
Citation: Zheng, X.‑L.; Fang, Y.‑H.;

Chung, W.‑C.; Hsieh, C.‑L.; Chen,

Y.‑F. Exploring the Origin of

Lissajous Geometric Modes from the

Ray Tracing Model. Photonics 2024,

11, 456. https://doi.org/10.3390/

photonics11050456

Received: 31 March 2024

Revised: 30 April 2024

Accepted: 11 May 2024

Published: 13 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Exploring the Origin of Lissajous Geometric Modes from the
Ray Tracing Model
Xin‑Liang Zheng, Yu‑Han Fang, Wei‑Che Chung, Cheng‑Li Hsieh and Yung‑Fu Chen *

Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
skes90261.sc09@nycu.edu.tw (X.‑L.Z.); ann.sc11@nycu.edu.tw (Y.‑H.F.);
josephpapaya.sc10@nycu.edu.tw (W.‑C.C.); clhsieh.sc10@nycu.edu.tw (C.‑L.H.)
* Correspondence: yfchen@nycu.edu.tw

Abstract: In this paper, we use the geometric optics and discuss the path of laser beam in a simple
laser (concave‑plano) cavity with the birefringence crystal. In specific lengths of the laser cavity, we
can observe various types of Lissajous‑like structural laser modes that can be simulated using our
ray tracingmodel. At the end of this paper, we provide an adjusted ABCDmatrix. With the adjusted
ABCD matrix and iterative calculation, we can obtain the 3D trajectories which are similar to the
experimental results. These structural laser modes can be realized by a Nd:YVO4 solid‑state laser
with off‑axis pumping. From the comparison between the experimental data and the numerical data,
we clarify the relationship between the 3D Lissajous‑like structural laser modes and ray trajectory in
the laser cavity.

Keywords: high‑order transverse mode; geometric mode; structural light; ABCD matrix; distortion;
birefringence crystal

1. Introduction
The collimation and low divergence characteristics of laser beams play a very impor‑

tant role in industrial manufacturing and scientific research. In scientific research, solid‑
state lasers are used with off‑axis excitation to produce laser beams. The common dis‑
tribution in space and changes in spatial propagation of the laser beam are the Hermite‑
Gaussianmode and the Gouy phase [1,2], respectively, which are quite similar to the wave
function solution of the time‑related Schrödinger equation under simple harmonic poten‑
tial energy [3–5].

Starting from Maxwell’s equation and using the assumption of paraxial approxima‑
tion, we can obtain the electric field distribution of electromagnetic waves in the laser res‑
onant cavity, which is the HG mode in xyz coordinates [6] and the LG mode in polar co‑
ordinates [7,8]. There are different eigen frequencies under different cavity lengths. In
the one‑dimensional case (x‑z plane, y‑z plane), under a specific cavity length, different
combinations of longitudinal modes and transverse modes meet the same specific eigen
frequency which is called frequency degeneracy. And the superposition of these eigen
modes forms the geometric mode [9–11] and the non‑planar geometric mode [12]. In the
two‑dimensional case (x‑y‑z cube), due to the birefringent crystal, Nd:YVO4, there is a
cavity length difference between the x direction and the y direction [13], which causes
the transverse mode spacing difference between the x direction and the y direction. Then,
more refined degenerate superposition modes (Lissajous‑like structural laser modes) ap‑
pear [14,15]. However, the excitation of high‑ordermodes inevitably requires large off‑axis
or defocused excitation [16,17], whichmakes the laser resonant cavity move far away from
the paraxial approximation and face the spherical aberration of the concave mirror [18,19].
At a large off‑axis pump, the paraxial approximation is no longer applicable, and the x di‑
rection and the y direction cannot be discussed separately. The behavior of the laser wave
function becomes a difficult problem [20,21].
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It can be found that when the laser beammoves further away from the central optical
axis, the effective cavity length is no longer a constant. When taking into account the angle
of the laser beam, the problem becomes quite complex. In this situation, it is more conve‑
nient to use a ray tracing model to calculate the propagation distance. However, during
the transition from a small off‑axis pump to a large off‑axis pump, the geometric trajectory
of the laser beam combined with phase change provides a good analysis direction [22].
In this paper, we start from geometric optics, discuss concave mirrors and birefringent
crystals, clearly present the formation of Lissajous trajectories and distortion under large
off‑axis, and illustrate the ray trajectory inside and outside the laser cavity. From the ge‑
ometric optics, first, we consider the ray reflection of the concave mirror with different
incident positions. Second, the ray penetrates the Nd:YVO4 crystal with refraction. After
these two discussions, we build up a simulation python code to present the ray trajectory
in a 3D laser cavity. With the result of computer simulation, we analyze the ray trajec‑
tory in different off‑axis pumping locations adhering to the Lissajous‑like structural laser
modes in our experiment. At the end of the paper, we provide an adjusted ABCD matrix.
With this ABCD matrix and iterative calculation, we can clarify the relationship between
off‑axis pump location and the laser pattern with a 3D structure. The findings will help
better understand the formation of a high‑order mode in the laser cavity.

