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Abstract: In this study, TiO2 nanospheres (TiO2-NS) were synthesized by the solvothermal method.
Firstly, the synthesized nanomaterial was characterized by X-ray diffraction (XRD), Fourier Trans-
formed Infrared (FTIR), scanning electron microscopy (SEM) and UV-Vis Diffuse Reflectance Spec-
troscopy (DRS). To study the photocatalytic degradation of Tartrazine (TTZ) and Naphthol Blue Black
(NBB) in a binary mixture, the influence of some key parameters such as pH, pollutant concentration
and catalyst dose was taken into account under visible and UV light. The results show a 100%
degradation efficiency for TTZ after 150 min of UV irradiation and 57% under visible irradiation
at 180 min. The kinetic study showed a good pseudo-first-order fit to the Langmuir–Hinshelwood
model. Furthermore, in order to get closer to the real conditions of textile wastewater, the influence of
the presence of salt on TiO2-NS’s photocatalytic performance was explored by employing NaCl as an
inorganic ion. The optimum conditions provided by the Response Surface Methodology (RSM) were
low concentrations of TTZ (2 ppm) and NBB (2.33 ppm) and negligible salt (NaCl) interference. The
percentage of photodegradation was high at low pollutant and NaCl concentrations. However, this
yield became very low as NaCl concentrations increased. The photocatalytic treatment leads to 31%
and 53% of mineralization yield after 1 and 3 h of visible light irradiation. The synthesis of TiO2-NS
provides new insights that will help to develop an efficient photocatalysts for the remediation of
contaminated water.

Keywords: TiO2 nanospheres; photodegradation; response surface methodology; dyes

1. Introduction

World population growth and climate change have given rise to an alarming decline
in freshwater resources and their availability [1], thus posing a major challenge worldwide.
The increase in industrialization, urbanization, and unlimited anthropogenic activities
has led to the generation of wastewater originating from various manufacturing [2] and
processing industries, such as petroleum hydrocarbons [3], textile, agriculture, dyeing,
cosmetics, food, and pharmaceuticals [4].

The contamination of water by emerging pollutants is a major environmental concern.
Emerging pollutants refer to contaminants for which there is currently no regulation requir-
ing monitoring, or public reporting of their presence in our water supply or wastewaters.
There are many types, such as pesticides, pharmaceuticals, drugs, cosmetics, personal
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care products, surfactants, cleaning products, industrial formulations and chemicals, food
additives, food packaging, metalloids, rare earth elements, nanomaterials, microplastics,
pathogens, and dyes [5–7]. Their main sources are domestic discharges, hospital effluents,
landfill leachates, livestock and aquaculture, and agricultural and industrial wastewa-
ters [5]. Therefore, dyes released into the environment via wastewater cause a major
problem in water quality and, consequently, human health. For instance, TTZ [8] and
NBB [9,10], the model compounds for this study, are acid azo dyes with sulfonic groups
acting as auxochromes that are highly water-soluble and have high stability. Unfortunately,
their by-products are known to be mutagenic and carcinogenic aromatic compounds [11].

The removal of these toxic organic pollutants from water is essential to ensuring sus-
tainable water remediation and management [12]. On this basis, water treatment methods
such as advanced oxidation processes (AOPs) have been used so far, and are considered to
be the best method for treating organic wastewater. This is due to their high mineraliza-
tion efficiency [13], rapid oxidation reaction rate, and potential for use in treating a wide
range of emerging contaminants not treatable by conventional techniques [14]. They are
implicated in the oxidation via mineralization of organic pollutants by generating reactive
oxygen species (ROS), including hydroxyl radicals (HO•) and sulfates [15]. Photocatalysis
among AOPs has proven to be a potential means for the elimination of micropollutants
present in water [16]. The photocatalysis process is based on the photoexcitation of a
semiconductor by light irradiation (ultraviolet light (UV) or visible light (VL)) to degrade
organic pollutants into CO2 and H2O [17].

The use of semiconductors such as TiO2, ZnO, Fe2O3, ZnS, and V2O5 has been reported
in the literature for their use in wastewater treatment [18–22]. Titanium dioxide (TiO2) is
one of the most studied metal oxide photocatalysts, thanks to its high chemical stability and
excellent photocatalytic activity. Photodegradation using TiO2 as a catalyst has attracted
extensive interest owing to its great advantages (optical–electronic properties, low-cost,
chemical stability, and non-toxicity) related to the complete removal of organic pollutants
from wastewater. Interest also comes from its efficiency and high availability compared to
other semiconductors. The high photocatalytic activity of TiO2 has been strongly recognized
in the literature [23–25].

