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Abstract: Waste treatment and valorization have become crucial for sustainable development towards
a circular economy. As an alternative, biochar production is a promising process to convert wastes
into a valuable product that presents several potential applications to cope with environmental
problems. Biochar in recent years has been the subject of many studies, which have leveraged
the number of patents and the industrial interest in this process. Against this background, this
overview aimed: (i) to identify the advances in biochar research; (ii) to assess the number of patents
on biochar over the years; (iii) to look at the industrial production of biochar worldwide; (iv) to
detect the potential for biochar production in Brazil regarding waste biomass availability; and
(v) to discuss the potential of biochar in contributing to reach some Sustainable Development Goals
(SDGs). The holistic analysis presented here suggests that progress has been made in research, patent
development, and industrial implementation of biochar, and that its potential role in achieving certain
SDGs is noteworthy. Therefore, this overview can be useful in guiding future research about biochar
to improve the knowledge of the different branches in this field.

Keywords: waste valorization; pyrolysis; hydrothermal carbonization; gasification; biochar industry;
sustainable development goals

1. Introduction

The search for waste treatment and recovery solutions to mitigate environmental im-
pacts has become crucial to achieving the United Nations’ Sustainable Development Goals
(SDGs) and thus implementing a circular economy. In this context, biochar has emerged
as a promising alternative since its characteristics make it attractive for the treatment and
recovery of waste [1]. Biochar is a carbon-rich solid obtained from the decomposition
of organic materials through thermochemical processes such as pyrolysis, hydrothermal
carbonization (HTC), gasification, and torrefaction [2,3]. Biochar possesses physicochemi-
cal properties, such as a large specific surface area, high pore volume, functional groups
on the surface, and high carbon content, which make it suitable for various applications.
These include biochar utilization as an adsorbent, a precursor for catalysts, a soil amend-
ment agent, and an additive for anaerobic digestion/composting [1,3]. In this way, the
broad applicability potential of biochar and the waste management that the technology
provides circumvent the production–use–disposal approach (linear economic model), mak-
ing possible the reincorporation of wastes into the economic chain and thus promoting a
circular economy.
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Biochar research has exponentially increased in the past decade [4]. Studies proposing
different wastes (e.g., agricultural and woody wastes, sewage sludge, digestate, plastic,
algae, coal, tire wastes, and livestock manures) as feedstocks for biochar production are
abundant [5–7]. Similarly, there is a growing number of articles reporting process (e.g.,
pyrolysis, HTC, gasification, and torrefaction) optimization, aiming to provide suitable
conditions of temperature, reaction time, and feedstock load [8–11]. Thus, the potential of
biochar has boosted research on its economic and environmental feasibility given the life
cycle and techno-economic assessments reported [12–16].

In response to research developments, the number of patents about biochar has in-
creased as well. This trend indicates that biochar is a promising marketable product, which
has aroused industry interest in scaling up biochar production processes. In Europe, for
example, the biochar market has grown strongly. Production was about 33,500 tons at the
end of 2022, but the production capacity was 53,000 tons in the same period [17]. Some
reports indicate that the global biochar market will continue to grow this decade, suggest-
ing consolidation of the biochar industry [18–20]. Furthermore, in addition to enabling
economic gains, biochar production fits with sustainable development proposals. It has
been suggested that biochar has the potential to contribute to reaching the UN Sustain-
able Development Goals (SDGs) due to its possible application to mitigate environmental
problems [21]. For example, hydrochar (biochar) can be used as an adsorbent for wa-
ter remediation by removing pollutants such as emerging contaminants (e.g., disrupting
compounds, antibiotics, and pesticides), heavy metals, and dyes [10], contributing to the
achievement of SDG 6 (Clean water and sanitation) [22].