Figure 1 shows the experimental setup for exhibiting the relationship between the 3D
Lissajous‑like structural lasermode andgeometric optics in a diode‑end‑pumpedNd:YVO4
laser. The cavity is formed by a concavemirror and a gainmedium. The radius of the curva‑
ture is R = 20mm, and the front side is coated for antireflection at 808 nm (reflection < 0.5%)
and 1064 nm (reflection < 0.25%). The end side coats with high reflection at 1064 (reflec‑
tion = 99.7%) and high transmission at 808 nm (transmission > 95%). The gain medium is a
10× 10× 2mm3 a‑cut 2%Nd:YVO4 crystal. The front side of the gainmedium is coated for
antireflection at 1064 nm (reflection < 0.1%) and the end side is coated for partial reflection
at 1064 nm (reflection = 97 ± 0.5%) which acts as an output coupler. The pump source is
an 808 nm fiber‑coupled laser diode with a core diameter of 200 µm, a numerical aperture
of 0.16, and a maximum output power of 5 W. The propagation factor (M2) of the pump
source is about 60. To avoid the thermal lensing effect, we choose pulse pumping with a
repletion rate of 20 k Hz and a 50% duty cycle. After passing through the coupling lens,
the radius of the pump beam is reduced to 100 µm and the Rayleigh range of the pump
beam is approximately 0.7 mm.
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2. Ray Tracing for Spherical Cavity
2.1. Geometric Optics in Concave Mirror and Birefringence Crystal

The origin position of the transverse coordinates is the center of the concave mirror.
Based on the geometric optics, we discuss the ray reflection by a concave mirror at differ‑
ent incident angles and locations. The reflection ray angle is determined by the incident
ray angle and the location where the reflection happened, as shown in Figure 2 where
θin = sin−1(∆x/R), ϕr = ϕ+ 2θin + π and ϕ′ = π−ϕr.

ϕ′ = −2 sin−1
(

∆x
R

)
+ϕ. (1)
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Figure 2. Plotting the reflection ray path by a concave mirror of an R = 20 mm radius curvature,
where θR = sin−1

(
∆x
R

)
, ∆x indicates the distance between the incident point and the center point of

the mirror, ϕ and ϕ′ indicate the ray angle relative to âz and −âz, respectively.