Owing to its large band gap (3.0–3.2 eV) [26], TiO2 has some limitations, such as rapid
electron hole recombination and low quantum yield, and it can only be excited by UV
light irradiation, which is only about 5% of the solar power spectrum [27]. To address
this problem, efforts have been made to modify TiO2 to increase visible light absorption
by modifying its nanostructures. Various methods of producing TiO2 nanoparticles with
improved and large surface areas exist, such as solvothermal methods, the sol-gel method,
chemical precipitation, and ultrasonic irradiation [28,29]. The most common methods used
to improve the photocatalytic efficiency of TiO2 involve increasing its photoresponse range
and reducing photogenerated-carrier coupling. The morphology, size, and structure of
a heterojunction can be modified by doping with elements, thereby improving photocat-
alytic efficiency. These methods have made it possible to synthesize various TiO2-based
nanoparticles and apply them in photocatalysis, in particular TiO2 nanorods [30], TiO2
nanosheets [31], TiO2 nanofibers [32], TiO2 nanowires [33], TiO2 nanotubes [34], and TiO2
nanospheres [35]. Studies report that the use of spherical mesoporous TiO2 nanostructures
enhances mass and charge transfers within the porous regions during photocatalytic reac-
tions [36]. Moreover, it has been observed that catalysts with spherical shapes larger than
200 nm facilitates easy separation and reusability [37].

In this work, the solvothermal method has been used to synthesize TiO2-NS, as a
simple method for the preparation of visible light-active photocatalysts. TiO2-NS was
characterized by different techniques, and its photocatalytic performance was examined
in relation to the degradation of a binary dye solution of Tartrazine and Naphthol Blue
Black as target pollutants. Response surface methodology (RSM) was used as an efficient
tool to study the effects of key parameters and highlight the optimum conditions. Finally,
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the mineralization performances of photocatalysts in TTZ elimination, in addition to
stability and reusability, were addressed.

2. Material and Method
2.1. Reagents

Naphthol Blue Black, Titanium (IV) isopropoxide 97% and Sodium chloride
(NaCl ≥ 99.0%) were purchased from SIGMA-ALDRICH Corporation (Saint-Louis, MO,
USA) Tartrazine dye powder were purchased from ThermoScientific Chemicals (Haver-
hill, MA, USA), hydrochloric acid (HCl ≥ 37%) was purchased from Honeywell (Diegem,
Belgium), hydroxide sodium (NaOH ≥ 98%) was from Organics (Chicago, IL, USA) and
Isopropanol (CH3CH(OH)CH3 ≥ 99.7%) was obtained from MERCK Company (Darmstadt,
Germany). These were all used for this study. The physico-chemical properties of Tartrazine
and Naphthol Blue Black are listed in Table 1.

Table 1. Physico-chemical properties of dyes.

Dye Molecular Formula Structure λmax (nm)

Tartrazine C16H9N4Na3O9S2
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2.2. Catalyst Synthesis

TiO2-NS was prepared according to the protocols found in the literature [38]. Into
35 mL of ethanol, 10 mL of Titanium (IV) isopropoxide was added dropwise under stirring,
which resulted in a white suspension. Ultrapure water (5 mL) was also added dropwise
into the suspension and stirred continuously for 2 h. The suspension was heated at 115 ◦C
for 12 h in a Teflon-lined autoclave reactor, then filtered and washed several times with
ultrapure water. The TiO2 nanospheres obtained were dried at 100 ◦C for 12 h and then
calcined at 350 ◦C for 3 h in air.

2.3. Characterization

The specific surface area was studied by the Brunauer–Emmett–Teller (BET) method
with the ASAP 2020 V4.04 (V4.04 H) apparatus. The structural changes in TiO2 nanospheres
were examined using a Jobin Yvon Raman spectrophotometer model T64000. The laser
wavelength was 514.5 nm (2.41 eV), and the power was 100 mW. The measurement was
carried out in the solid state by dispersing the sample powder on a glass solid in air at
room temperature. Fourier transform infrared (FT-IR) analysis was utilized to evaluate the
surface chemistry or the functional groups of the synthesized materials. This analysis was
carried out with an average of 128 scans in ATR mode with a diamond crystal from 4000 to
400 cm−1. The synthetized TiO2-NS was structurally and morphologically characterized
by scanning electron microscopy (SEM) using a JEOL 6060-LV apparatus. The UV-Vis
diffuse reflectance spectra (UV-Vis DRS) of the synthesized material were recorded with
a Cary 300 instrument with a scan rate of 600 nm/min. The fluorescence X was used to
determine the chemical composition of the samples using a Panalytical Epsilon 3 with an
Ag anode tube. Pollutant concentration was monitored using a UV-Vis spectrophotometer
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SHIMADZU UV-1800 (Marne La Vallée, France) and mineralization was assessed using a
VCsn TOCmeter SHIMADZU (Marne La Vallée, France).

