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Abstract: The transition from batch to continuous production in the catalytic hydrogenation of
nitrile butadiene rubber (NBR) into hydrogenated NBR (HNBR) marks a significant advance for
applications under demanding conditions. This study introduces a continuous process utilizing a
static mixer (SM) reactor, which notably achieves a hydrogenation conversion rate exceeding 97%.
We thoroughly review a mechanistic model of the SM reactor to elucidate the internal dynamics
governing the hydrogenation process and address the inherent uncertainties in key parameters such
as the Peclet number (Pe), dimensionless time (θτ), reaction coefficient (R), and flow rate coefficient (q).
A comprehensive dataset generated from varied parameter values serves as the basis for training an
artificial neural network (ANN), which is then compared against traditional models including linear
regression, decision tree, and random forest in terms of efficacy. Our results clearly demonstrate
the ANN’s superiority in predicting the degree of hydrogenation, achieving the lowest root mean
squared error (RMSE) of 3.69 compared to 21.90 for linear regression, 4.94 for decision tree, and
7.51 for random forest. The ANN’s robust capability for modeling complex nonlinear relationships
and dynamics significantly enhances decision-making, planning, and optimization of the reactor,
reducing computational demands and operational costs. In other words, this approach allows users
to rely on a single ML-based model instead of multiple mechanistic models for reflecting the effects
of possible uncertainties. Additionally, a feature importance study validates the critical impact of
time and element number on the hydrogenation process, further supporting the ANN’s predictive
accuracy. These findings underscore the potential of ML-based models in streamlining and enhancing
the efficiency of chemical production processes.

Keywords: mechanistic modeling; machine learning; uncertainty; static mixer reactor; hydrogenation

1. Introduction

The catalytic hydrogenation of nitrile butadiene rubber (NBR) into hydrogenated NBR
(HNBR) enhances the polymer’s resilience, making it ideal for demanding environments
in the automotive and industrial sectors. Despite the robust demand for HNBR, predomi-
nantly driven by the automotive industry, current semi-batch production methods relying
on Ru- and Os-based catalysts are hindered by significant limitations in efficiency and
scalability. These limitations underscore the urgent need for innovative approaches to
HNBR production [1].

A promising solution lies in the adoption of continuous processing techniques, specifi-
cally, using static mixer (SM) reactors with an open-blade structure. Recent studies, such
as those by Madhuranthakam et al. [2], have demonstrated that SM reactors can achieve
high conversion rates for NBR, exceeding 97% in continuous production settings without
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the auxiliary costs and extended production times associated with batch processes. Static
mixers facilitate plug-flow behavior along with efficient mass and heat transfer, making
them ideal for the chemical industry’s shift towards continuous processes.

The cornerstone of optimizing this continuous process is the development and vali-
dation of a mechanistic model that simulates the SM reactor’s performance. This model
provides a detailed representation of the physical and chemical dynamics within the
reactor, offering critical insights that are essential for refining the reactor design, enhanc-
ing operational efficiency, and ensuring consistent, high-quality HNBR production. The
comprehensive understanding gleaned from this model not only supports operational
improvements but also shows the way for scalable, efficient production methodologies in
the HNBR industry [3].

One key advantage of a mechanistic model is its capacity to elucidate the intricate
kinetics and thermodynamics governing the hydrogenation of NBR within a static mixer. By
capturing the detailed mechanisms of chemical reactions, mass transfer, and heat transfer,
the model enables researchers and engineers to analyze the complex interactions within a
mixer. This comprehension facilitates the identification of critical parameters influencing
reaction kinetics and the effects of operating conditions on product yield and quality.
Moreover, the mechanistic model serves as a valuable predictive tool, allowing for the
simulation of various scenarios and parameter variations without requiring extensive
experimental trials. This predictive capability is instrumental in optimizing static mixer
design, operational conditions, and catalyst selection [4]. Meanwhile, researchers can
explore different strategies for maximizing conversion rates, minimizing by-products,
and achieving desired product specifications. In addition, validating the mechanistic
model with experimental results enhances the credibility and reliability of its predictive
capabilities. It ensures that the model accurately represents the real-world behavior of
the static mixer during the hydrogenation of NBR. The alignment between the model’s
predictions and the experimental data verifies the robustness of the model and instills
confidence in its ability to guide future experiments and process improvements [5].