By only considering the first term of Taylor expansion for Equation (1), we can obtain
the widely known ABCD matrix in geometric optics,(

1 0
−2
R 1

)(
x
ϕ

)
=

(
x

−2x
R +ϕ

)
=

(
x
ϕ′

)
. (2)

The ray starts at the end side of the crystal, reflects off the concavemirror, then refracts and
reflects back and forth within the crystal, and finally returns to the end side of the crystal.
We call this a round‑trip of the ray trajectory. Instead of using a refractive index ellipsoid
to discuss the birefringence crystal, we assume that ne f f x = ne, ne f f y = ne + δn, and use
Snell’s law to calculate the refraction in the crystal. Then, given the initial angle, location
of the ray and the cavity length, we can simulate the ray trajectory in the laser cavity. This
is the prototype of our ray tracing model. In the following content, we use this ray tracing
model to discuss the 2D ray trajectory in a 2D laser cavity.

To express whether the ray tracing in various cavity length is more likely periodic
or not, we use the following strategy: In the first stage, we offer an initial ray angle and
position in the ray tracing model to calculate the final location distribution after three hun‑
dred round‑trips; Figure 3. By changing cavity lengths within a certain range, we can
obtain several maximum values from the distribution of the ray location at the end side of
the crystal to quantize the periodic property. The larger the value, the higher the periodic
property in this cavity length, and themore probable it is to observe the simple periodic tra‑
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jectory (for example, three hundred ray locations are distributed among three grids, with
the maximum value of the distribution being approximately one hundred). The plots of
trajectory characteristics for various cavity lengths at given refractive indices and incident
angles are shown in Figures 4 and 5. When the difference in refractive indices between the
x and y directions increases, the displacement of the trajectory characteristic plots in the x
and y directions also increases. The dashed lines in Figures 4 and 5 are the cavity length,
which is shown by the 2D laser cavity as the simple periodic trajectory in the experiment.
Our model can precisely simulate this behavior. We compare the experimental data and
the numerical simulation in specific off‑axis pumping and polarization conditions. It is
interesting that the refractive index shows ne f f x = ne and ne f f y = ne + 0.54 in vertical
polarization.
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Figure 5. By comparing experiments data and simulation results, it can be noticed that the refrac‑
tive index shows ne f f y = ne + 0.54 in vertical polarization. The following image illustrates several
observed geometric modes in the ây axis in the experiment.

For laser cavity using birefringence crystals, the x and y direction refractive indexes
lead to the different effective cavity lengths. We can express this in an ABCD matrix:(

1 − 2L
R 2L

(
1 − L

R

)
−2
R 1 − 2L

R

)
=

(
cos θ zR sin θ
− sinθ

zR
cos θ

)
. (3)

Because of effective cavity differences, there are different values in the x direction and the
y direction, cos θx(L) = 1 − 2Lx/R and cos θy(L) = 1 − 2Ly/R, where zR =

√
L(R − L),

Lx = L − d/2, Ly = L + d/2, and d represents the effective cavity length difference
caused by birefringence crystals. When cos(Mθx(L)) = cos

(
Mθy(L)

)
happens, we can

observe that laser beam distribution becomes a 3D Lissajous‑like structure corresponding
to trajectories

xs =
√

Nxwx cos
(
θq,s +ϕx + θG,s(z)

)
, (4)

ys =
√

Nywy cos
(
θp,s +ϕy + θG,y(z)

)
, (5)

where M is a positive integer [13],
√

Nx and
√

Ny are the transverse order in x and y
directions, wx(z) aNd wy(z) indicate the variation of laser beam size in the z direction,
θx(L) = θq,s = θs(1 − q/M), and θy(L) = θp,s = θs(1 + p/M), where θs = 2πsP/Q,
s = 0, 1, 2 · · · MQ − 1, p + q = nQ with n as a positive integer and (P, Q) is mutually
prime, showing the trajectory behavior [13]. We extend the ray tracing model into a 3D
situation in the next section and discuss how the 3D Lissajous‑like structures appear and
vary in the laser cavity.

