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Abstract: Edible fungi are well known for their rich nutrition and unique flavor. However, their post-
harvest shelf-life is relatively short, and effective post-harvest preservation techniques are crucial for
maintaining their quality. In recent years, many new technologies have been used for the preservation
of edible fungi. These technologies include cold plasma treatment, electrostatic field treatment, active
packaging, edible coatings, antimicrobial photodynamic therapy, and genetic editing, among others.
This paper reviews the new methods for post-harvest preservation of mainstream edible fungi. By
comprehensively evaluating the relative advantages and limitations of these new technologies, their
potential and challenges in practical applications are inferred. The paper also proposes directions
and suggestions for the future development of edible fungi preservation, aiming to provide reference
and guidance for improving the quality of edible fungi products and extending their shelf-life.
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1. Introduction

Edible fungi, commonly known as mushrooms, refer to a type of fungi that are safe
for human consumption. They are rich in variety, with common mainstream edible fungi
including Agaricus bisporus, Lentinus edodes, Flammulina velutipes, Pleurotus ostreatus, Tremella
fuciformis, etc. Edible fungi have high nutritional value and contain high-quality proteins,
dietary fiber, vitamins, and minerals. They are also rich sources of bioactive substances such
as polysaccharides, polyphenols, terpenoids, etc. [1]. The presence of various beneficial
components not only enriches the nutritional content of mushrooms but also gives them
medicinal properties. For example, T. fuciformis contains a polysaccharide content of up
to 60~70% [2]. This component has been widely extracted and researched, demonstrat-
ing preventive effects on various diseases such as cancer, cardiovascular diseases, and
diabetes [3,4]. Nowadays, people pursue healthy dietary and lifestyle choices. Edible
fungi are low in fat and have a protein content higher than most vegetables [5]. They are
also the only non-animal food that provides a significant amount of vitamin D2 [6]. The
vitamin D2 content in every 100 g of fresh edible fungi is equivalent to the daily require-
ment recommended internationally, making them an important source of vitamin D2 for
vegetarians [7,8]. Consequently, an increasing number of consumers are incorporating
edible fungi into their diets, further expanding market demand and driving the prosperity
and innovation of the edible fungi industry. According to research forecasts, the global
market demand is expected to reach 20.84 million tons by 2026 [9].
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However, the tender texture of fresh edible fungi poses significant challenges to
their commercial distribution after harvest. During harvesting, transportation, storage,
and retail processes, the quality of fresh mushrooms can be affected by various factors.
For example, post-harvest metabolic activity of the fungi may lead to weight loss, cap
opening, and elongation of the stem. Mechanical damage or invasion by various pathogenic
microorganisms may cause a series of decay and deterioration phenomena in the fungi,
such as browning, softening, and the emission of unpleasant odors [10,11]. All of these
phenomena can significantly reduce the commercial and culinary value of edible fungi.
Therefore, the utilization of suitable and efficient post-harvest preservation methods to
prolong the storage period of edible fungi and enhance their economic value has been a
hot topic of concern.

In recent years, numerous new technologies have emerged in the field of edible fungi
preservation. These include applications such as cold plasma treatment [12], electrostatic
field treatment [13], active packaging [14], edible coatings [15], antimicrobial photodynamic
therapy [16], electrolyzed water treatment [17], novel preservatives [18], and genetic edit-
ing [19]. They demonstrate significant advantages in the preservation of edible fungi. For
instance, antimicrobial photodynamic therapy can more precisely target microorganisms,
reducing the impact on food itself and environmental pollution compared to traditional
heat and chemical sterilization mechanisms [20]. Edible coatings and electrolyzed water
treatment align with the concept of sustainability [21,22]; electrostatic field treatment serves
as a reliable auxiliary means for refrigeration preservation [23]; the application of active
packaging and smart packaging improves the stability of preservation effects [24]; the
use of novel preservatives further improves food safety [25]; genetic editing is advanced
biotechnology that updates people’s understanding of post-harvest preservation of edible
fungi [26]. These innovative technologies play an important role in improving the overall
quality and sustainability of food, injecting new vitality into the food industry.

2. Significance of Post-Harvest Preservation of Edible Fungi

Fresh edible fungi are highly perishable food items, with a shelf-life of only 1~3 days
at room temperature and 5~7 days under refrigeration conditions [27]. This implies that
effective preservation methods are crucial for maintaining the post-harvest quality of edible
fungi. Figure 1 illustrates the vulnerability of post-harvest edible fungi.
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Figure 1. Post-harvest quality degradation of edible fungi and its influencing factors.