2.4. Photocatalytic Treatment

The photocatalytic degradation efficiency of TiO2-NS was assessed via the photodegra-
dation of Tartrazine (TTZ) and a binary mixture of Tartrazine (TTZ) and Naphthol Blue
Black (NBB) dye solution. Visible light (λmax = 800 nm) and ultraviolet light (λmax = 254 nm
of UV-C), from sources with 11 W of power, were used in performing the Tartrazine pho-
todegradation, and a visible light source was used for the photodegradation of the binary
mixture. A TTZ solution (5 ppm) was prepared, and binary mixture solutions used in the ex-
periments were also prepared at different concentrations (with a molar concentration of 1:1
ratio). A mass of the catalyst was dispersed into 200 mL of solutions. The mixture was left
in the dark and continuously stirred at 900 rpm for 60 min to achieve adsorption–desorption
equilibrium before light irradiation. After reaching the adsorption–desorption equilibrium,
the dye solution was exposed to light for 180 min. At 30 min time intervals, 3 mL samples of
the solution were collected from the photoreactor and filtered to remove the photocatalysts
using a syringe filter (pore size 0.45 µm). A spectrophotometer (SHIMADZU UV-1800)
was used to measure the absorbances of TTZ and NBB at their maximum absorption peak
intensity (λmax) values of 426 nm and 618 nm, respectively. The photocatalytic degradation
and the mineralization were estimated using Equations (1a) and (1b), respectively.

R(%) =
C0 −Ct

C0
× 100 (1a)

Mineralization(%) =
TOC0 − TOCt

TOC0
× 100 (1b)

where C0 and Ct are the initial concentration and concentration at time t, in mg/L of
pollutant, respectively. The TOC0 and TOCt are the total organic carbon values at time
0 min and t, respectively.

3. Results and Discussions
3.1. Characterization
3.1.1. X-ray Diffraction, Raman Spectroscopy, Fourier Transformer Infrared (FTIR) and
X-ray Fluorescence of TiO2-NS

The XRD diffractograms of TiO2 nanospheres are shown in Figure 1a. Peaks at 2θ
equal to 25.2◦, 37.9◦, 48.1◦, 53.9◦, 55.1◦, 62.8◦, and 68.9◦, corresponding to the (101), (112),
(200), (105), (211), (204), and (116) planes, respectively, are attributed to the anatase phase
of TiO2 [39,40]. Figure 1b shows the Raman spectra of the prepared TiO2 nanospheres.
The bands observed around 394, 513, and 637 cm−1 correspond to the anatase crystalline
phase of TiO2, which are related to the B1g, A1g, and Eg Raman modes, respectively [41].
No peaks characteristic of other phases or impurities were detected, indicating that the
prepared TiO2 nanospheres obtained were of high purity. The broadening of the Raman
spectroscopy peaks can be attributed to the size of the TiO2 nanocrystals. Figure 1c shows
the FTIR peaks of TiO2 nanospheres. We only observe bands around 421 cm−1, which
can be attributed to Ti–O stretching vibrations [42]. These results are in good agreement
with those of the Raman analysis, and confirm the high purity of TiO2 nanospheres. The
elemental composition study helps in the identification of inorganic elements present in the
materials. Figure 1d presents the different results, and shows the presence of elements such
as Cl, Ti and Cu in TiO2 nanospheres. We have noted a considerable amount of the element
Ti in the nanospheres. The presence of the elements Cl and Cu in the TiO2 nanospheres
could be explained by the impurities present in the reagents used in the synthesis of these
nanospheres, as the degree of purity of the titanium tetraisoproxide used was 97%. The
formation of TiO2 is the result of heat treatment during the synthesis process. This result
regarding the elemental composition testifies to the successful formation of TiO2-NS.
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Figure 1. (a) XRD diffractogram, (b) Raman spectra, (c) FTIR spectra and (d) Elemental Composition
of TiO2−NS.

3.1.2. SEM Analysis and Specific Surface Area of TiO2-NS

The surface morphologies of the TiO2 nanoparticles were examined by scanning
electron microscopy (SEM), which revealed that TiO2 has a spherical shape with better
dispersion (Figure 2). A weak agglomeration of the nanoparticles was also observed,
which may be due to the aggregation of the primary TiO2 particles at a high calcination
temperature, which is necessary to accelerate the crystal growth of the nanoparticles. The
BET theory, using the N2 adsorption–desorption isotherm, was employed to study the
specific surface area (Table 2). According to the BET results, TiO2-NS had a moderate
surface area of 33.3 m2/g, signifying that the TiO2-NS would be able to fix contaminants
and facilitate the photocatalytic process.
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Table 2. Specific surface area data.