2.2. Ray Tracing Model in Spherical Plano Cavity
Following the previous conclusion, the ray location and propagation direction can be

shown as (
⇀
r
⇀
v

)
=

(
x0
vx

)
âx +

(
y0
vy

)
ây +

(
z0
vz

)
âz, (6)

(
⇀
r
′

⇀
v
′

)
=

(
x0 + ∆x

vx

)
âx +

(
y0 + ∆y

vy

)
ây +

(
z0
−vz

)
âz, (7)

where ∆x = 2d· tan θx1 and ∆y = 2d· tan θy1 are the displacement of the ray after refracting
and reflecting in the crystal; Figure 6. We decompose the propagation direction into the
radius direction and the azimuthal direction; Figure 7.
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Figure 6. (a) To discuss the ray trajectory in the crystal, we need to consider the refraction in both the
x‑z plane and the y‑z plane, respectively, in the 3D situation; (b) the displacement in the x‑z plane.
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Figure 7. (a) To discuss the ray trajectory reflected by the concave mirror, we need to decompose the
propagation direction into radius direction âρ and azimuthal direction âϕ; (b) the decomposition in
the x‑y plane where

⇀
v xy−plane indicates the velocity vector on the x‑y plane.

(
x1
vx1

)
âx +

(
y1
vy1

)
ây +

(
z1
vz1

)
âz =

(
ρ1
vρ1

)
âρ +

(
z1
vz1

)
âz +

(
0

vϕ1

)
âϕ, (8)

where ρ1 =
√

x1
2 + y1

2. From Equations (1) and (2), the reflection by the concave mirror
can be shown as

(
ρ

θ′ρ

)
=

(
1 0

−2
ρ sin−1(ρ

R
)

1

)(
ρ

tan−1
(

vρ
vz

)). (9)

Finally, using the Cartesian coordination to represent the ray location and propagation di‑
rection, it can be noticed that the azimuthal direction vector does not change. This property
also hints at the existence of the orbital angular momentum,(

ρ

sin θ′ρ

)
âρ +

(
0

cos θ′ρ

)
âz =

(
ρ

v′ρ

)
âρ +

(
0

v′z

)
âz

(
0

v′ϕ

)
âϕ =

(
0

vϕ

)
âϕ. (10)

Combining the above two parts and considering the actual ray path with different
location and propagation directions in the laser cavity, we can complete the 3D ray tracing
model. Figure 8 shows the ray trajectory inside and outside the laser cavity, simulated
using the 3D ray tracing model, for three hundred round trips starting from a given initial
ray position and angle.
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Figure 8. (a) The schematic of the end‑side pumping with off‑axis displacement; (b) The Lissajous‑
like trajectory inside the laser cavity is simulated using the 3D ray tracing model, and the trajectory
changes in the rays from the laser cavity after leaving it during their free space propagation also
agree with the experimental observation.

2.3. The Emergence and Distortion of Lissajous‑like Structural Laser Mode
Without considering the birefringent effect of the gain medium, it can be concluded

that θ/2π = sin−1(√Lc/Rc
)
/π in Equation (3). It is well known as the ratio of transverse

mode spacing ∆ fT to longitudinal mode spacing ∆ fL in laser physics.

θ

2π
=

∆ fT
∆ fL

=
1
π

sin−1

(√
Lc

Rc

)
, (11)

where Rc is the radius of curvature of the concave mirror and Lc is the effective cavity
length [8,14]. When the right‑hand side of Equation (11),

√
Lc/Rc, leads to a simple ratio‑

nal number, P/Q, the optical ray inside the laser cavity forms a periodic trajectory with Q
round reflections, where P and Q are mutually prime. The ratio of transverse to longitudi‑
nal mode spacing for Lc = LP/Q + δL can be simplified as

∆ fT
∆ fL

∣∣∣∣
LP/Q+δL

=
∆ fT
∆ fL

∣∣∣∣
LP/Q

+ δL
d

dL

(
∆ fT
∆ fL

∣∣∣∣
LP/Q

)
, (12)

d
dL

(
∆ fT
∆ fL

)
=

1
2π
√

Lc(Rc − Lc)
. (13)