According to the scenario depicted, studies that approach biochar production from a
broad perspective are important for the advancement and consolidation of this technology
as part of the global environmental agenda. Thus, to understand the state of the art of
this topic, it is necessary to look first at the academic field, since basic research continually
suggests possible alternatives to biochar production. Subsequently, it is important to
look at the industry to identify the consolidated processes in the market. Finally, it is
essential to evaluate the effects of this practice from an economic, social, and environmental
perspective. Therefore, the aims of this review were: (i) to identify the advances in biochar
research; (ii) to assess the number of patents on biochar over the years; (iii) to look at
the scale of industrial production of biochar worldwide; (iv) to detect the potential for
biochar production in Brazil regarding waste biomass availability; and (v) to discuss the
potential of biochar in contributing to reach some of the SDGs. To the best of the authors’
knowledge, the originality of this overview is to provide a holistic outlook on the biochar
field from laboratory to industrial scale, in addition to suggesting Brazil’s potential in this
area and indicating the possible influence of biochar production in reaching sustainable
development.

2. Methodology

The Scopus database was used to analyze the evolution of biochar research from 2014
to 2023 regarding the number of publications, the countries with the most publications,
and the subject area. The processes addressed were pyrolysis, HTC, gasification, and
torrefaction, and only research articles were considered. The search was only within article
titles, abstracts, and keywords, and used the following terms: (i) “biochar AND pyrolysis”
for pyrolysis, (ii) “(biochar OR hydrochar) AND ‘hydrothermal carbonization’” for HTC,
(iii) “biochar AND gasification” for gasification, and (iv) “biochar AND torrefaction” for
torrefaction. The term “hydrochar” was included in the search about the HTC process
because it is the name given to the biochar obtained through this method.

To assess the number of patents on biochar over the years, the PATENTSCOPE
database of the World Intellectual Property Organization (WIPO) was used. Initially,
a general search from 2015 to 2023 was conducted using the term “biochar OR bio-char”.
Subsequently, the search was refined using the term “(biochar production) OR (bio-char
production)”. The International Patent Classification (IPC) search filter was used to facili-
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tate the search for patent documents found in each keyword combination. The most recent
patents published in the two classification codes with the highest number of registrations
were evaluated.

The worldwide biochar-producing companies were found from an online search con-
sidering the biochar market. The initial list of companies was subjected to a refinement pro-
cess, considering those that had the data of interest for this study: year in which operations
began, annual production capacity (ton/year), production technique, and raw material
used. Companies that did not have this data and those with annual production of less than
200 tons per year were not considered. According to the European Biochar Industry Con-
sortium (EBI), the companies are classified as follows: medium (200–499 tons/year), large
(500–1999 tons/year), very large (2000–4999 tons/year), and industrial (≥5000 tons/year)
biochar production capacity [17].

To analyze Brazil’s biochar production potential regarding waste biomass availability,
a search was carried out to quantify the amount of potential biomass wastes that could be
available for biochar production in the country. For this purpose, the following residues
were considered: (i) crop wastes from sugarcane, soy, corn, cassava, cotton, orange, beans,
rice, wheat, and coffee production; (ii) livestock wastes, which included manure from
cattle, swine, poultry, buffalo, and goats and sheep; (iii) forestry wastes from roundwood
production; (iv) sewage sludge from municipal wastewater treatment plants (WWTP); and
(v) municipal solid wastes (MSWs).

Finally, to analyze the relationship between the use of biochar and the SDGs, this
study considered goals 6 (Clean water and sanitation), 7 (Affordable and clean energy),
and 13 (Climate action), for which biochar production and application might have a
direct impact. The choice of these SDGs was based on the relationship between biochar
and water/wastewater management, access to energy, climate change mitigation, and
biodiversity promotion.

3. Outlook on Biochar Research

Biochar is a carbon-rich solid material resulting from the thermochemical conversion
of biomass wastes [23]. Its production is emerging as a promising technology for waste
treatment and valorization [1]. The main processes to produce biochar are pyrolysis
(fast and slow), gasification, HTC, and torrefaction. Table 1 presents some examples of
these biochar production processes using different biomass wastes and the respective
biochar yields and characteristics (proximate and ultimate analysis, higher heating value
(HHV), and specific surface area (SBET)). Accordingly, biochar characteristics depend on
the production method and its conditions (e.g., temperature) and biomass waste (Table 1).
Furthermore, biochar can still be subjected to physical, chemical, or biological modifications
to improve its characteristics [24–26].