On the other hand, although mechanistic models for SM reactor performance can
provide valuable insights, they are not without their shortcomings and limitations. For
instance, these models often rely on simplifications and assumptions for making a system
more tractable. These simplifications may not fully capture the complexity of real-world
phenomena, leading to a gap between model predictions and actual outcomes. Moreover,
mechanistic models depend on accurate input parameters, and their predictions can be
sensitive to parameter variations. Obtaining precise values for all parameters, especially in
complex chemical processes, can be challenging and may introduce uncertainties. Besides,
many mechanistic models assume spatial and temporal homogeneity within a reactor,
neglecting gradients and variations. In reality, the dynamics within a static mixer can be
non-uniform, impacting the accuracy of the model. This fact also imposes uncertainty
on the model. Furthermore, detailed mechanistic models can be computationally inten-
sive, requiring significant computational resources and simulation times. This may limit
their practical use, especially for real-time process-control applications. Another issue
is that mechanistic models developed for lab-scale reactors may not easily translate to
larger-scale industrial reactors. The scale-up process involves additional complexities and
considerations that the original model may not capture. Finally, mechanistic models may
be developed based on specific experimental conditions, limiting their generalizability to
different operating environments, feedstock variations, or reactor geometries. Therefore,
again, these models may be impotent to handle the inherent operational uncertainties [6].

Addressing the challenges associated with mechanistic models for static mixer (SM)
reactor performance involves a combination of careful considerations, methodologies, and
strategies. For example, gathering more comprehensive experimental data to improve
the accuracy of model parameterization and validation can be a practical solution since
well-designed experiments can provide valuable insights into reaction kinetics, fluid dy-
namics, and heat transfer within a static mixer. Meanwhile, developing a more detailed
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and accurate representation of a reaction mechanism is another alternative. In addition,
employing advanced computational techniques, such as high-performance computing or
machine learning algorithms, to handle the computational intensity associated with detailed
mechanistic models is useful. This can enhance model efficiency without compromising
accuracy. On the other hand, the implementation of nonlinear optimization algorithms and
parameter estimation techniques to enhance the accuracy of the model’s parameters can be
considered as another remedy. Sensitivity analyses can be performed to identify critical
parameters and quantify their impacts on the model’s predictions. Moreover, developing
multi-scale models that account for variations in spatial and temporal scales, which allows
for a more accurate representation of dynamic processes occurring at different levels within
a static mixer, is completely beneficial. As another option, establishment of robust valida-
tion protocols by comparing model predictions with a diverse set of experimental data is
reasonable. This helps ensure that the model is applicable across a range of conditions and
configurations. Furthermore, the model’s predictive capabilities under varying conditions
can be improved by utilizing real-time data acquisition systems to continuously update and
validate the mechanistic model during reactor operation. Addressing scale-up challenges
by incorporating scaling factors and considering differences in fluid dynamics, heat transfer,
and reaction kinetics between lab-scale and industrial-scale reactors is another solution.
Finally, by implementing uncertainty quantification techniques to estimate and manage
uncertainties associated with model parameters and predictions, a measure of confidence
in the model’s results is obtained [7]. As a result, by combining these strategies, researchers
and engineers can improve the reliability and applicability of mechanistic models for SM
reactor performance, making them valuable tools for optimizing processes in chemical
engineering applications.

Among the aforementioned approaches, machine learning (ML) -based models can be
powerful tools in overcoming the challenges associated with the development and opti-
mization of mechanistic models for static mixer (SM) reactor performance. ML techniques,
such as regression or neural networks, can be employed to calibrate mechanistic models by
learning the relationships between the input parameters and the experimental outcomes.
This can help improve the accuracy of the parameter estimation and reduce the reliance
on hand-tuned parameters. Moreover, ML-based models can act as surrogate models for
computationally expensive mechanistic models. By training ML models on a subset of
data generated by the mechanistic model, they can provide rapid predictions, enabling
quicker simulations and facilitating optimization tasks. In addition, ML models, especially
regression models or neural networks, can learn complex relationships within reaction
kinetics. This is particularly useful when dealing with intricate chemical reaction mecha-
nisms, allowing the model to predict reaction rates based on input conditions. Also, ML
algorithms can perform sensitivity analyses to identify critical parameters that significantly
influence reactor performance. Understanding these sensitivities can guide researchers
in refining mechanistic models and focusing on key aspects during experimental design.
Further, ML-based optimization algorithms can be applied to explore the parameter spaces
efficiently and identify optimal operating conditions for static mixers. This is particularly
beneficial for achieving desired reaction yields while considering various constraints. It
should be noted that combining mechanistic models with ML-based models in a hybrid
approach can leverage the strengths of both methodologies. This fusion can enhance the
accuracy of predictions, especially when dealing with complex and non-linear processes.
Finally, ML models trained on data from one type of static mixer can be adapted to work
with similar mixers. This “transfer learning approach” can save computational resources
and time when extending models to new reactor configurations [8]. As we can see, machine
learning offers a suite of tools that complement mechanistic modeling efforts, providing
enhanced predictive capabilities, efficiency gains, and insights into the underlying pro-
cesses within static mixers. The integration of ML techniques can significantly contribute to
overcoming the limitations associated with traditional mechanistic modeling approaches.
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In should be noted that in the context of sustainable materials development, the
potential of biodegradable polymers, particularly polybutylene adipate-co-terephthalate
(PBAT), has garnered significant attention due to their favorable mechanical properties and
biodegradability. Recent advancements in the field, as illustrated in [9], have explored the
application of PBAT in direct pellet 3D printing processes, demonstrating its efficacy in
creating environmentally friendly plastic films. This aligns with our research on the contin-
uous hydrogenation of nitrile butadiene rubber using a static mixer (SM) reactor, where we
leveraged the environmental benefits of PBAT within the chemical engineering domain. By
utilizing innovative processes that reduce reliance on non-degradable polymers, our approach
not only enhanced the SM reactor’s performance but also contributed to the broader goal of
reducing plastic pollution—a critical aspect emphasized in the current literature.