Materials SBET (m2/g) Pore Volume (cm3/g) Pore Size (Å) Nanoparticle Size (Å)

TiO2-NS 33.3 0.2 201.0 470.9

3.1.3. UV-Vis Diffuse Reflectance Spectroscopy (DRS)

The optical properties of TiO2 nanospheres were studied using UV-Vis diffuse re-
flectance spectra (Figure 3). It can be seen in Figure 3a that TiO2 nanospheres absorb UV
light. As in our previous work, the band gap energy was calculated using the Kubelka–
Munk equation [43,44]. Consequently, Figure 3b shows a slight decrease in the bandgap
energy of TiO2-NS (2.9 eV) compared with that of commercial TiO2, as described in the lit-
erature, which could be beneficial to photodegradation in the visible range. The activity in
the visible range could be explained by the difference in the morphology, surface chemical
composition and crystal composition of TiO2-NS compared to the commercial and other
forms of TiO2 synthesized differently. It is highly likely that a large number of defects (such
as oxygen vacancies, etc.) exist, and lead to a reduction in the bandgap value, resulting
in (slight) absorption in the visible range. Similarly, the presence of a small amount of
copper, a transition metal, could also explain the activity of TiO2-NS in the visible range,
as explained in the literature. The literature shows an increase in the bandgap for 3%
Cu-doped TiO2, corresponding to an 18% enhancement in the efficiency of bare TiO2 [45].
In addition, 10% Cu-doped TiO2 enhanced hydrogen generation under irradiation in the
visible range by reducing the band gap energy of the material [46].
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TiO2−NS.

3.2. Photocatalytic Activity of TiO2-NS under UV and Visible Light

The photocatalytic activity of TiO2-NS was evaluated under UV and visible light
for the degradation of TTZ at 5 ppm. The degradation efficiencies of the pollutant after
180 min of irradiation are shown in Figure 4. In order to examine the potential role of the
photolysis of TTZ, the first experiment was carried out using only UV radiation (in the
absence of the photocatalyst). It can be seen that in the absence of TiO2-NS, the degradation
efficiency remained unchanged with increasing irradiation time (Figure 4), indicating the
negligible photolysis of TTZ. In fact, the results show that the catalyst played a crucial role
in the photodegradation of TTZ under light irradiation. Indeed, a significant increase in
photocatalytic activity was observed due to the presence of TiO2-NS. These results also
reveal the weak sorption of the dye over a period of 60 min in the dark, with the absorbance
of TTZ after adsorption–desorption equilibrium decreasing by 10%. On the other hand, it
is worth noting that under UV light, we observed that the degradation efficiency of TTZ
reached 100% after 150 min of irradiation, while in the case of visible light exposure, a
gradual increase in the degradation efficiency of TTZ as per the degradation efficiency
obtained was 57% (Figure 4) after 180 min of irradiation, which demonstrates the ability
of TiO2-NS to perform photodegradation under visible light. Similar results have been
reported on the photocatalytic performance of TiO2-NS in the degradation of organic
contaminants [47,48]. These results demonstrate that TiO2-NS can be excited by visible
light for dye degradation purposes.
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Figure 4. Adsorption equilibrium and photocatalytic degradation of tartrazine with TiO2−NS catalyst
under UV and visible light (C0: 5 ppm. CTiO2−NS: 0.2 g/L. V: 200 mL. natural pH: 6).
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3.3. Catalyst Dose Effect

The catalyst dosage is a crucial factor in the photocatalytic reaction [49]. Consequently,
the effect of TiO2−NS dose on the tartrazine photodegradation (at 5 ppm of initial concen-
tration) under visible light irradiation was studied by varying the catalyst concentration
from 0.1 g/L to 0.3 g/L. As reflected in Figure 5, the degradation efficiency of tartrazine
increases from 52% to 100% when enhancing the photocatalyst concentration from 0.1 g/L
to 0.3 g/L, which may be explained by the abundance of active sites on the photocatalyst
surface, leading to the generation of a great quantity of ROS (•OH, HO2. . .) [50].
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Figure 5. Effect of catalyst dose on tartrazine degradation under visible light (C0: 5 ppm. Vsolution:
200 mL. Natural pH: 6).

3.3.1. Initial TZZ Concentration Effect and Kinetics of Degradation

The influence of the initial TTZ concentration on degradation was studied for concen-
trations of 2 to 12 ppm. Figure 6a shows that increasing the dye concentration decreases the
photodegradation rate. This can be attributed to the number of active sites available when
using the same amount of catalyst for different dye concentrations [51]. With a low initial
concentration, TiO2-NS produces a sufficient number of active sites for the adsorption of
TTZ molecules. With higher initial concentrations, the number of available active sites
and the amount of produced ROS are not sufficient for adsorbing/degrading the high
number of dye molecules and intermediate products, which reduces the efficiency of dye
degradation [52].

The kinetic analysis of TTZ was carried out by determining the rate of pseudo-first-
order reaction (k) using (Equation (2)) [53].