Table 1. Examples of biochar production processes using different biomass wastes and the respective
biochar yields and characteristics (proximate and ultimate analysis, higher heating value (HHV), and
specific surface area (SBET)).

Method of
Production Waste

Temperature
(◦C)

Biochar
Yield (wt%)

Biochar Characteristics

Refs.Ultimate Analysis
(wt%, db a)

Proximate Analysis
(wt%, db a)

HHV
(MJ

kg−1)

SBET
(m2

g−1)

C O H Ash VM b FC c

Fast pyrolysis

Rice husks 550 39 44.7 7.7 1.8 45 14.2 40.8 17.7 117 [27]

Used tires 500 40 85.1 - 0.53 11.7 9.1 80.2 29.7 - [28]

Wheat straw 500 26 56.0 - 2.3 32 16 - - - [29]

Pig manure 450 25 83 <5 <10 - - - - - [30]

Wood chips 450 18.5 82 5 <10 - - - - - [30]
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Table 1. Cont.

Method of
Production Waste

Temperature
(◦C)

Biochar
Yield (wt%)

Biochar Characteristics

Refs.Ultimate Analysis
(wt%, db a)

Proximate Analysis
(wt%, db a)

HHV
(MJ

kg−1)

SBET
(m2

g−1)

C O H Ash VM b FC c

Slow
pyrolysis

Rice husks 300 38 46.1 23.3 3.8 22.7 43.1 30.6 17.6 - [31]

Coffee husks 350 40 69.9 22.5 3.6 9.8 24.1 66.1 26.7 - [32]

Wheat straw 300 95 50.3 - 6.2 8 76.3 23.7 - - [33]

Pine wood 300 90 54.1 - 5.9 0.3 78.0 22.0 - - [33]

Cow manure 300 81 30 - - - - - - 97 [34]

Hydrothermal
carbonization

(HTC)

Pine wood 220 56.5 63.5 31.1 5.3 0.02 68.7 31.2 24.1 8.2 [35]

Corn silage 250 52 62.8 17.1 5.5 12.3 - - 26.5 4.9 [36]

MSW 220 54.8 66.6 16.8 7.0 5.8 69.5 24.7 29.9 - [37]

Pine sawdust
and sewage

sludge
250 64 55.8 16.2 4.3 18.4 59.3 22.3 20.3 22.7 [38]

Gasification

Elephant grass 300 14.3 - - - - - - - 475.1 [39]

Grape pomace 1200 15 53 41 3.9 42.3 12.8 44.8 - 76.1 [40]

Miscanthus
plant

600 25.5 92.9 3.8 2.4 12.2 15.3 72.5 - 403.5

[41]800 22.6 92.5 5.2 1.6 12.3 8.8 78.9 - 629.3

1000 20.6 91.7 5.4 2.2 13 8 79 - 981.7

Torrefaction

Wood pellets 250 89.1 - - - 1.7 72.2 26.1 19 - [42]

Rice husk 250 52 57.2 22.9 4.5 14.3 42.4 43.3 22.6 -

[11]

Coconut husk 250 60 58.6 26.9 4.2 9.6 40.4 50 22.4 -

Cassava
rhizome 250 50 58.7 25.8 5 9 40.4 50.5 23.5 -

Corncob 250 40 62.2 27.1 5.1 4 39 57 24.9 -

Microalgae
residue 250 71.6 36.5 49.5 6.1 23.8 61.8 12.5 12.6 - [43]

a db: dry basis; b VM: volatile matter; c FC: fixed carbon.