On the other hand, in parallel to the development of sophisticated computational
models, recent advancements in material fabrication techniques have significantly influ-
enced industrial applications. A notable example is the work presented in [10], which
explored the utilization of direct pellet 3D printing techniques to produce super stretchable
propylene-based elastomers with exceptional elongation properties, exceeding 4000%. This
breakthrough demonstrates the potential of additive manufacturing to overcome tradi-
tional constraints in material processing, such as waste reduction and enhanced mechanical
properties. Similar to these advancements, our research employs machine learning to refine
the processing conditions in SM reactors, drawing on the precision and adaptability of mod-
ern manufacturing to enhance the hydrogenation process. Such comparisons underscore
the synergistic potential of combining advanced material processing with computational
modeling to address complex industrial challenges.

Based on the provided explanations, it can be asserted that the development of suitable
machine learning (ML) -based models for static mixer (SM) reactors proves highly beneficial
for various purposes. Therefore, this paper proposes an artificial neural network (ANN)
-based model that characterizes the dynamics of the SM reactor, explicitly considering uncer-
tainties in several key internal parameters. The results obtained highlight the effectiveness
of utilizing a reliable ANN model, trained successfully using a comprehensive dataset. The
data collection process involves a judicious data sampling technique covering the entire
range of uncertainties. This is achieved through the application of a Monte Carlo sampling
method. Consequently, a singular ML-based model is expected to emerge, proficiently
capturing the reactor’s dynamics in the presence of uncertainty. This approach stands in
contrast to the traditional use of multiple mechanistic models, emphasizing the advantages
of employing a well-trained ANN model for dynamic representation and prediction within
the SM reactor system.

2. Machine Learning and Polymerization

Machine learning (ML) can play a crucial role in enhancing polymerization processes
in various ways. For example, polymerization processes often involve complex reaction
kinetics influenced by multiple factors such as temperature, pressure, catalyst concentra-
tion, and monomer composition. ML techniques, such as neural networks and support
vector machines, can model these nonlinear relationships more accurately than traditional
empirical or mechanistic models [11]. ML models can learn from historical process data
to capture the dynamic behavior of polymerization reactions, enabling better prediction
of polymer properties and reaction rates [12]. In addition, ML algorithms can be trained
on sensor data from polymerization reactors to monitor key process variables in real time.
These models can detect process deviations, anomalies, and potential equipment failures
before they lead to product quality issues or downtime. Predictive process monitoring with
ML can improve process control and decision-making, leading to higher product yields
and reduced waste [13–16]. Moreover, ML-based optimization techniques can identify
optimal process conditions to achieve desired product properties while minimizing energy
consumption and raw material usage. Evolutionary algorithms, reinforcement learning,
and Bayesian optimization can explore complex process parameter spaces efficiently and
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discover optimal operating conditions. ML-driven optimization can lead to improved
polymer quality, higher production yields, and reduced manufacturing costs [17–20]. Also,
ML models can predict polymer properties and product quality attributes based on process
conditions, raw material characteristics, and reaction kinetics. By analyzing historical data,
ML algorithms can identify the key factors influencing polymer quality and recommend
adjustments to process parameters in real time. ML-based quality prediction and con-
trol enable the proactive management of product variability, ensuring consistent quality
standards and meeting customer specifications [21,22]. Finally, ML techniques can power
real-time decision-support systems that assist operators and engineers in making informed
decisions during polymerization processes. These systems can provide recommendations
for process adjustments, troubleshooting guidance, and optimization strategies based on
current process conditions and historical data. ML-driven decision support systems im-
prove operational efficiency, reduce human error, and facilitate continuous improvement
in polymerization processes [23–26]. As a result, we can see that machine learning offers
a powerful toolkit for enhancing polymerization processes by improving modeling ac-
curacy, optimizing process parameters, ensuring product quality, and enabling real-time
decision support. By leveraging ML techniques, polymer manufacturers can achieve higher
productivity, lower costs, and greater competitiveness in the industry.

3. Mechanistic Model of SM Reactor

To establish a dependable machine learning (ML) -based model for an SM reactor, the
first crucial step involves gathering essential training and testing data. In this paper, we
utilize the mechanistic model previously introduced in [2], considering it as the founda-
tional model. Subsequently, we conduct diverse operating scenarios (i.e., corresponding to
different values of the key parameters to show the inherent uncertainty), capturing and
recording the corresponding data. A brief review over the fundamentals of the mechanistic
model is presented in this section.