Since Nd:YVO4 crystals are positive uniaxial crystals with large birefringence, there is con‑
siderable astigmatism in the laser cavity. According to the experimental result in
Figures 4 and 5, the effective cavity length difference between x and y directions is approx‑
imately about d = dcrystal ·[1/ne − 1/(ne + δn)]. Considering Equations (11)–(13) and effec‑
tive cavity length difference d, the mode spacing in the x and y directions can be given by

∆ fTx
∆ fL

=
P
Q

+
[δL − (d/2)]

2πzRx
, (14)

∆ fTy

∆ fL
=

P
Q

+
[δL + (d/2)]

2πzRy
, (15)
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where
zRx =

√[
LP/Q − (d/2)

][
RC − LP/Q + (d/2)

]
, (16)

zRy =
√[

LP/Q + (d/2)
][

RC − LP/Q − (d/2)
]
. (17)

When the right‑hand sides of Equations (14) and (15) satisfy these forms, P/Q(1 − q/M)
and P/Q(1 + p/M), respectively, the optical ray inside the cavity forms a Lissajous‑like
structure with indices (p, q) that satisfy

zRy[δL − (d/2)]
zRx[δL + (d/2)]

=
−q
p

. (18)

In the degenerate cavity, there is a linear relationship between cavity length and 3D
Lissajous‑like structural laser modes [13], and the slope of the line can be confirmed as
the effective cavity length difference, d = dcrystal ·[1/ne − 1/(ne + δn)].

LP/Q;ζ = LP/Q + δL, (19)

δL =
d
2

(
pzRy − qzRx

pzRy + qzRx

)
= ζd, (20)

where LP/Q;ζ indicates the cavity length observing the 3D Lissajous‑like structural laser
mode, and integers p and q satisfy p + q = nQ with n as a positive integer. Figure 9 shows
the experimental and theoretical results for LP/Q;ζ with P/Q = 1/3 and 2/5 versus ζ. The
vertical coordinates of the symbols in Figure 9a are experimental values of cavity lengths
Lcav for the observation of the Lissajous‑like structural laser mode with indices (p, q), and
their horizontal coordinates are calculated from Equation (20). The output powers for all
observed 3D Lissajous‑like structural laser modes are found to be approximately 180 mW
at an incident pumped power of 5.0W. The best match for theoretical calculations to exper‑
imental results can be seen to be approximately d = 1.15, 0.63 mm. Figure 9b,c shows the
observed Lissajous‑like structural laser modes in the experiment and numerical results cal‑
culated using xs = A cos[(2πsP/Q)(1 − q/M)] and ys = B cos[(2πsP/Q)(1 + p/M)]with
P/Q = 1/3 and 2/5, s = 0, 1, 2 · · · MQ − 1, A = B = 10, M = 400 and indices (p, q).

However, in the experiments, the slope of the line and the Lissajous‑like structural
lasermode undergo slight changes and distortion in different off‑axis pumping conditions;
Figure 10. With the help of the 3D ray tracing model, all theoretical patterns can be seen to
agree very well with the experimental patterns; Figure 11. For convenience, we simplify
the 3D ray tracing model into the ABCD matrix in the discussion below.
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tural laser modes observed in the experiment. (c) Lissajous parametric surfaces calculated using
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s = 0, 1, 2 · · · MQ − 1, A = B = 10, M = 400 and indices (p, q).
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Figure 10. The points in the figure represent the cavity lengths corresponding to the Lissajous‑like
structural laser modes observed experimentally under different off‑axis pumping conditions, and
the lines represent the cavity lengths at which the Lissajous trajectories appear in the 3D ray tracing
model under different off‑axis pumping conditions.
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Figure 11. (a) The distortion Lissajous‑like structural lasermodes observed in the experiment; (b) the
far field of the ray trajectories at the end side of crystal calculated using the 3D ray tracing model.