Ln
(

C0

C

)
= k× t (2)

where k is the rate of pseudo-first-order reaction (min−1) and t is the reaction time in min.
The slope of the straight-line Ln (C0/C) as a function of time was used to define the

value of the pseudo-first-order reaction rate (k). As shown in Figure 6b, the R2 (correlation
coefficient) values obtained for TTZ concentrations of 2, 5, 8, and 12 ppm were 0.973, 0.976,
0.999, and 0.972, respectively, demonstrating that the pseudo-first-order kinetic model
describes the degradation of TTZ by TiO2-NS. We also note that k increases inversely with
contaminant concentration, as has already been documented in previous studies [54]. For
the initial TTZ concentration of 2 ppm, the degradation efficiency reaches 100% after 60 min
of visible light irradiation, and then there are no kinetics for modeling after this time.
Similar behaviors were reported by Zeghioud et al. [55] and Mouhamadou et al. [56].
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Figure 6. (a) Effect of initial Tartrazine concentration with 200 mL of solution and 40 mg of cat-
alyst at natural pH, under visible light irradiation; (b) PFO kinetics for tartrazine degradation
under visible light ([TTZ]0 = 2–12 ppm. Vsolution: 200 mL. Natural pH: 6. CTiO2-NS: 0.2 g/L.
Reaction time = 180 min), (c) Langmuir–Hinshelwood plot for photodegradation of tartrazine un-
der visible light ([TTZ]0 = 2–12 ppm. Vsolution: 200 mL.Natural pH: 6. CTiO2-NS: 0.2 g/L.
Reaction time = 180 min).

The photocatalytic degradation reactions of several organic pollutants have been
described by the Langmuir–Hinshelwood model (L-H) (Equation (3)) [57], because it
takes into consideration the interaction between radicals and substrate molecules that are
adsorbed on the surfaces of catalysts throughout the process [55].

r0 = −dC0

dt
=

k×K×C0

1 + KC0
(3)

where r0 (mg·min−1·L−1) denotes the initial reaction rate, k (mg·min−1·L−1) is the apparent
L-H rate and K (L·mg−1) is the adsorption/desorption equilibrium constant.

The linearized form of the L-H model is commonly applied to describe the mechanism
of heterogenous photocatalytic reactions, according to Equation (4) [58,59].

1
r0

=
1

k×K×C0
+

1
k

(4)

The linear plot of 1
r0

versus 1
C0

(Figure 6c) was used to calculate the constant values of
k and K, which were discovered to be, respectively, 0.029 mg·min−1·L−1 and 0.32 L·mg−1.
As seen in Table 3, these values are significantly lower than those reported in previous
studies for organic degradation compounds. This could be explained by the pollutant’s
high molecular weight, which would slow down the degradation process. Additionally,
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this variance in the L-H model’s constants may be explained by the source of light used for
irradiation and the UV lamp’s low intensity value.

Table 3. Langmuir–Hinshelwood model constants reported by previous studies related to the organic
compound’s degradation.

Pollutant Photocatalyst Irradiation Source k (mg·min−1.L−1) K (L·mg−1) Ref.

Acetaminophen TiO2 Simulated solar light 0.385 0.0970 [60]

Ciprofloxacin CuFe2O4 UV-C light irradiation 0.141 0.202 [61]

Acid Red dye Activated carbon-TiO2
composite UV light irradiation 1.78 0.06 [62]

Reactive green 12 TiO2 loading on polyester UV light irradiation 0.035 0.796 [55]

Tartrazine Synthesized TiO2-NS Visible light
irradiation 0.029 0.32 This

work

3.3.2. Effect of pH

pH value is one of the most important parameters influencing the rate of degradation
of organic compounds in the photocatalytic process in numerous ways. To study the effect
of pH on the degradation efficiency of TTZ and NBB in a binary mixture solution under VL,
all experiments were carried out at various pH values, constant initial dye concentrations
(CTTZ: 2 ppm, CNBB: 2.33 ppm) and a TiO2 catalyst dosage of 40 mg. The pH of the solution
was varied between 2 and 10 by adding the required volume of HCl or NaOH solution.
From Figure 7, we can clearly see that the degradation efficiency values of the dyes for
different pH increased in the pattern pH 10 < pH 6 < pH 2. Maximum degradation was
yielded at pH 2 for both dyes, with 100% degradation efficiency. At a natural pH of 6 of the
binary mixture of TTZ and NBB, the degradation efficiencies of TTZ and NBB were 31%
and 50%, respectively. Finally, at pH 10, the degradation efficiencies were the lowest for the
two dyes, at 2% for TTZ and 36% for NBB.
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catalyst under visible light at different pH values (CTTZ: 2 ppm. CNBB: 2.33 ppm. CTiO2-NS: 0.2 g/L.
Vsolution: 200 mL. Treatment duration: 120 min, 10 ppm of NaCl presence).