In general, understanding the residence time distribution (RTD) in static mixers
(SMs) is crucial when employing a mixer as a chemical reactor. The RTD within an SM
featuring an open-blade internal structure under laminar flow conditions is articulated by
applying Danckwerts’s axial dispersion model. Through the inclusion of the residence time
distribution (RTD) and considering the kinetics of the hydrogenation reaction, as well as the
mass transfer of hydrogen gas into the unsaturated polymer solution, the ensuing model
(represented by Equations (1)–(3)) is formulated to describe the conversion, hydrogen
concentration within the polymer phase, and catalyst concentration, all presented in a
dimensionless form.

∂x
∂θ

=
1
Pe
· 1
θτ

∂2x
∂λ2 − 1

θτ

∂x
∂λ

+ (1 − x)·ζ·h2. (1)

∂h
∂θ

=
1
Pe
· 1

θτ

∂2h
∂λ2 − 1

θτ

∂h
∂λ

− q·(1 − x)·ζ· h2 +
q
R
(1 − h). (2)

∂ζ

∂θ
=

1
Pe
· 1
θτ

∂2ζ

∂λ2 − 1
θτ

∂ζ

∂λ
. (3)

Meanwhile the open–open boundary conditions are given by the following equations:
initial condition at θ = 0:

∀λ x = 0, h = h0, ζ = 0, (4)

First boundary condition:

At λ = 0; υ(0−, θ) + 1
Pe
· ∂υ

∂λ

∣∣∣(0− , θ) = υ(0+, θ) + 1
Pe
· ∂υ

∂λ

∣∣∣
(0+ , θ)

υ(0−, θ) = υ(0+, θ)
, (5)
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And second boundary condition:

At λ = 1; υ(1−, θ) + 1
Pe
· ∂υ

∂λ

∣∣∣(1− , θ) = υ(1+, θ) + 1
Pe
· ∂υ

∂λ

∣∣∣
(1+ , θ)

υ(1−, θ) = υ(1+, θ)
, (6)

in which υ = x, h, and ζ.
In the given equations, Pe represents the Peclet number, defined by Pe = UL/Da,

where U is the flow velocity, L is a characteristic length, and Da is the Damköhler number.
The variables include x for conversion, h for normalized hydrogen concentration, ζ for
normalized catalyst concentration, θ for dimensionless time (t/τ), and k for dimensionless
length (z/L). The essential parameters needed to solve the model are Pe, R, q, and θτ . The
Peclet number for the Kenics KMX SM, involving a similar experimental system with
hydrogen gas and polymer solution, has been modeled in [27] as a function of liquid-side
and gas-side hydraulic Reynolds numbers. The empirical model is given by the following:

Pe = β1 Reβ2
L−h Reβ3

G−h, (7)

in which β1, β2, and β3 are constants and ReL−h and ReG−h are Reynolds numbers defined
based on the hydraulic mean diameter (DH) of the SM reactor. More details about this
mechanistic model are available in [2].

It should be noted that to use a mechanistic model as a base and then train a machine
learning (ML) -based model on top of it, a few key steps are required. This process is often
referred to as model enhancement or model augmentation, where machine learning is used
to capture complexity or correct for discrepancies in the mechanistic model. To this end,
the following steps are necessary:

- Understanding the Mechanistic Model

Having a clear understanding of the underlying mechanistic model, its equations,
and the assumptions made is necessary. Due to this reason, in the above section, we have
thoroughly introduced the mechanistic model of the SM reactor.

- Data Generation

In the next step, we can generate a dataset using the mechanistic model. We can run
simulations over a range of input conditions to produce data points that include both input
parameters and corresponding outputs predicted by the mechanistic model. This dataset
will be used for training and testing of the ML-based model.

- Identification of Model Discrepancies

Another important step is to identify and analyze the discrepancies or uncertainties in
the mechanistic model. Areas where the model deviates from experimental data or where
certain complexities are not adequately captured can become potential targets for ML.

- Selecting ML Algorithm

The next step is to choose an ML algorithm suitable for the problem. For instance,
regression algorithms, neural networks, or ensemble methods are common choices. The
selection depends on the nature of the problem and the dataset.

- Training the ML Model

Now, we can train the ML model using the dataset generated from the mechanistic model.
The ML model learns the relationships between the input parameters and the mechanistic
model outputs, capturing any nonlinearities or discrepancies present in the data.