3.1. Pyrolysis

Pyrolysis is a thermochemical process for converting biomass into high-value products,
such as biochar, bio-oil, and syngas, in the absence of oxygen over a temperature range of
300 to 900 ◦C [44]. In pyrolysis, the liquid product is commonly known as bio-oil, which
can be stored and refined for energy production, while the volatile fraction contains a
mixture of non-condensable gases such as CO, CO2, H2, CH4, and heavier hydrocarbons,
which are generally referred to as pyrolysis gas or syngas [45]. The solid product of this
process (biochar) has a high carbon content and can be used, for example, as an energy
source or for soil improvement [46]. In general, pyrolysis can be subdivided into slow
pyrolysis (low heating rate and long residence time) and fast pyrolysis (high heating rate
and short residence time), based on the temperature, heating rate, pressure, and residence
time used [47].

The purpose of slow pyrolysis, which takes place between 400 and 600 ◦C, is to
maximize the yield of biochar [48]. This process is carried out at atmospheric pressure and
has a long residence time (>1 h) and slow heating rates (5 to 7 ◦C·min−1). Different reactors
can be used to produce biochar, such as agitated drums, rotary sand kilns, wagon reactors,
and blade pyrolysis kilns [3]. Fast pyrolysis, however, has the advantage of increasing
the yield of bio-oil (up to 75%) from biomass, with a heating rate generally higher than
200 ◦C·min−1 and a residence time of less than 10 s [49]. For fast pyrolysis, different reactors
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can be used, such as bubbling fluidized beds, circulating beds, rotating cone reactors, and
ablative reactors [50].

Figure 1A depicts a considerably growing trend of publications about biochar from
pyrolysis between 2014 and 2023. In 2014, the number of research articles was 284, while in
2023 it had grown to 1734. Such a trend emphasizes the researchers’ interest in pyrolysis to
convert biomass wastes into biochar over the years. According to Figure 1B, the country
with the highest number of publications from 2014 to 2023 is China (4191), which is
followed by the United States (979) and India (615). It is interesting to note that 28.8% of
the research articles are in the area of Environmental Science (Figure 1C). This evidence
thus demonstrates the potential of biochar production through pyrolysis in addressing
environmental issues. For instance, the examples presented in Table 1 for pyrolysis (fast and
slow) show that all biochar had a high value of fixed carbon (FC), which is beneficial when
using biochar as a solid biofuel. Moreover, the specific surface area of biochar obtained
from pyrolysis processes can suggest the potential of this material as an adsorbent for
pollutant removal.
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3.2. Hydrothermal Carbonization (HTC)

HTC is a suitable method for treating biomass with high moisture content [51]. This
thermochemical process consists of subjecting the biomass to low temperatures (between
180 and 250 ◦C) and autogenous pressure in the presence of water [10]. Thus, the product
of interest is named hydrochar, a type of biochar with different properties from those
obtained by pyrolysis and gasification, which can have a yield of between 40 and 70% by
weight [52]. The yield and quality of hydrochar depend on the composition of the biomass:
lignocellulosic waste generates more mass and energy, while waste rich in low molecular
weight carbohydrates, such as corn silage, generates a hydrochar more like lignite and
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peat [53]. The effluent produced during HTC can be reused, reducing the environmental
impact, and increasing the energy efficiency of the process [3]. Table 1 presents the HTC
temperature and biochar yield of biochar from different wastes. It is possible to note
the great difference in HTC temperatures compared with those used in pyrolysis and
gasification processes.

The interest in HTC has increased in the past 10 years, as reported in Figure 2A. The
number of research articles published in 2014 was 51, and it increased steadily over time,
reaching 376 in 2023, representing an increase of more than 700% in research articles about
hydrochar (biochar) and HTC in that period. Similarly to pyrolysis, China (796) leads the
publication scenario and is followed by the United States (186). The third position, however,
is occupied by Germany (180). In Figure 2C, it is possible to note that, like pyrolysis, most
of the research articles (43.2%) are within the Environmental Science and Energy areas. In
Table 1, for example, all hydrochars from different wastes presented HHVs between 20 and
30 MJ·kg−1, which are in the range of or even higher than those of coal [54]. This indicates
the energetic potential of hydrochar.
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3.3. Gasification