The deterioration of its quality is mainly manifested by moisture loss, weight reduc-
tion, softening texture, discoloration, and a decrease in flavor compounds and nutritional
content [1]. Many internal and external factors, such as the water activity of edible fungi,
respiration rate, microbial activity, relative humidity, temperature, and mechanical damage,
all influence the deterioration of its quality [28]. Exploring the mechanisms underly-
ing the decline in its post-harvest quality contributes to the innovative development of
preservation technologies.
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Fresh mushrooms have a water content of approximately 90%, hence their tender and
juicy texture [10]. However, due to the lack of protective tissues against microbial attacks
and moisture loss on the surface, as well as the influence of transpiration, if protective
measures are not taken immediately after harvesting, a large amount of moisture will be
lost, resulting in tissue shrinkage and weight loss [11]. During storage, respiratory and
other life activities consume nutrients in the fruiting bodies. This loss of nutrients also
leads to weight loss [29]. Typical measures include cooling [30] and packaging [31] to slow
down the loss of moisture and nutrients.

With prolonged post-harvest time, the texture and color of mushrooms undergo
changes. This is mainly associated with the activity of a series of enzymes. Enzymes such
as cellulases, chitinases, and β-1,3-glucanases degrade components of the tissue cell wall,
resulting in the softening of mushrooms [32,33]. Enhanced activities of enzymes such
as phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, and peroxidase can
lead to the accumulation of lignin [34]. The accumulation of lignin causes the mushroom
tissue structure to become rough, resulting in a decrease in palatability. Polyphenol oxidase
catalyzes enzyme-catalyzed reactions, forming a large amount of dark-colored substances
that cause discoloration of mushrooms [35]. Some pathogens, especially Pseudomonas, have
a destructive effect on the mushroom cell membrane and can participate in the activation
process of phenol oxidase. They trigger enzyme-catalyzed browning by promoting the
reaction between phenol oxidase and intracellular substrates bidirectionally [36]. Mechan-
ical damage causes the leakage of cell contents, promoting the contact reaction between
substrates and phenol. Temperature fluctuations have a significant impact on enzyme
activity. High humidity accelerates the growth of harmful microorganisms [37]. Intense res-
piration promotes browning reactions. Additionally, research has indicated that a decrease
in protein content also leads to softening of mushrooms [32]. Oxidation reactions such as
non-enzyme-catalyzed browning directly result in the darkening of mushroom color [38].

Post-harvest microbial decay of edible mushrooms is a critical issue because they
may become contaminated by bacteria, fungi, or other microorganisms during planting,
harvesting, processing, and storage [39–41]. Pseudomonas, Enterobacter, Erwinia, Pantoea,
and Rahnella are the main spoilage bacteria in edible mushrooms [42–45]. Verticillium,
Cladobotryum, and M. perniciosa are the main decay fungi, along with other microorganisms
such as dsRNA viruses and ssRNA viruses [39]. They decompose mushroom components
by secreting various enzymes, competitively consume nutrients such as proteins and
carbohydrates, produce toxins, promote the formation of decay conditions, and ultimately
lead to the softening and decay of fruiting bodies [46–48]. Among them, Pseudomonas is one
of the important microorganisms causing post-harvest spoilage of edible mushrooms [47].
For example, an increase in the relative abundance of Pseudomonadaceae was observed in
P. ostreatus, leading to spoilage [45]. The pathogen primarily responsible for the epidemic
bacterial blotch disease in A. bisporus was Pseudomonas [49]. Pseudomonas also induced
apoptosis of cells in F. velutipes, hydrolyzed proteins, and polysaccharides, resulting in
slow mycelial growth and significant yield losses [50]. Other pathogens may also lead to
microbial spoilage of edible mushrooms post-harvest. For example, Burkholderia gladioli
pv. Agaricicola could cause hollow disease in A. bisporus [51]. Additionally, fungi such
as Cystofilobasidium, Aspergillus, and Mucor have a significant impact on the post-harvest
quality of wild morel mushrooms [43]. Therefore, microbial control after the harvest of
edible fungus holds significant importance.

The unique aroma and umami taste of mushrooms are essential characteristics. The
presence of volatile compounds such as C-8 compounds imparts key aroma character-
istics to mushrooms [52]. The umami taste is mainly attributed to umami amino acids
and 5′-nucleotides [53]. According to current research on the post-harvest changes in
the umami taste and aroma of mushrooms, it is found that they are mainly related to
nucleotide metabolism, amino acid metabolism, fatty acid metabolism, and other metabolic
pathways [54]. For instance, one study conducted comprehensive physiological and tran-
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scriptomic analyses, revealing that a high-energy state helped maintain the umami taste of
mushrooms [55].

