with spatial distance weighted loss functions performed substantially better in the
cases where 95th HD was greater than 8 mm, as shown in Figure 4A (three times for edge
loss and four times for cavity loss). The difference in performance was due to the prevention
of misclassification of lesion voxels farther away from the primary lesion, where using
the distance-based penalizations reduced the number of high errors by the 95th HD. This
supports the idea that spatial distance loss modifications could be employed to improve
regularization for T2-lesion segmentation and limit outliers, resulting in significantly
improved performance when using these loss functions in the transfer learning context.
This is likely due to the added regularization encouraging higher sensitivity to the domain
of treated patients when fine-tuning, while preventing overfitting to the more specific
post-treatment validation sets.

Our experiments illustrated an interesting discrepancy in performance metrics, high-
lighting the importance of careful selection and interpretation of evaluation metrics for
segmentation and the limitations of the Dice coefficient as a standard metric for segmenta-
tion model evaluation. In the TL experiments, the difference in Dice scores when comparing
TL or combined training models was smaller than the differences in the 95th HD, with
a low correlation between the two metrics, even for the best-performing model. Similarly,
for models optimized with post-treatment data alone, the Dice scores did not reflect the out-
liers found by the 95th HD. These discrepancies highlight the different characteristics these
metrics capture when determining the performance of segmentation models. For example,
when the segmentation model correctly identifies the bulk of the stable portion of a large
lesion, but much smaller areas away from the lesion are misclassified as new progression
or volume increases, an elevated 95th HD would capture this error. In contrast, a high
Dice coefficient in this scenario would be entirely inaccurate because it would be clinically
considered a failure, misclassifying a lesion as progressed when it was stable. Thus, for
lesion segmentation for treated gliomas, 95th HD should have a heavy focus for evaluation
in addition to Dice, as it may be a more contextually relevant metric since it focuses on the
segmentation object boundary, which is the portion of the lesion of utmost importance in
determining disease progression and notoriously most challenging to distinguish on T2
FLAIR images.

Several limitations arose from this study. First, the method to generate cavity regions
for the spatial distance weighting scheme for the cavity distance cross-entropy loss term
was highly variable. However, this may have resulted in an unintended benefit of incorpo-
rating a similar effect to label smoothing into training. As label smoothing acts as added
regularization that accounts for variability in ground truth annotations, it can improve
robustness to overconfidence and overfitting when applied to image classification and
segmentation [80]. Although not systematically evaluated in this study, we speculate that
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by including imperfect distance maps compared to manually annotated cavity labels, we
inserted randomness into the weighting scheme that supports additional regularization,
resulting in improved performance. The same seeds were used to train each model for
model comparison. When combining transfer learning with loss modification, some initial-
izations diverged, suggesting that adapting to a new image domain and loss function with
the same learning rate as the initial task could be too drastic, leading to divergence under
specific random seeds. This divergence also occurred while not using transfer learning,
indicating the need for a more extensive loss weighting search. A visual example from
a model weighted by the edge loss that diverged during training with transfer learning
and edge loss vs. one that did not diverge is shown in Figure 7. Although this pattern of
the model neglecting the central portion of the lesion was also sometimes observed when
using Dice loss alone, it became more severe when using spatial penalizations, and we
believe it ultimately caused divergence in some instances. This behavior may also serve to
demonstrate the strength of the edge-weighting approach in that it can identify challenging-
to-segment, low-contrast T2-lesion creep that is characteristic of tumor progression, which
occurs despite this model’s overall inability to recognize the more visually apparent portion
of the lesion (which is less clinically significant). This observation warrants further explo-
ration of approaches for the optimal combination of multiple models, the configuration of
loss functions to adequately capture both these regions in one model, and a more extensive
search space of hyperparameters for performance.
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Figure 7. Examples of model-generated segmentation masks converging toward extreme weighting
of edges from modification to the loss function: (A) an axial view of a sample at test time for a model
trained with edge weighted loss, which was evaluated quantitatively for performance; (B) a sagittal
view of a sample from an edge-weighted model that diverged during training and was not included
in the quantitative evaluation of performance.

Although the benefits that measuring the entire lesion volume can provide in routine
response assessment and prognosis are well acknowledged in the neuro-oncology com-
munity, volume calculations have still not been adopted into clinical practice because of
the lengthy times they take to manually define using commercially available software and
the unreliable measures often provided by automated algorithms. The proposed method
would improve response assessment to therapy in neuro-oncology by providing volume
measurements of the entire lesion, which is especially critical in clinical trials as well as for
noticing subtle changes in size serially.