Gasification is a thermochemical process that converts a carbon source, usually with
low moisture, into a gaseous mixture (syngas) in the presence of an oxidizing agent (oxygen,
air, water vapor, or combinations thereof) at high temperatures (>700 ◦C) [49]. The process
generally yields lower biochar than pyrolysis [55]. For instance, as presented in Table 1,
the biochar yield from grape pomace gasified at 1200 ◦C was only 15%. Biochar is not the
targeted product of gasification, which is performed to obtain syngas. In fact, biochar can
be considered a byproduct of gasification [56].
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However, the interest in gasification in the context of biochar production is depicted in
Figure 3A. The number of research articles reached 146 in 2023 from 29 in 2014. Regarding
publication by country (Figure 3B), China (290), the United States (122), and Italy (68) are
the three countries with the highest numbers of publications. The predominant subject
area of the research articles is Energy and Environmental Science, encompassing 44.6% of
all documents (Figure 3C). In Table 1, it is possible to verify the high FC contents (44% to
79%) and remarkable surface areas (76 to 971 m2·g−1) of the biochars obtained through
gasification. These characteristics suggest, therefore, that these biochars could be utilized
for energy generation or adsorption purposes.
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3.4. Torrefaction

In torrefaction, the biomass is heated at temperatures of 200 to 300 ◦C in an inert
atmosphere. This process has also been called mild pyrolysis, and it aims to upgrade the
fuel potential of solid waste biomasses. Thus, torrefaction could improve the energy density
of waste biomasses by increasing the HHV given the reduction in the moisture content and
the O/C and H/C atomic ratios [11,57].

Figure 4A indicates an increase in torrefaction research in the context of biochar,
although it is more modest than that reported for the other thermochemical processes
discussed above. China (102), according to Figure 4B, still leads the number of documents
published from 2014 to 2023, followed by Taiwan (78) and the United States (40), which
appeared in the third position. Moreover, it is worth noting that the main area of publication
is Energy (27.1%), being different from HTC and gasification, whose Environmental Science
and Energy domains had almost the same percentage. From an energetic perspective,
therefore, torrefaction can be a suitable option to produce biochars with good HHVs, as
exemplified in Table 1.
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4. Environmental Applications of Biochar
4.1. Waste Management

Proper waste management is a fundamental key in the search for sustainable environ-
mental practices [58]. As the world’s population grows and human activities generate an
increasing amount of waste, the importance of effective strategies to deal with this chal-
lenge becomes evident [59]. In this context, a promising strategy to address the appropriate
management of different types of waste could be biochar production.

The generation of sewage sludge, for instance, has been expanding worldwide due to
the increased amount of waste to be discarded by WWTP [60]. Sewage sludge could thus
be used to produce biochar. The organic content of sewage sludge biochar and its specific
properties make it a good adsorbent for removing contaminants from wastewater [61,62].
Wastes from agriculture, forests, urban centers, and industries have also been studied to
produce biochar [28,31,37,38]. For example, a study that used biochar from industrial and
agricultural waste to enhance phosphorus concentration in a rice field demonstrated that
the group fertilized with biochar showed higher phosphorus adsorption compared to the
control group, thereby improving soil microbiology [63]. Another type of waste that has
been increasing over the years because of rapid urbanization and population growth is
MSWs [64]. To develop strategies to reduce the volume of these wastes, the pyrolysis
process is considered a preferential approach for converting these wastes into biochar. It
significantly reduces the volume of urban solid waste by up to 90%, establishing a more
sustainable waste management regime [65].

In light of the above, biochar production could be a promising strategy for waste
management and recovery. The transformation of organic waste into biochar not only
reduces the environmental burden associated with the improper disposal of these materials
but also contributes to mitigating greenhouse gas emissions and promoting environmental
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sustainability [66]. Furthermore, the strategic use of biochar in soil improves its physical
and chemical properties and provides substantial benefits to agriculture by increasing the
availability of nutrients and water for plants [67].