3. Emerging Preservation Technologies

Traditional post-harvest preservation techniques for edible fungi have certain limita-
tions [56]. For example, irradiation preservation and excessive heat treatment may lead to
the loss of food nutrients [11,57,58]; the use of chemical disinfectants has adverse effects on
human health and the environment [25]; traditional packaging materials used in modified
atmosphere packaging are non-biodegradable [17]. In contrast, emerging preservation
technologies such as cold plasma treatment [12], electrostatic field treatment [13], active
packaging [14], edible coatings [15], antimicrobial photodynamic therapy [16], electrolyzed
water treatment [22], novel preservatives [18], and genetic editing [19] not only effectively
extend the shelf-life of food but also focus on preserving their sensory characteristics and
nutritional value, while adhering to the concept of sustainable development. The emer-
gence of these new technologies provides safer and more efficient preservation solutions,
bringing new hope and opportunities to the food industry. Next, a brief review of emerging
preservation technologies in recent years will be provided.

3.1. Packaging

Currently, common packaging materials used for preservation mainly include polyethy-
lene, polyvinyl chloride, and polypropylene. However, these materials have low perme-
ability and moisture permeability, which will lead to excessive accumulation of CO2 and
condensation of water vapor on the film surface. Compared to the aforementioned packag-
ing materials, the use of micro-perforated film improves permeability. In one study, micro-
porous membranes maintained the ideal color of A. bisporus by inhibiting the formation of
condensation water and harmful volatile compounds inside the membrane [59]. In another
study, microporous membrane packaging reduced the generation of odor compounds,
thus positively affecting flavor retention and extending the preservation of A. bisporus [60].
With the continuous improvement in the requirements for packaging materials, multi-
functional nanocomposite materials with better mechanical properties and preservation
effects have become a research hotspot in the packaging field [61]. One research team
prepared polyethylene-based packaging materials loaded with nano-Ag and nano-TiO2
and found that nanoparticles alleviated cell membrane damage in A. bisporus by affecting
membrane lipid metabolism processes [62]. Another research team explored the mechanism
of nanocomposite packaging materials in inhibiting mushroom browning. They found that
nanocomposite packaging materials could maintain the total phenol content and inhibit
the activities of various enzymes (such as polyphenol oxidase) and related gene expression
pathways involved in melanin formation, thus reducing melanin formation and delaying
browning of A. bisporus [63].

Active packaging is an innovative packaging system containing active ingredients [64].
It can exert antimicrobial, moisture-resistant, antioxidant, and odor-resistant effects on pack-
aged food by releasing active agents. Electrospinning technology is a versatile technique for
designing active packaging [65]. Biologically active paper loaded with 1-methylcyclopropene
(1-MCP) can delay the softening, browning, and weight loss of L. edodes by adsorbing and
removing ethylene inside and outside the packaging [66]. MgO nanoparticles and grape seed
oil were loaded into poly(3-hydroxybutyrate) thin films, and it was found that the antibacte-
rial and antioxidant activities of the films were enhanced, and the growth of Staphylococcus
aureus and Escherichia coli was inhibited, thereby extending the shelf-life of A. bisporus to
6 days under room temperature storage conditions [67]. The control of the release amount
and rate of active substances in packaging is a focus of later-stage research [68].

Intelligent packaging is an advanced packaging technology with integrated sensors
and monitoring devices that enable tracking, monitoring, and managing packaged prod-
ucts [69,70]. Intelligent packaging mainly comes in two application forms: smart con-
trolled release and smart response [71]. From the perspective of intelligent controlled
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release, intelligent packaging releases active substances by sensing environmental stimuli
to mitigate the adverse effects of environmental changes on food products. For example,
hydrogel-controlled release packaging was able to regulate the release of 1-MCP to inhibit
ethylene-induced aging processes [72]. A hybrid aerogel prepared using pectin and cellu-
lose nanofibers stabilized humidity within the membrane by controlling catechol release,
thereby delaying the quality deterioration of A. bisporus [73]. Intelligent, responsive pack-
aging can monitor environmental conditions and product status in real time and provide
feedback to consumers through various interactive means. The application of intelligent
packaging technology is pushing the preservation of edible mushrooms in more intelligent
and sustainable directions, making it an outstanding innovation in the packaging field
today. Some emerging packaging films for edible fungi are shown in Table 1.

Table 1. Packaging film for edible fungi.