- Testing the ML Model

The final step is to test the trained ML model using a separate dataset not used
during training, ideally, experimental data. Generally, metrics such as mean squared error,
R-squared, or others can be used for evaluation.
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4. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) stand out as highly robust machine learning meth-
ods renowned for their exceptional capacity to comprehend and model intricate nonlinear
relationships within data [28]. The learning paradigm in an ANN seeks to emulate the
functioning of the biological neural networks found in the human brain. Comprising
interconnected units or artificial nodes, an ANN facilitates the transmission and processing
of information through specific functions, enabling the mapping of complex relationships.
The number of nodes in the input layer mirrors the count of input features, the output layer
units align with the targets’ sizes, and determining the nodes in a hidden layer involves
tuning this hyperparameter to prevent the overfitting or underfitting of the constructed
models [29].

As depicted in Figure 1, the inputs (X) move sequentially through the network, travers-
ing from the input layer to an intermediary layer (hidden layer) and, ultimately, reaching
an output layer to generate an estimation of the final target (ŷ). The feedforward equations,
defining the estimation of the ultimate target ŷ, are articulated as follows:

H1 = f1 (w1 X + b1), (8)

and
ŷ = f2 (w2 H1 + b2), (9)

where f 1 denotes the activation function in the hidden layer, typically chosen as the sigmoid
function. The activation function in the output layer, denoted as f 2, takes the form of a linear
function for regression problems. The weight matrices w1 and w2 facilitate the connection
between layers, and the biases b1 and b2 play roles in this connectivity.

This study predominantly employs the gradient descent with momentum algorithm,
chosen for its incorporation of historical parameter updates during training, thereby fa-
cilitating the learning process. Additionally, the momentum hyperparameter directly
expedites training and mitigates the impact of noisy oscillations [30].

Figure 1. Structure of a typical ANN [31].

ANN Training Process

The objective in training an artificial neural network involves discovering a set of
weight matrices and bias vectors across the entire network that minimize the discrepancy
between the states of its output layer yn = {y1, y2, . . . , yn} (representing the predicted out-
put values) and their corresponding targets (actual values). This discrepancy is commonly
known as the loss function or the cost function. Additionally, artificial neural networks
possess the capability to model intricate problems, including nonlinear ones, through the
incorporation of various nonlinear activation functions. However, the introduction of these
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nonlinear activation functions often transforms the training process into a non-convex
optimization problem. Consequently, solving the network optimization problem becomes
non-explicit, necessitating the application of numerical optimization approaches, frequently
gradient-based ones, to train neural networks. It is crucial to note that the solutions ob-
tained through these approaches, which determine the optimal values for weights and
biases for a given task, are not guaranteed to represent the global optimum [32].

5. Problem Statement

While the presence of a high-fidelity mechanistic model is undeniably valuable and
immensely useful, the precise tuning of its key parameters may prove challenging in
practical applications. This challenge introduces a degree of uncertainty into the model’s
output. One approach to address this issue involves introducing a set comprising various
mechanistic models, each characterized by different parameters. By leveraging available
experimental data, we can then determine which model more accurately captures the dy-
namic behavior of the reactor. Alternatively, instead of relying on a collection of mechanistic
models with diverse parameter values to represent uncertainty, an alternative solution is
to employ an artificial neural network (ANN) model. This ANN model is trained using
a suitable dataset that effectively incorporates the existing uncertainty. In other words,
training an artificial neural network directly based on appropriate data to capture the
underlying relationships without explicitly representing uncertainty in the parameters is a
valid and common approach. This is especially applicable when the mechanistic model is
complex, and uncertainties in parameters are challenging to quantify precisely. It should
be noted that this data-driven approach allows a neural network to learn complex patterns
directly from available data. This is particularly useful when the mechanistic model in-
volves intricate interactions that may be challenging to model explicitly. Further, ANN
models have the ability to generalize well to unseen data if the training set is representa-
tive of the underlying system’s behavior. This is beneficial when dealing with real-world
systems where uncertainties may manifest in unpredictable ways. In addition, by not
explicitly incorporating uncertain parameters from a mechanistic model, an ANN can be
less constrained by specific assumptions and simplifications. This can be advantageous in
situations where the true underlying mechanisms are not fully understood. Finally, imple-
menting an ANN without explicitly representing parameter uncertainties may simplify the
modeling process. This is especially true when the uncertainties are difficult to quantify or
when the mechanistic model is computationally expensive.

On the other hand, besides the above advantages, we need to address the following
concerns: The effectiveness of a data-driven ANN depends on the quality and quantity
of available data. Sufficient data covering a diverse range of scenarios and conditions
are crucial for training a reliable model. Meanwhile, without the explicit representation
of parameter uncertainties, there is a risk of overfitting the ANN to the training data.
Therefore, regularization techniques and proper validation procedures should be employed
to mitigate this risk. Furthermore, while ANNs excel at capturing complex relationships,
they may lack interpretability compared to mechanistic models. Understanding the learned
features and relationships in an ANN can be challenging, especially in high-dimensional
spaces. Also, it is worth noting that ANNs are powerful within the range of training data.
In other words, extrapolating predictions beyond this range may lead to unreliable results
and, consequently, sufficient care should be taken when applying the model to scenarios
that significantly differ from the training data. Last but not least, rigorous validation is
essential to assess the robustness of an ANN model. Testing a model on diverse datasets
and scenarios helps ensure its reliability in real-world applications.