The pH of the solution influences the charge on the surface of the photocatalyst and
also the ionic species of dye in the solution. At an acidic pH, the adsorption of the dye on
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the surface of TiO2 is higher than that at a neutral or basic pH, which can be attributed to
the fact that TiO2 shows an amphoteric characteristic [63]. In this case, TiO2 has a negatively
charged surface at acidic pH, and is positively charged at basic pH [64]. The following
equations express the phenomenon [65].

Acidic pH:

Ti-OH + H+ → TiOH2
+

Basic pH:

Ti-OH + OH− → TiO− + H2O

TTZ and NBB are anionic dyes [63,65]; their degradation efficiency increases at acidic
pH because of the positive charge of TiO2 in the acidic solution. The adsorption and
degradation decreased as the pH increased because of the negative charge of TiO2 in the
basic solution.

3.4. Binary System Study

In order to get closer to real conditions, we evaluated the performance of the synthe-
sized TiO2-NS photocatalyst on the simultaneous degradation of two azo dyes, namely,
Tartrazine (TTZ) and Naphthol Blue Black (NBB). Indeed, the mixture of dyes most likely to
be encountered on an industrial scale is composed of azo dyes, because they represent 60%
of commercial dyes [66,67]. As reflected in Figure 8, higher photocatalytic performances
were obtained regarding NBB compared to TTZ. Indeed, NBB degradation at 2.33 ppm
was 64% (Figure 8b), whereas in the case of TTZ at 2 ppm, it was only 45% (Figure 8a) after
180 min of irradiation. This may be explained by a greater involvement of •OH radicals in
the case of NBB.
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Figure 8. (a) Photocatalytic degradation of Tartrazine (TTZ) (CNBB: 2.33 ppm. mTiO2-NS: 40 mg.
Vsolution: 200 mL. Natural pH: 6, 10 ppm of NaCl presence) and of (b) Naphthol Blue Black (NBB)
(CTTZ: 2 ppm. mTiO2-NS: 40 mg. Vsolution: 200 mL. natural pH: 6, 10 ppm of NaCl presence) in binary
solution under visible light.

The degradation efficiency of the dyes decreased with an increase in the initial dye
concentration, as observed in Figure 8. Additionally, this also indicates that higher initial
concentrations of TTZ (4 ppm, 6 ppm) and NBB (4.66 ppm, 6.99 ppm) resulted in degra-
dation efficiencies of approximately 22% and 27%, respectively. This may be due to the
reduced generation of radical species on the surface of the photocatalyst. The amount of
dye that saturates the surface of the photocatalyst is important for photodegradation; as the
active sites on the TiO2-NS photocatalyst become occupied by dye molecules, the generation
of •OH radicals on the surface of the photocatalyst decreases [68,69]. As the concentration



ChemEngineering 2024, 8, 50 12 of 22

of dye molecules increases, fewer photons reach the catalyst surface of TiO2-NS, thereby
reducing the formation of •OH and decreasing the photodegradation efficiency [70].

3.5. Experimental Design Results
3.5.1. Optimization of Parameters Using Response Surface Methodology (RSM)

The design of experiments offers a systematic approach to distinguishing the impor-
tance of certain variables to the results, their interactions, and the effects of controlling
them on achieving the optimal response [71]. To determine the relationship between the
various experimental parameters and the results obtained, response surface methodology
(RSM) is one of the most widely used empirical modeling techniques for the multivariate
optimization of experimental results [56,72]. The RSM was used to analyze and optimize
the photocatalytic degradation of TTZ and NBB using TiO2 nanospheres. For this study,
13 trials were performed, and the degradation removal rates are presented in Table 4.
The degradation efficiencies ranged from 15.38% to 44.55% (TTZ) and from 21.75% to
63.14% (NBB).

Table 4. Experimental design to assess the mutual effects of second pollutant presence and NaCl on
the photocatalytic degradation TTZ and NBB.

Factor 1 Factor 2 Factor 3 Response 1 Response 2

Run A: CTTZ B: CNBB C: CNaCl Degradation Yield TZ Degradation Yield NBB
(ppm) (ppm) (ppm) (%) (%)

1 2 2.33 10 44.55 63.14
2 2 2.33 6 32.97 52.71
3 3 3.495 10 15.94 30.2
4 2 2.33 2 44.32 60.31
5 4 2.33 2 25 38.06
6 2 4.66 6 15.38 22.33
7 4 2.33 6 26.44 32
8 4 2.33 10 27.68 37.74
9 3 3.495 6 18.37 30.33

10 3 3.495 2 22.82 34.74
11 2 4.66 10 16.15 21.75
12 2 4.66 2 20.61 28.99
13 3 3.495 6 18.79 28.09

On the basis of the experimental data presented in Table 4, a polyfunctional equation
describing the photodegradation process was established, expressed as follows (Equations
(5) and (6)):