Despite the growing success of segmentation-based deep learning models for this
task, there are still several barriers limiting their clinical translation due to (1) a > 25%
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failure rate when incorporated into clinical workflow [8], and (2) poor generalizability to
images acquired after treatment. The former can be attributed to (1) the requirement of
four different types of anatomic images (T2, T2-FLAIR, and T1 pre- and post-contrast);
(2) lengthy preprocessing that includes alignment, reformatting a pre-determined resolution
in an axial orientation, and extraction of brain tissue; and (3) the lack of a well-integrated
clinical deployment system. The latter brings up the limitation that the vast majority of
model development for brain tumor segmentation still focuses on using publicly available
datasets, which mainly consist of newly diagnosed or post-surgery (but still prior to
adjuvant treatment) MR imaging. Unsurprisingly, these models do not generalize well
when applied clinically in the post-treatment setting, where their utility is most needed
for monitoring response. Generalizability is commonly evaluated broadly by assessing
performance across institutions, patient populations, and disease time points. In the context
of post-treatment T2-lesion segmentation, our results suggest that instead of measuring
success by performance across a larger or more diversified dataset, evaluating the model’s
performance on a more specific dataset that better represents the clinical use case more
accurately reflects true generalizability. The approach taken here aims to make the most
efficient use of sparse datasets to fine-tune performance specifically for the intended use
case for inference.

5. Conclusions

This study demonstrated the benefits of applying three different training strategies for
improving the generalizability of segmenting the T2-hyperintense lesion from T2 FLAIR
images to treated gliomas without requiring four aligned MR contrasts and skull stripping
like most segmentation models. The best performance was achieved when pre-training
with newly diagnosed data, followed by fine-tuning with post-treatment data using a model
that incorporates a distance-based added penalization. These results also highlight the
benefit of fine-tuning the model specifically to post-treatment patients as a training strategy
for increasing generalizability and employing the 95th-percentile Hausdorff Distance as
an evaluation metric for future studies that specifically segment the T2 lesion of gliomas
in the post-treatment setting. Current efforts are underway to incorporate our models in
real-time in the clinic for prospective validation and quantification of serial changes in
tumor volumes.
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Appendix A

Scan Parameters

Images were acquired with a 3D T2-FLAIR sequence in axial or coronal planes and
reformatted to axial orientation with a FOV of [256,256,210] and to the number of pixels
of [256,256,140]. The original ranges of FOV and number of pixels are provided below in
tabular format.

Table A1. Range of original T2 FLAIR acquisition resolutions.

FOV Number of Pixels

Min resolution [205,205,257] [256,256,208]
Max resolution [179,179,249] [256,256,214]

Appendix B

Generating Distance Maps for Weighting the Loss

The process for generating the edge distance map used a max normalization and inver-
sion of the 3D Euclidean distance transform of the binary mask of the radiologist-annotated
T2 lesion, followed by multiplication with the original mask and max normalization to
generate a distance map. The resulting map weights pixels closest to the edges of the T2
lesion most highly and can be described as follows:

Medti =

[
∑D=3

d=1

(
Mlesionxdi

− Mlesionbdi

)2
] 1

2

Mint =

∣∣∣∣1 − Medt
max{Medt}

∣∣∣∣·Mlesion

Medge =
Mint

max{Mint}
where Mlesionxdi

are the i pixels of the binary mask; and Mlesionbdi
are the background

pixels, with the smallest Euclidian distance in d = 3 dimensions; and edt(Mlesion) is the
transform applied to the entire image. This preprocessing step was used to generate
158 edge maps from the post-treatment T2 lesion annotations that were used for training
(data in validation and testing do not need the distance maps since the cross-entropy term
is not used for early stopping criteria). An example edge map weighting scheme weighting
is shown in Figure 1.

For the cavity distance penalizations, a similar preprocessing pipeline was used to
generate the distance maps. To generate cavity lesions for 133 patients missing manual
annotations, we first applied a ventricle blocking method by skull stripping, using the
dilated T2 lesion to define a search area, and performing a series of thresholding and
morphological operations. Next, the 3D Euclidean distance transform of an inverted
manually annotated cavity mask was multiplied by the T2 lesion and max normalized. An
inverted distance transform was then multiplied by the T2 lesion mask and max normalized
before subtracting with the non-inverted transform map and re-normalizing. This process
generated a distance map where pixels of the lesion closest and farthest away from the
surgical cavity are weighted most highly, as shown in Figure 1, and described as follows:

Miedt = edt
(∣∣1 − Mcavity

∣∣)



Bioengineering 2024, 11, 497 17 of 21

Mint1 =
Miedt·Mlesion

max{Miedt·Mlesion}

Mint2 =
|1 − M iedt|·Mlesion

max{|1 − M iedt|·Mlesion}

Mcavity_distance =
|Mint1 − Mint2|

max{ |M int1 − Mint2|}

Appendix C

Training Curves
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