6. Proposed Methodology

When dealing with uncertainty in the parameters of a mechanistic model and aiming
to train a reliable ANN model, we need to follow a probabilistic approach. The suggested
steps in this regard are as follows:
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- Uncertainty Identification

In the first step, we need to clearly define the parameters in the mechanistic model that
have associated uncertainty. In addition, identification of the nature of this uncertainty—
whether it is due to measurement errors, variability in material properties, or other sources—
is also important.

- Probabilistic Sampling

Next, we need to sample the uncertain parameters probabilistically from their proba-
bility distributions. If the nature of the uncertainty is known, we can use statistical methods
or experimental data to define the probability distributions for these parameters.

- Dataset Generation

Now, for each set of sampled parameters, we can run simulations using our available
mechanistic model to generate corresponding input-output pairs. This process produces
a dataset which represents a specific combination of uncertain parameters and the corre-
sponding mechanistic model prediction.

- Monte Carlo Simulation

In this stage, we need to employ a Monte Carlo simulation to generate a large number
of samples by repeatedly sampling the uncertain parameters and running simulations.
This approach accounts for the uncertainty in the parameter values and provides a diverse
dataset for training the ANN.

- Dataset Splitting

At this time, we should split the generated dataset into training and test sets, ensuring
that each set captures the variability in the uncertain parameters. A common splitting ratio
can be 80% for training and 20% for testing.

- Scaling

After data gathering, the next step is to normalize or standardize the input/output
variables to ensure that they are on a similar scale. This step is crucial for the convergence
and performance of the neural network.

- ANN Architecture and Training

In this stage, we can define the architecture of the ANN, considering the uncertain
parameters as input features. Thus, we can start training the ANN using the generated
dataset, where the inputs are the uncertain parameters and the outputs are the correspond-
ing mechanistic model predictions.

- Evaluation

Now, it is time to evaluate the performance of the trained ANN on the test dataset
while assessing its ability to generalize across different instances of uncertain parameters.

- Iterative Improvement

Based on the evaluation results (and if needed), we may iteratively improve the ANN
model by adjusting hyper-parameters, architecture, or other aspects. Here, the target is to find
a model that provides reliable predictions under various scenarios of parameter uncertainty.

It should be noted that by adopting a probabilistic approach and incorporating uncer-
tainty into the dataset generation process, we are able to train an ANN model that accounts
for parameter uncertainties in the underlying mechanistic model. This approach enhances
the reliability of the ANN predictions and provides valuable insights into the robustness of
the model under varying conditions.

7. Simulation Results and Discussion

As we discussed earlier when introducing the mechanistic model of the SM reactor,
Pe, R, q, and θτ are considered as key parameters of the model. To demonstrate how our
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methodology can address the presence of uncertainty in these parameters, we assume that
all of them follow a Gaussian probability distribution function with specified means and
standard deviations. Table 1 presents the selected statistical characteristics of these parameters.

Table 1. Characteristic of the selected parameters for uncertainty modeling.

Range Mean Value Standard Deviation

Pe 1–100 50 10

R 0.1–1 0.5 0.2

q 0.5–10 6 1

θτ 2–12 7 1.5

Moreover, Figure 2 illustrates the general structure of the model we are developing.
This structure outlines the information the model receives and its output. Specifically, as
shown in Figure 2, our primary objective is to propose a model capable of predicting the
degree of hydrogenation at each sampling time (input #6) and for each element (input #5)
when provided with four other inputs (Pe, R, q, and θτ) that impact the output, which is
the degree of hydrogenation.
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Figure 2. General structure of the proposed ML-based model.

We also conduct a detailed investigation into how variations in the crucial input
parameters (Pe, R, q, and θτ) influence the degree of hydrogenation across different stages
of the process, as represented by the hydrogenation in elements 6, 12, 18, and 24. Our
analysis reveals significant insights into the sensitivity of the hydrogenation process to
changes in the input parameters at different stages. Specifically, we observe that the degree
of hydrogenation exhibits greater variability in the initial elements compared to the higher
ones. For instance, at element #6, the degree of hydrogenation ranges from 46% to 78%
upon reaching steady-state conditions after 30 samples. In contrast, at element #24, which
represents a later stage in the process, the hydrogenation degree ranges more narrowly
between 96% and 99% under similar conditions (Figure 3).

This pattern indicates that as the reactants progress through the elements, the process
becomes less sensitive to fluctuations in the input parameters, likely due to approaching
chemical equilibrium or saturation effects. Such findings not only highlight the complex
interplay between the process parameters and their impacts on the outcome at various
stages but also underscore the importance of considering element-specific dynamics in our
machine learning models to enhance prediction accuracy and process optimization.