4.2. Adsorption of Pollutants

Biochar, given its physicochemical characteristics, emerges as a promising alternative
for removing pollutants from soil and water, providing a suitable niche for the adsorption
of a variety of organic and inorganic pollutants [68]. In the context of soil, biochar has
demonstrated effectiveness in removing organic contaminants such as hydrocarbons and
pesticides [3]. The possible adsorption mechanism involves several types of interactions,
such as electrostatic attraction, ion exchange, physical adsorption, surface complexation,
and/or precipitation [69]. It was demonstrated that biochar possesses several benefits
for the soil, including the capacity to elevate the pH value and organic carbon content of
the soil, enhance the soil’s water retention capacity, reduce the number of contaminants,
enhance crop yields, and inhibit the absorption and accumulation of pollutants by plant
roots [70,71]. In aquatic systems, biochar is capable of adsorbing heavy metals, excess
nutrients, dyes, and emerging contaminants (e.g., pharmaceuticals and pesticides) [10,72].
The physicochemical interactions between biochar and the pollutants present in the water
form stable complexes, thereby reducing the concentration of pollutants in the media [69].
However, it is crucial to consider an appropriate biochar type and application conditions
to optimize the desired results [3]. Thus, biochar stands out as a promising solution for
promoting soil and water quality by adsorbing pollutants.

4.3. Energy Production

An overexploitation of fossil fuel-based energy resources represents a serious threat to
the environment and society [73]. The burning of fossil fuels produces greenhouse gases
and various toxic pollutants responsible for global warming, causing adverse effects on
human health [74]. To reduce the use of fossil fuels for energy production, biomass can
be used as a fuel source [75]. However, raw biomass is unattractive as fuel due to its high
moisture content, which reduces overall combustion efficiency, while its low volumetric
density results in higher transportation costs per unit of energy [76]. To convert raw
biomass into products with enhanced fuel properties, such as biochar, thermochemical
processes are necessary. Table 1 presents the HHV of different biochars.

As an example of energy production in the context of biochar, one can look at py-
rolysis process. In addition to biochar, pyrolysis can also produce bio-oil and a gaseous
fraction. Bio-oil consists of water, alcohols, phenolic compounds, aliphatic and aromatic
hydrocarbons, and nitrogen compounds (pyrazine, pyridine, and amines), which can be
used in boilers to generate heat [77]. The gaseous fraction, known as syngas, consists of
CO, CO2, H2, CH4, and other low molecular weight gases that can be used in gas engines
after processing [78]. It is important to note that the fraction and properties of these three
products (biochar, bio-oil, and syngas) strongly depend on pyrolysis conditions, such as
temperature, residence time, and heating rate [79]. However, biochar, bio-oil, and syn-
gas exhibit significant energy potential, standing out as biofuel options to mitigate the
environmental impacts associated with fossil fuels [80,81]. This demonstrates that biochar
production from pyrolysis for energy purposes should not be limited to the solid product
(biochar) alone, but should also consider the liquid (bio-oil) and gaseous (syngas) outputs.

4.4. Carbon Sequestration

Biochar has gained increasing attention due to its possible advantages in carbon
sequestration and mitigation of climate change, as it has a carbon content resistant to
decomposition [82–84]. Biochar has a high content of aromatic carbon, which is the basis of
its carbon sequestration capacity [85]. Thus, storing biochar in soils through agricultural
management can also facilitate carbon sequestration [86]. Therefore, converting biomass
wastes into biochar and storing the produced biochar in soils promotes carbon sequestration.
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For instance, a national-level LCA was conducted to evaluate the carbon sequestration
potential of biochar produced from various crop residues. The results demonstrated that
the conversion of 1 ton of crop residues into biochar could result in the sequestration of
more than 920 kg of CO2e (CO2-equivalent). The authors also indicated that the estimated
annual carbon sequestration potential in China based on crop residue availability statistics
for 2014 was as high as 0.50 Pg CO2e (1 Pg = 1 × 109 tons) [87].