Packaging Technology Material Property Mushroom
Species Result Ref.

Microperforated films PA/PE film; 76 µm thickness;
0.5 mm hole size A.bisporus

Maintained higher levels of total phenols and
flavonoids; decreased the levels of relative
conductivity and MDA content;
downregulated specific gene expressions;
reduced the browning index

2024 [74]

Microperforated films
combined with high
oxygen atmosphere
(80% O2)

Polysulfone film (PSF_7000);
25 µm thickness; 25 holes;
143 µm hole size

A. bisporus Maintained the desirable color; decreased
MDA content; inhibited water condensation 2020 [59]

Microperforated films PE film; 25.1 µm thickness;
8 holes; 0.3 mm hole size A. bisporus

Decreased the browning index; maintained a
higher concentration of 13 mushroom
characteristic flavor compounds

2022 [60]

Nanocomposite packaging
Polyethylene-based packaging
material loaded with
nano-Ag/TiO2; 40 µm thickness

A. bisporus
Delayed the degradation of cell membrane
phospholipids of mushroom; delayed the
membrane lipid peroxidation process

2022 [62]

Nanocomposite packaging

Nano-Ag, nano-TiO2, nano-SiO2,
nano-attapulgite, low-density
polyethylene and anti-fogging
agent; 40 µm thickness

A. bisporus

Maintained high total phenolic content and
low levels of flavonoids; reduced the
accumulation of melanin; delayed the
browning process

2022 [63]

Nanocomposite packaging
Nano-Ag, nano-TiO2, nano-SiO2,
nano attapulgite and polyethylene;
40 µm thickness

F. filiformis

Protected the mitochondrial integrity and
function; maintained the balance of energy
supplement; obtained better
postharvest quality

2022 [75]

Nanocomposite packaging
Nano-Ag, nano-TiO2,
nanoattapulgite, nano-SiO2 and
polyethylene; 40 µm thickness

F. filiformis
Regulated phenylpropanoid pathway and
the mitochondrial ROS production; delayed
lignin deposition

2021 [76]

Nanopackaging Nano-Ag and polyethylene; 35 µm
thickness; 2.711 mg/m3 ozone A. bisporus

Maintained a high antioxidant capacity;
delayed the browning and softening
processes; prolonged shelf-life up to 6~9 days

2024 [33]

Active packaging

1-MCP, molecular sieve, loaded
with potassium permanganate,
cinnamon essential oil
microcapsule, packaging paper

A. bisporus
Adsorbed and removed the exogenous
ethylene; delayed the softening, browning,
and weight loss

2021 [66]

Active packaging Zeolite (clinoptilolite), açai extract,
gelatin, and glycerin A. bisporus

Improved antioxidant activity; slowed down
water loss and the browning process of
mushroom

2021 [77]

Active packaging Gelatin, pomegranate peel powder,
and PE film P. ostreatus

Inhibited the growth of bacteria; maintained
firmness and color; prolonged the shelf-life
up to 11 days

2020 [14]

Active packaging MgO nanoparticles, grapeseed oil,
and Poly (3-hydroxybutyrate) A. bisporus

Improved antioxidant activity; inhibited the
growth of bacteria; extended the shelf-life up
to 6 days

2024 [67]

Intelligent packaging Palladium on activated charcoal
and 1-MCP A. bisporus

Controlled 1-MCP release rate and ethylene
removal rate; delayed the softening,
browning, and weight loss of mushroom

2021 [72]

Intelligent packaging Citrus pectin, cellulose nanofibers,
and thymol A. bisporus

Controlled adsorption/release of water and
release rate of thymol; stabilized relative
humidity; inhibited bacterial growth

2022 [73]
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3.2. Cold Plasma Treatment

The food industry is actively seeking new non-thermal food processing technolo-
gies [78]. In recent years, cold plasma (CP) treatment has attracted considerable attention
as a novel cold sterilization and preservation technology [79]. Plasma is the fourth state of
matter in nature, generated by the decomposition of air by high-energy electrons [78,80].
In the preservation of edible mushrooms, dielectric barrier discharge (DBD) is the most
effective method for producing CP [81]. The key lies in sealing the product and gas inside
the packaging, generating a strong electric field under external electrode action, ionizing
the gas inside the packaging, and forming sterilizing plasma (Figure 2) [82]. In a study,
when 30% hydrogen peroxide steam (flow rate of 0.47 mL/min) and argon (4.24 L/min)
were used as working gases, DBD treatment prolonged the storage period of A. bisporus by
inhibiting enzymatic browning and inactivating Pseudomonas [12]. In another study, when
air was used as the working gas, DBD treatment effectively inhibited microbial growth and
reproduction while reducing browning reactions and oxidative damage, thus maintaining
the color and texture of F. velutipes [83]. A research team conducted a comparative analysis
of the effects of DBD treatment and direct cold plasma treatment on the physicochemi-
cal properties and shelf-life of A. bisporus [84]. The results showed that DBD treatment
was more effective in inhibiting the total number of bacteria, yeast, and mold while also
resulting in lower browning value and better quality characteristics of the mushrooms.
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Figure 2. Dielectric barrier discharge (DBD) treatment.