3. Adjusted ABCDMatrix for Laser Cavity
ABCDMatrix for a Round Trip

The conventional ABCD matrix can be used for 2D separable trajectories. Here, we
proposed a modified method for 3D ray tracing based on the adjusted ABCDmatrix. This
proposed method can be used to comprehend the origin of the distorted Lissajous modes.
In the 2D situation, wemake the following assumptions: we assume vz ≫ vx, only consider
the first two terms of the Taylor expansion for sin−1(x̃) = x̃ + x̃3/6 + 3x̃5/40 + · · · , and
ignore the ray path difference in different locations and propagation directions. We can
obtain the adjusted ABCD matrix for a round trip.(

1 L
0 1

)( 1 0
−2
x

(
x̃ + x̃3

6

)
1

)(
1 L
0 1

)
= M(x̃). (21)

Then, the adjusted ABCD matrix for a round trip considering a birefringence crystal is
shown below, where x̃ = x/R in the matrix. In addition, the adjusted y‑direction ABCD
matrix can easily be determined by changing refractive index ne to ne + δn.(

1 dcrystal
0 1

)(
1 0
0 1/ne

)
M(x̃)

(
1 0
0 ne/1

)(
1 dcrystal
0 1

)
=

(
Ax(x̃) Bx(x̃)
Cx(x̃) Dx(x̃)

)
. (22)

To use the adjusted ABCD matrix, the easiest method to obtain the ray location in
Equation (22) is to use the iterative method to calculate the ray trajectory, as shown in
the equation below. (

Ax(x̃) Bx(x̃)
Cx(x̃) Dx(x̃)

)(
xn
θn

)
=

(
xn+1
θn+1

)
. (23)

In a 3D situation, we need to calculate the ray trajectory in the x direction and the y direc‑
tion, respectively, then consider both the x component and the y component to calculate
the reflection by a concave mirror using the following transformation matrix:(

θρ
θϕ

)
=

1
ρ

(
x y
−y x

)(
θx
θy

)
. (24)

Then, the velocity vectors related to θρ and θϕ need to be reprojected back into Cartesian
coordinates as (

θx
θy

)
=

1
ρ

(
x −y
y x

)(
θρ
θϕ

)
. (25)
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Based on the reprojection, the aberration problem of the concave mirrors in large off‑axis
pumping can be well considered. More importantly, the connection between the aberra‑
tion of the concave mirror and the distortion of the Lissajous modes can be clearly compre‑
hended. This proposed method can be used. The overall steps for a complete round trip
are given in Figure 12.
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Figure 12. The adjusted ABCD matrix for a round trip in the 3D laser cavity.

Given different 2D off‑axis pumping conditions and cavity lengths, we can obtain the
ray trajectory distribution by the 3D adjusted ABCD matrix. Figure 13 shows the emer‑
gence of the distortion for the 2D HG mode through the off‑axis pump increasing, and
Figure 14 shows the various types of distortion Lissajous‑like structural laser modes that
can be observed in both numerical calculations and experiments.
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4. Conclusions
In this paper, we discuss how the 3D Lissajous‑like structural laser mode forms, start‑

ing at the geometric optics and considering the gain medium Nd:YVO4. Instead of using
the refractive index ellipsoid, it is more likely that the refractive index is

⇀
n c = ne âx +

(ne + δn)ây and δn ∼= 0.54, and this refractive index difference determines the Lissajous‑
like structural laser modes. Combining the factor of the concave mirror and the birefrin‑
gence crystal, we finally complete the 3D ray tracingmodel. Furthermore, we simplify this
model into an adjusted ABCD matrix, which can confirm the rotation of the ray trajectory.
The emergence and distortion of the Lissajous‑like structural laser mode can be simulated
with the adjustedABCDmatrix and iterative calculation. We believe that this trajectory cal‑
culationmodel provides a good research direction for studies related to high‑order modes,
structured laser beams, and vortex light within the laser resonant cavity.
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