Processes 2024, 12, 999 11 of 19

Figure 3. Variations in the degree of hydrogenation due to uncertainty in the key parameters.

Therefore, based on the explanations provided in the previous section, the first step
involves generating an appropriate dataset that accurately represents the dynamics of the
hydrogenation process. To create this dataset for training the artificial neural network
(ANN) model, various values for Pe, R, q, and θτ need to be set, utilizing suitable Gaussian
probability distribution functions. Subsequently, simulations are to be conducted using the
available mechanistic model for each set of Pe, R, q, and θτ. Simultaneously, the ‘degree
of hydrogenation’ is recorded at different locations in the reactor as a percentage at each
sampling time. We designate the desired sampling locations after 6, 12, 18, and 24 elements.
In the generated dataset, the output variable is the ‘degree of hydrogenation’ and the input
variables include the number of elements from which the sampling process is carried out
(6, 12, 18, or 24); the corresponding values for Pe, R, q, and θτ for that specific simulation;
and the time of sampling. Consequently, our dataset comprises six input variables and one
output variable.

Now, the dataset generated can be utilized to train the ANN for predicting the ‘degree
of hydrogenation’ as the desired model output. For this purpose, we choose a multi-layer
perceptron (MLP) with 20 neurons in the hidden layer. The general structure of the selected
ANN is illustrated in Figure 4. The training criteria, including the mean squared error
(MSE) for each training epoch (Figure 5), the training error histogram (Figure 6), and the
regression model between the ANN output and mechanistic output (Figure 7), are also
presented. It is important to note that increasing the number of independent simulations
can enhance our training dataset, allowing us to better capture the internal dynamics of
the reactor. In this instance, we opt for 15 different sets to assign values for Pe, R, q, and θτ.
We will demonstrate that the model generated based on the training dataset performs well
when tested with a new set of input variables (unseen values for Pe, R, q, and θτ randomly
sampled from the corresponding Gaussian probability density function). However, if the
model’s performance on the test data is deemed unacceptable, it may indicate poor training
of the ANN model. One solution to address this issue is to expand the training dataset by
adding new different input variables associated with the key parameters and record the
simulation results.
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Figure 4. The trained MLP with 20 neurons in the hidden layer.

Figure 5. Mean squared error (MSE) for each training epoch.
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Figure 6. MLP training error histogram.

Figure 7. Regression model between the ANN output and the mechanistic output.

For further data analysis over the constructed dataset, which may help to fully grasp
the complexity of the machine learning problem, we also calculate the correlation coeffi-
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cients between the selected input variables (Pe, R, q, and θτ) and the output. Across all
studied elements (#6, #12, #18, and #24), the magnitude of the obtained correlation coeffi-
cients is generally very low (below 0.3 in absolute value), which typically suggests a weak
linear relationship between these features and the degree of hydrogenation. In other words,
the generally weak correlations suggest that either the process is dominated by non-linear
effects not captured by simple linear correlation or that other factors not included in the
analysis may be influencing hydrogenation more significantly. Therefore, the lack of strong
linear relationships might indicate the need for more complex modeling approaches that
can capture non-linear interactions, such as neural networks. Our presented findings in the
following paragraphs completely support this fact.

After the termination of the training phase, the next step involves evaluating the per-
formance of the trained ANN. For this purpose, we randomly select 15 different values for
the key parameters Pe, R, q, and θτ from the associated probability density function. We then
compare the outputs of the corresponding mechanistic models, serving as references, with the
output of the trained ANN after various elements (i.e., after 6, 12, 18, and 24 elements).

As illustrated in Figure 8, the predicted outputs from the ANN successfully align with
the reference values. Each set of Pe, R, q, and θτ corresponds to 240 sampling times, with
every 60 samples indicating the degree of hydrogenation in percentages at the respective
sampling points (after 6, 12, 18, and 24 elements). In essence, we have developed a unique
and accurate ANN model capable of representing the dynamics of the SM reactor in the
presence of uncertainty regarding key parameters.

Figure 8. Comparison between the output of the ML-based model and the mechanistic model (the
testing phase).

With this model, users can effectively analyze the behavior and performance of the
reactor even when they are uncertain about the exact values of the key parameters. Con-
sequently, users can make informed modifications to enhance the overall efficiency of the
hydrogenation process.