The water treated by CP is called Plasma-Activated Water (PAW) [85]. After soaking
in PAW, A. bisporus deactivates E.coli on its surface, delaying the softening and browning
process [86]. Previous research [87] compared and analyzed the preservation effects on
mushrooms with four different treatment groups: the DBD treatment group; the PAW
treatment group; the pure water treatment group; and the control group. The results
showed that the mushrooms in the PAW treatment group had the lowest browning index
and the best hardness and sensory performance. It may be because PAW treatment increases
contact with the uneven surface of mushrooms, and compared to direct plasma treatment,
the main active components of PAW are reactive oxygen and nitrogen, which are more
targeted at killing pathogenic microorganisms [88]. PAW treatment is an optimization
and improvement of CP preservation technology. However, soaking mushrooms in water
for washing may cause mechanical damage to tissues and water absorption. It is worth
considering whether PAW treatment will affect the texture of mushroom fruiting bodies. In
the future, further exploration should be conducted to determine the optimal application
conditions of CP technology in the preservation of edible mushrooms, providing a more
reliable scientific basis for its application.
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3.3. Edible Coating

Edible coatings have long been of great interest due to their edibility and sustainability.
Edible coatings are thin layers formed by directly immersing or spraying food-grade
coatings onto the surface of food and drying them [21]. Most edible coating substrates,
such as alginate [89], cellulose [90], chitosan [91], gelatin [92], plant proteins [93], and
phospholipids [94], are derived from natural animals and plants to develop effective edible
coating materials for mushrooms. Essential oils, flavonoids, and other active ingredients are
integrated into edible coatings. The addition of these substances enhances the antioxidant,
antibacterial, and anti-pathogenic microorganism properties of the coatings. Additionally,
edible coatings can improve the utilization rate of active ingredients through sustained
release and avoid the adverse effects of unstable volatilization on the flavor of edible
mushrooms [95]. Some recent coatings are shown in Table 2.

Natural plant essential oils possess potent antioxidant and antibacterial properties,
making them typical bioactive substances for enhancing packaging performance [96,97].
The effect of incorporating cinnamaldehyde essential oil nanoemulsion (CIN) into alginate-
based edible coatings on mushroom preservation was studied. The results revealed that the
addition of plant essential oil CIN reduced the respiration rate, weight loss, and the number
of pathogenic bacteria such as Pseudomonas in A. bisporus, thereby enhancing antioxidant
capacity and improving the preservative properties of the composite coating [15]. An edible
coating prepared with aloe vera gel loaded with orange peel essential oils extended the
shelf-life of button mushrooms after harvest to 16 days [98]. Developing edible coatings
represents a significant step for the packaging industry toward a healthier and more
sustainable direction.

Table 2. Recent edible coatings.

Mushroom
Species Packaging Materials Best Rations Result Ref.

A. bisporus Cellulose nanocrystals
(CNCs)/gellan gum ____

The input and output of gases are
controlled; the respiration rate
is suppressed

2021 [29]

A. bisporus Cinnamaldehyde (CIN)/
alginate/Tween 80

Oil: emulsifier (1:1);
0.05 mL/100 mL CIN

Decreased respiration rate and
Pseudomonas counts; increased antioxidant
and firmness retention.