(Degradation yield TTZ + 17)−1.83 = −0.0019+ 0.0007CTTZ + 0.0005CNBB + 0.0005CNaCl − 0.0001CTTZ × CNBB −
0.0002CTTZ × CNaCl − 6 × 10−5CNBB × CNaCl − 3 × 10−5CNaCl

2 + 4 × 10−5CTTZ × CNBB × CNaCl +
8 × 10−6CTTZ × CNaCl

2.
(5)

(Degradation yield NBB)0.3 = 4899 − 0.311CTTZ − 0.383CNBB − 0.112CNaCl + 0.043CTTZ × CNBB −
0.003CTTZ × CNaCl + 0.007CNBB × CNaCl + 0.013CNaCl

2 − 0.002CNBB × CNaCl
2.

(6)

This empirical linear regression (Equations (5) and (6)) provides clear information
on the positive or negative effects of the main variables, while the numerical coefficient
is related to the significance of the effect. It is clear from Equations (5) and (6) that the
TTZ concentration plays the most important role in the process, followed by the NBB
concentration, and finally the NaCl concentration.To validate the model, an analysis of
variance (ANOVA) was applied, the results of which are presented in Tables 5 and 6. The
statistical significance of the model is attributed to the F value [73]. F values of 110 (TTZ)
and 193.93 (NBB) imply that the model is highly significant. There are only 0.13% (TTZ)
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and 0.01% (NBB) chances that an F value of this magnitude is due to noise [74,75]. The
very low probability values of p-value < 0.0013 (TTZ) and p-value < 0.0001 (NBB) confirm
that the model is highly significant at the 95% confidence level. According to Sohrabi and
Shahnaz, a model is significant when the p-value is <0.05 [73,76].

Table 5. ANOVA table and fit statistics of Tartrazine degradation.

Source Sum of
Squares df Mean Square F-Value p-Value

Model 2.001 × 10−6 9 2.224 × 10−7 110.00 0.0013 Significant
A-CTTZ 9.303 × 10−8 1 9.303 × 10−8 46.02 0.0065
B-CNBB 8.724 × 10−7 1 8.724 × 10−7 431.59 0.0002
C-CNaCl 1.199 × 10−7 1 1.199 × 10−7 59.29 0.0046

AB 4.421 × 10−8 1 4.421 × 10−8 21.87 0.0185
AC 3.440 × 10−8 1 3.440 × 10−8 17.02 0.0258
BC 1.004 × 10−7 1 1.004 × 10−7 49.65 0.0059
C2 2.006 × 10−8 1 2.006 × 10−8 9.92 0.0513

ABC 4.730 × 10−8 1 4.730 × 10−8 23.40 0.0168
AC2 3.452 × 10−8 1 3.452 × 10−8 17.07 0.0257

Residual 6.064 × 10−9

3 2.021 × 10−9
R2 0.9970

Adjusted R2 0.9879
Predicted R2 0.7922

Adeq Precision 29.6421

Table 6. ANOVA table and fit statistics of Naphthol Blue Black degradation.

Source Sum of
Squares df Mean Square F-Value p-Value

Model 1.11 8 0.1389 193.93 <0.0001 Significant
A-C tartrazine 0.0780 1 0.0780 108.87 0.0005

B-C NBB 0.1623 1 0.1623 226.57 0.0001
C-C NaCl 0.0208 1 0.0208 29.09 0.0057

AB 0.0059 1 0.0059 8.17 0.0460
AC 0.0008 1 0.0008 1.18 0.3388
BC 0.0206 1 0.0206 28.77 0.0058
C2 0.0339 1 0.0339 47.36 0.0023

BC2 0.0022 1 0.0022 3.02 0.1573
Residual 0.0029 4 0.0007

R2 0.9974
Adjusted R2 0.9923
Predicted R2 0.9805

Adeq Precision 42.6727

The values of the R2, adjusted R2 and predicted R2 coefficients of the applied Box
Behnken Design (BBD) model were 0.9970, 0.9879, and 0.7922 (TTZ) and 0.9974, 9923,
and 9805 (NBB), respectively (Tables 5 and 6). These R2 values correspond to the level of
agreement between the degradation rates obtained experimentally and those predicted
by the proposed model, as shown in Figure 9. The adequate accuracies, which measure
the signal-to-noise ratio, are 29.6421 (TTZ) and 42.6727 (NBB), which are well above the
lowest acceptable value of 4. This practically means that the proposed model can be safely
used to navigate the design region, within the limit of the variables determined previously
(Table 4).
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3.5.2. Response Surface 3D Graph and Contour Plots of the Interactive Effects

The 3D response surfaces and contours are graphical representations of the regression
equation applied for optimizing the reaction conditions, and represent a very useful ap-
proach to revealing the factors affecting the reaction system. The results obtained from the
combined interaction of three factors are shown in Figure 10 (TTZ) and Figure 11 (NBB).