In this section, we compare the performance of the proposed ANN with other machine
learning models including linear regression, decision tree, and random forest to identify
the most effective approach for predicting the degree of hydrogenation. In general, linear
regression, a foundational statistical technique, offers a straightforward approach for mod-
eling the relationship between independent variables and a continuous dependent variable
through a linear function. Despite its simplicity and interpretability, linear regression can
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struggle with complex, nonlinear data structures, which are typical in chemical processes.
On the other hand, decision tree segments data into branches to form predictions, making
it intuitive and capable of handling nonlinear data. However, they are often prone to
overfitting, especially with noisy data. Moreover, we also implemented random forest,
which may improve generalization to new data compared to decision tree. Our empirical
results show that while the decision tree and random forest models provided substantial im-
provements over linear regression, they did not outperform the ANN. The ANN achieved
the lowest RMSE, indicating its superior ability to model complex relationships hidden in
data (Table 2). The ANN’s architecture, which comprises interconnected layers and nodes,
enables it to learn nonlinear transformations and interactions between features effectively,
providing a nuanced mapping of inputs to outputs. This capability makes it particularly skill-
ful at capturing the intricate dynamics of chemical reactions, where interactions and process
conditions may have nonlinear effects on the outcomes. Figure 9 depicts the performance of
each model with respect to the test data. It is clear in the figure the outputs from the decision
tree model and the ANN are very close to those from the actual data compared to what we
may see in linear regression and random forest. Figures 10 and 11 also demonstrate the error
histogram and error signals associated with each model, respectively.

Table 2. Calculated RMSE for the different tested models.

Model RMSE

1 Linear regression 21.90

2 Decision tree 4.94

3 Random forest 7.51

4 ANN 3.69

Figure 9. Actual data versus model output tested over the four different models.
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Figure 10. Error histogram associated with each model (over the test data).

Figure 11. Comparison of the error signals (the difference between the output of each model and the
actual data).

Finally, we conduct a comprehensive study for a feature importance analysis to sub-
stantiate the significance of the input features in our predictive model. Our analysis reveals
that the ‘Time’ (Feature #6) exhibited the highest importance score, followed closely by
‘Element Number’ (Feature #2). These results are consistent with our initial hypotheses
and the observational data presented in Figure 3, which clearly illustrate a pronounced
dependency of the degree of hydrogenation on both the time of the reaction and the spe-
cific elements involved. The temporal dimension (time) is critical as it encapsulates the
kinetics of the hydrogenation process, with longer durations allowing for more complete
reactions, thereby influencing the degree of hydrogenation observed. Similarly, as we know
by increasing the ‘Element Number’, the degree of hydrogenation increases. Following
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these, the next most influential features, in order of decreasing importance, are θτ, q, R, and
Pe (Figure 12). These findings not only reinforce our theoretical understanding but also
provide quantitative evidence that support the model’s reliance on these features to predict
hydrogenation outcomes accurately. This feature importance analysis substantiates the crit-
ical nature of the selected input parameters and justifies their inclusion and prioritization
within our modeling framework.

Figure 12. Feature importance: the importance score associated with each feature.

Finally, we need to mention that as the proposed ML model is based on the data
generated from our previous work (the mechanistic model development [2]), all underlying
assumptions for deriving that mechanistic model are also applicable here. These assump-
tions include: (i) the validity of the film model for mass transfer, with a negligible reaction
extent in the liquid film; (ii) steady and constant temperature and pressure conditions;
(iii) a constant mass transfer coefficient and interfacial area; (iv) the independence of the
axial dispersion from the concentration and position; and (v) a reaction primarily occurring
in the bulk of the polymer solution, with a negligible reaction in the gas phase.

Also, it is important to note that our model demonstrates its capability in handling
high variability in parameters and robustness in predicting the reactor dynamics under
diverse conditions. Utilizing this model can lead to reduced computational demands,
lower operational costs, and improved decision-making capabilities. However, its potential
limitations include susceptibility to overfitting, sensitivity to specific parameter variations,
and limited generalizability due to the specific dataset used for training. Additionally, the
scale of the experiments and the specific conditions under which the model was developed
may also impose limitations.

8. Conclusions

In conclusion, our study emphasizes the significance of understanding and address-
ing uncertainties in the catalytic hydrogenation process of NBR using a static mixer (SM)
reactor. A mechanistic model serves as the foundation, providing valuable insights into
reactor dynamics. The introduction of uncertainties to key parameters, represented by Pe,
R, q, and θτ, is demonstrated through the generation of a comprehensive dataset using
the mechanistic model. Subsequently, an artificial neural network (ANN) is successfully
trained on this dataset, showcasing its ability to predict reactor dynamics under diverse
conditions. The ANN’s robust performance, evidenced by the lowest RMSE score, confirms
its suitability for modeling the hydrogenation process. This analysis clearly demonstrates
the ANN’s superior predictive power and flexibility over traditional linear models and
tree-based methods, underlining its potential to significantly enhance predictive accuracy
in chemical engineering applications. This data-driven approach proves effective in han-
dling uncertainties and can be used in optimizing reactor performance. The developed
methodology contributes to advancing continuous HNBR production, offering valuable
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applications in chemical engineering. Finally, in future work, the authors will focus on
a hybrid structure while combining the mechanistic model and the ML-based model to
simultaneously enhance the extrapolation and interpolation abilities of the developed
model. That model can be applied in the design stage of an SM reactor by taking into
account the possible uncertainties while also being used for upscaling purposes.
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