2021 [15]

A. bisporus Protocatechuic acid
(PA)/CaCl2/NaCl/pullulan (Pul)

118 mg/L PA; 0.83%
CaCl2; 0.55% NaCl; 0.30%
Pul

Suppressed respiration rate, browning, and
flavor loss; increased antioxidant activity;
prolonged shelf-life to 16 days

2022 [99]

A. bisporus Salvia macrosiphon seed
(SSG)/liquid smoke (LS) 3% LS Delayed weight loss, softening, and

browning; enhanced total phenolic content 2023 [100]

A. bisporus Aloe vera gel/orange peel
essential oil (EOs)

1500 µL/L Eos; 50% aloe
vera gel

Suppressed respiration rate; prolonged
shelf-life to 16 days; enhanced
antioxidant activity

2023 [98]

A. bisporus
Glycerol/citric
acid/polysaccharides aqueous
extracts from P. eryngii

____ Inhibited dehydration and degradation;
delayed browning 2023 [101]

A. bisporus
Chia seed mucilage/Ferula
gummosa (FG) and Ziziphora
clinopodioides (ZC) essential oils

500 ppm ZC
Reduced weight loss, browning; enhanced
firmness feature; extended the shelf-life up
to 16 days

2024 [102]

A. bisporus Guar gum/leek powder (LP)
/sunflower oil (SO) 1.5% LP; 0% SO Preserved the moisture, shape, and

color quality 2023 [103]

L. edodes γ-polyglutamic acid hydrogel 1%
Inhibited water and weight loss, decay, and
Vitamin C degradation; reduced
polyphenol oxidase activity

2021 [104]

L. edodes Polysaccharide from
Oudemansiella radicata ____

Improved retention of nutritional and
flavor compounds; delayed softening;
reduced MDA production

2021 [105]

F. velutipes Pullulan (Pul)/cinnamaldehyde
(CA)/soybean phospholipids (SP) 6% Pul Delayed color change; increased

antioxidant activity 2023 [106]

Note: “____” indicates that there is no best rations.
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3.4. Antimicrobial Photodynamic Therapy

Antimicrobial photodynamic therapy (APDT) is an innovative food sterilization tech-
nique [107]. It works by irradiating a light source to activate a photosensitizer, generating
reactive oxygen species such as singlet oxygen and free radicals, thereby achieving the
eradication of bacteria, fungi, parasites, and other microorganisms in food [107]. Pho-
tosensitizers are typically colored compounds that absorb light at specific wavelengths,
such as curcumin and riboflavin [107,108]. Compared to traditional heat treatment and
chemical sterilization methods, APDT is gentle, residue-free, and does not lead to the
development of microbial resistance in pathogens. For instance, curcumin-mediated APDT
successfully reduced the bacterial count on the surface of T. fuciformis and retained the color,
moisture content, and hardness [16]. Many studies have combined APDT with composite
films for food preservation [109,110]. For example, curcumin was used as a photosensi-
tizer to prepare chitosan-based films loaded with silver nanoparticles [111] and konjac
glucomannan-based antibacterial films [112]. The addition of natural photosensitizers
enhanced the mechanical properties, antibacterial performance, and antioxidant activity
of the films. The film packaging reinforced the stability of the photosensitizer, and its
excellent barrier properties effectively prevented secondary infection after APDT. However,
the penetration power of the light source in APDT is limited, posing a significant challenge
in eradicating microorganisms hidden in the gills of edible mushrooms.

3.5. Electrostatic Field Treatment

Electrostatic field treatment is a non-thermal physical preservation technique that
is typically used as an adjunct to refrigeration to extend the shelf-life [113]. It works by
ionizing the air to create a negative ion environment, thereby inhibiting the metabolism
of fruits and vegetables, suppressing the growth of surface microorganisms, and affecting
enzyme activity simultaneously [114]. Electrostatic field treatment is classified into high-
voltage electrostatic field (HVEF) treatment (>2.5 kV) and low-voltage electrostatic field
(LVEF) treatment (≤2.5 kV) based on the output voltage [113]. It does not cause significant
changes in food temperature during the treatment process, making it suitable for heat-
sensitive foods such as mushrooms [23]. Research has shown that treating A. bisporus
with HVEF can reduce hardness loss, enhance antioxidant enzyme activity, and induce
the breakdown of oxidative enzymes [115]. In other research, Liu combined LVEF with
modified atmosphere packaging (MAP) to investigate its effect on the post-harvest shelf-life
of A. bisporus. The results showed that compared to the sole use of MAP treatment, the use of
LVEF reduced the respiratory rate of mushrooms, inhibited the proliferation of pathogenic
microorganisms, and extended the shelf-life of mushrooms from 6 days to 12 days [13].