Figures 10a and 11a show the simultaneous influences of TTZ concentration and NBB
concentration on the photodegradation of TTZ and NBB, respectively. As can be seen from
the graphs, the interactive effects of TTZ concentration and NBB concentration on both
TTZ and NBB removal reveal an exponential response surface. Furthermore, the combined
effects of the factors suggest that TTZ and NBB removal rates decrease with increasing
concentrations. The corresponding contour plots (Figure 10a ) were applied to facilitate a
better understanding of the information relating to the interaction effect of the factors on
the response. The green region tending towards yellow on the graph indicates maximum
degradation.

Figures 10b and 11b show the combined effects of TTZ concentration and NaCl salt
interference on TTZ and NBB dye removal. It is evident that the percentage removal of
TTZ and NBB exhibits an exponential response surface. The rate of photodegradation is
high at low NaCl concentrations for both dyes, as shown in Figures 10c and 11c. These
results show that the response increases with decreasing dye and NaCl concentrations
in the medium. The corresponding contour plots (Figures 10b,c and 11b,c) give greater
visibility to the factors influencing the response. The green area of the contour corresponds
to a high percentage of elimination.
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Figure 10. RSM surfaces plots and 2D contour plots of the interaction effects between: (a) TTZ and
NBB concentrations; (b) TTZ and NaCl concentrations and (c) NaCl and NBB concentrations.
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Figure 11. RSM surfaces plots and 2D contour plots of the interaction effects between (a) NBB and
TTZ concentrations; (b) NaCl and Tartrazine concentrations; and (c) NBB and NaCl concentrations.
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3.6. Mineralization

In order to evaluate TTZ mineralization in the presence of the synthesized TiO2-
NS photocatalyst, the TOC removal yields were determined. The degradation efficiency
and mineralization yield of TTZ versus the irradiation time are depicted in Figure 12. As can
be seen in this last figure, the mineralization results obtained confirm the trend observed
relating to contaminant degradation. Indeed, both degradation and mineralization yields
increase with irradiation time. Obviously, the degradation of almost all total organic
pollutants happens promptly, while TOC drops by only ~31% after 1 h of light exposure,
which clearly shows the creation of intermediate transformation products [77,78]. On
the other hand, in this study, a highly satisfying mineralization yield was obtained after
180 min, representing 53%. However, a longer irradiation time is necessary to reach the
complete mineralization of the pollutant. Although further analysis is required to identify
intermediate products, the overall mechanism remains as follows:

Pollutants + ROS→ intermediate products (7)

Intermediate products + ROS→ CO2 + H2O + minerals ions (8)
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3.7. Reuse Test of Photocatalyst

The reusability of the photocatalyst is a crucial factor from both environmental and
financial perspectives [57]. In order to examine this parameter, TiO2-NS underwent three
cycles of photocatalysis under the same operating conditions (TTZ concentration, photo-
catalyst dosage, and irradiation source). As can be seen in Figure 13, in the third cycle,
the pollutant degradation decreased. The loss of photocatalyst active sites, the loss of
matter during handling and physical solicitation, and irreversible chemical adsorption
could explain the diminution in photoactivity of synthesized materials observed after each
cycle [23]. After a certain number of cycles, the photocatalyst would not be reusable, but it
has the advantage of being simple to synthesize, as well as inexpensive.
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Figure 13. Reusability cycles of TiO2-NS for photocatalytic degradation of tartrazine under visible
light (C0: 6 ppm. mTiO2-NS: 100 mg. Vsolution: 200 mL. natural pH: 6).

4. Conclusions

The structural modification of TiO2 is a promising route that can lead to a photocatalyst
active in the visible range, which can be used in water treatment. The photocatalytic
efficiency of TiO2 nanospheres used in the removal of TTZ dye has been successfully
demonstrated. Characterization techniques provide information on surface chemistry and
inorganic constituents (FTIR, XRF), crystallinity (Raman spectroscopy), morphology (SEM),
specific surface area (BET), and band gap energy (DRS). The experimental data from the
pseudo-first-order kinetic model best describe the degradation of TTZ by TiO2-NS. The
optimized parameters obtained by RSM provide a better understanding of the combined
effects of the factors in the reaction system in achieving optimum photodegradation process.
Optimization using response surface methodology indicates that pollutant concentration
is the most important factor, while NaCl salt interference had a much smaller effect on
the photodegradation of the dyes TTZ and NBB. The analysis of variance in the BBD
showed good statistical results and provided an effective model for the reaction system.
The TiO2 nanospheres developed showed satisfactory performance in the removal of TTZ
and NBB dyes by photocatalysis in the visible range. This study has identified a material
that is effective in removing organic contaminants from wastewater. Consequently, its
characteristics and qualities make it a suitable photocatalyst for wastewater treatment to
remove contaminants.
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