The HVEF preservation technology using DENBA+ electrostatic device is referred to as
“DENBA+ technology”. Its preservation principle lies in installing DENBA+ electrode plates
in the refrigerated space, utilizing high-voltage electrostatics to generate electromagnetic
static waves. These waves resonate and activate water molecules in food, disturbing the
internal metabolic processes of food cells and thereby slowing down food decay [116].
DENBA+ technology holds promising prospects in the field of food preservation and
has already begun commercialization. In a study aimed at extending the shelf-life of
strawberries with DENBA+-assisted refrigeration, it was found that DENBA+ technology
could inhibit the respiration rate and substance metabolism of strawberries, delay the
decline in texture and soluble solids content, kill pathogenic bacteria, reduce their decay
index, thus extending the shelf-life [117]. Compared to other application forms and devices
in high-voltage electrostatic field treatment, the advantages of DENBA+ technology lie
in emitting uniformly distributed beam-like static electricity, which expands the electric
field. Increasing the electric field strength and achieving uniform electric field density is
advantageous for preservation treatment. Additionally, DENBA+ technology is energy-
saving and environmentally friendly, with simple device setup and convenient installation.
This technology has demonstrated promising results in preserving fruits and vegetables.
Thus, it is worthwhile to explore its application further in mushroom preservation.
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3.6. Electrolyzed Water

Electrolyzed water (EW) is water containing active oxygen substances produced by
the electrolysis of neutral salt solutions, possessing excellent disinfection, bacteriostatic,
and cleaning functions. It mainly destroys microbial cells and internal structures, affecting
the growth of harmful microorganisms on the surface of edible mushrooms by generating
active oxygen substances and adjusting the acidity and alkalinity of the environment [22].
The effective chlorine concentration (ACC) and oxidation-reduction potential (ORP) de-
termine the antibacterial activity of EW [118]. Research has explored the mechanism of
slightly acidic electrolyzed water (SAEW) in inhibiting the activity of mushroom polyphe-
nol oxidase. One study found that the HOCl component in SAEW can not only reversibly
bind to polyphenol oxidase, hindering the catalytic action between the enzyme and the
substrate, but also inhibit the formation of many compounds related to melanin, thereby
delaying the browning process of mushrooms [119]. The browning index of A. bisporus
treated with 25 mg/L electrolyzed water was lower than that of untreated mushrooms [22].
In another study, the bactericidal efficacy of electrolyzed water was compared with several
other sterilizers. It was found that under room temperature conditions (23 ± 2 ◦C), elec-
trolyzed water had the strongest effect on foodborne pathogens in P. ostreatus, reducing the
total aerobic bacterial count, total mold count, and the number of pathogenic bacteria by
1.35 log CFU/g, 1.08 log CFU/g, and 1.90~2.16 log CFU/g, respectively, with significant
bactericidal effects [120].

Electrolyzed water has strong antibacterial activity, leaves no residue, and is easy to
produce, making it a broad-spectrum bacteriostatic agent with promising prospects. How-
ever, immersing edible mushrooms in water for washing may cause mechanical damage to
tissues and water absorption. Moreover, microorganisms may develop resistance to the
active ingredients in electrolyzed water, reducing its bactericidal effectiveness. Therefore,
the lifespan of electrolyzed water is short, requiring frequent replacement and resulting in
high usage costs. In the future, it is necessary to establish and improve relevant technologies
to promote the development and application of electrolyzed water in the preservation of
edible mushrooms.

3.7. Novel Preservatives

The safety of food preservatives is a significant concern. For instance, the use of
traditional preservatives like sodium hypochlorite may pose health risks [121]. Extracts
and secondary metabolites extracted from natural sources such as plants, animals, and
microorganisms are becoming a trend as novel preservatives [25]. Preservatives act on food
through methods such as soaking, immersing, spraying, or fumigating, exhibiting antibac-
terial, antioxidant, anti-browning, and anti-aging properties [18]. For example, spraying
ergothioneine on the surface of A. bisporus maintained higher levels of total phenolics
and ascorbic acid, thereby slowing down the browning process [122]. Similarly, immers-
ing A. bisporus in exogenous γ-aminobutyric acid increased the activity of mushroom
phenylalanine ammonia-lyase and gene expression, thereby delaying the browning process
during refrigeration [123]. A 1-MCP is a common and efficient ethylene inhibitor that
can irreversibly bind to ethylene receptors, thereby preventing ethylene-induced ripening
and aging processes [124]. In recent years, 1-MCP treatment has been applied as a new
preservation method for edible mushrooms. Studies have found that combining 1-MCP
with low-permeability packaging with limited oxygen supply can significantly reduce
the respiration rate of A. bisporus by approximately 25%, extending the shelf-life to over
15 days [125]. In another study, P. ostreatus treated with 1-MCP exhibited lower ethylene
production peaks and higher energy charges, effectively preserving the freshness and
sweetness of mushrooms [126]. Essential oils, natural aromatic oil extracts with strong
volatility, exhibit excellent antioxidant and antibacterial activities, typically employed in
the form of fumigation [127]. Fumigating A. bisporus with peppermint oil enhanced the
hardness, total phenolics, and ascorbic acid content of mushrooms, reduced weight loss,
and delayed the aging process of mushrooms [128]. Recent studies have found that films
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loaded with essential oils could effectively maintain the post-harvest quality of button
mushrooms [129,130]. In the future, various antioxidants can be combined with innovative
packaging materials such as films and preservation paper to promote the application of
novel preservatives in the field of edible mushrooms. Furthermore, further research is
needed on the potential mechanisms of various novel preservatives to enhance their safety
and effectiveness.

3.8. Other Emerging Methods

The emergence of gene editing technology has provided novel possibilities for mush-
room preservation. Research has shown that editing the PPO1 gene of A. bisporus using
the CRISPR/Cas9 method significantly reduced the degree of browning in the edited
mushrooms, providing a new strategy for extending their storage period [26]. Two hy-
brid ethylene receptors, AbETR1 and AbETR2, have been identified in A. bisporus, and by
downregulating the expression of AbETR1 and AbETR2, the maturation and senescence of
mushroom fruit bodies are inhibited [19]. In recent years, many researchers have conducted
editing, decoding, and sequencing of mushroom genomes, laying the foundation for the
biological and genetic research of mushrooms [131,132].

Furthermore, research has found that ultrasound treatment may have a potential
impact on maintaining mitochondrial energy supply in mushrooms [133]. In a study, Shi
combined treatment of ultrasound and irradiation reduced the adhesion of microorganisms
such as Pseudomonas aeruginosa and Enterobacteriaceae, alleviating browning and moisture
loss in fresh mushrooms [134]. Air-ion treatment has a positive effect on maintaining
the energy and flavor of fresh L. edodes, controlling browning and post-harvest quality
loss [135]. Pulse light and pulsed electric fields are also effective choices for inactivating
harmful microorganisms and controlling mushroom browning [136,137].

4. Conclusions and Future Perspective

The decline in post-harvest quality of fresh mushrooms is one of the significant
challenges faced by the mushroom industry, and preservation techniques are of crucial
importance in extending the shelf-life of mushrooms and enhancing their market value.
This paper discusses emerging technologies in the field of mushrooms in recent years. It
summarizes the applications of cold plasma treatment, electrostatic field treatment, ac-
tive packaging, edible coatings, antimicrobial photodynamic therapy, electrolyzed water
treatment [17], novel preservatives [18], and gene editing technology in post-harvest preser-
vation of mushrooms, revealing their potential to improve preservation effectiveness and
promote sustainable development of the industry.

Fresh mushrooms have high moisture content, delicate tissue, and high metabolic
activity. During harvesting, storage, and transportation, they are susceptible to contamina-
tion and damage. Post-harvest preservation of mushrooms usually involves controlling
temperature, humidity, oxygen exposure, metabolic activity, and microbial growth. Cold
plasma treatment technology more efficiently inhibits microbial growth by generating
active substances. Antimicrobial photodynamic therapy utilizes the recognition properties
of photosensitizers to make the sterilization process more targeted. DENBA+ treatment
inhibits metabolism in a milder way. Edible coatings isolate mushrooms from the external
environment in a more environmentally friendly way, slowing down moisture evaporation
and oxygen penetration to maintain mushroom humidity and freshness. Emerging preser-
vation technologies better meet the requirements of green environmental protection, safety,
economy, and efficient preservation, but they also have certain limitations. For instance,
antimicrobial photodynamic therapy is limited by the penetration ability of light sources
and cannot eliminate microorganisms hidden in the gills of edible fungi. Edible coating
materials lack mechanical properties, and their stability is inferior to that of traditional
film materials. Moreover, their biological preparation is complex and costly. Perhaps a
composite preservation approach can be adopted, combining conventional and emerging
preservation technologies, leveraging the stability and maturity of traditional techniques



Foods 2024, 13, 1554 11 of 16

while harnessing the innovation and efficiency of emerging technologies to provide a viable
path for developing the mushroom industry.

In the future, besides strengthening technological integration and exploring the com-
bined application of various technologies, it is possible to monitor and control critical
processes in preserving edible fungi to promote technological innovation. Furthermore,
the continuous development and deepening application of new-generation information
technologies are expected to propel preservation technologies in a more intelligent direc-
tion. Overall, the development of preservation technologies for edible fungi will pay more
attention to quality control, energy efficiency, and environmental friendliness, contributing
to the sustainable development of the industry.
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