5. Patents Development

Patent databases represent an attractive and dependable resource for gauging the
technological advancement and innovation that companies and universities have developed
over the years. Thus, a search using the term “biochar OR bio-char” on the PATENTSCOPE
database returned 11,654 patent documents. China (54.16%) and the United States (16.83%)
are the countries investing the most in biochar, collectively accounting for almost 71% of
the total intellectual property (Figure 5A). These results are in line with what was discussed
in Section 3, as both China and the United States are the leading countries in terms of
publishing research related to biochar.
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Among all registered documents, patents are mostly classified under two Interna-
tional Patent Classification (IPC) codes: C02F and B01J. The international classification is
mainly used to organize patent documents to facilitate access to the technological and legal
information contained in these documents. It also enables research to be focused on the
technological area of interest.
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Out of the 11,654 patent documents found for the terms “biochar OR bio-char”, 2974
are classified under code C02F, which corresponds to section C (chemistry; metallurgy),
and Class 02 and Subclass F of the same description (treatment of water, sewage, effluent
or sludge). Therefore, the main focus of the technologies developed and classified under
this code is the use of biochar in the treatment of water, wastewater, sewage, or sludge.
For instance, a patent granted to the Hindusthan College of Engineering and Technology
developed a biochar nano-sorbent embedded with magnetite for effective adsorption of
the textile dye Levafix Blue [88]. In another study developed by the company Biochar
Now, a system and method for removing pollutants from water bodies using biochar is
reported [89].

The other code with a high number of patent applications is B01J, which corresponds
to Section B (performing operations; transporting), Class 01 (physical or chemical processes
or apparatus in general), and Subclass J (chemical or physical processes, e.g., catalysis or
colloid chemistry; apparatus therefor), which mainly deals with new methods of treating
and processing biochar. For example, a patent granted to Thermotech Combustion (2023)
covers a biochar pyrolysis system comprising a batch pyrolyzer with an oven and a biochar
chamber with syngas and a bio-oil outlet. The method of operation of this biochar pyrolysis
system is also disclosed [90].

Furthermore, to refine the list of patents filed on biochar, a search was carried out using
the terms “(biochar production) OR (bio-char production)”, which returned 627 documents
(Figure 2B). The class in which the most patents were granted was C10B that, according
to the IPC, corresponds to Section C (chemistry; metallurgy), Class 10 (petroleum, gas or
coke industries; industrial gases containing carbon monoxide; fuels; lubricants; peat) and
Subclass B (destructive distillation of carbonaceous materials for the production of gas,
coke, tar or similar materials) (Figure 5B).

Among the companies that filed the most patents, Cool Planet Energy Systems Inc.
(54 patents), Carbon Technology Holdings (24 patents), and Biochar Now (22 patents) can
be highlighted; all three companies are based in the United States. Cool Planet Energy
Systems is a company that focuses on the production of biochar and other biomass-derived
products for agricultural and environmental applications. Its last patent granted was in
2020, in which the invention refers to coating plant seeds with biochar before planting, to
increase the effectiveness of plant seed germination [91]. Carbon Technology Holdings is a
company that works with technology to convert biomass into hydrocarbon fuels, chemical
products, and biocarbon. Its last patent granted was in 2023, and it refers to the use of
biochar—treated and/or processed biochar—which has properties that improve physical
and chemical processes, aiming to increase the utility, predictability, and effectiveness of
treated biochar to reduce the environmental impact of agriculture [92]. Finally, Biochar
Now is a company dedicated to producing high-quality biochar for use in agriculture,
waste management, and other applications. Its last patent granted was in 2021, and it refers
to the disclosure of a new set of lids for an oven and a portable biochar production system,
to seek to further increase the quality of the biochar produced, given that the construction
and variables of the biochar oven can directly influence the high quality of the product [93].

6. Biochar at the Industrial Level

Biochar is emerging as an important carbon commodity in various applications, being
traded in increasing quantities globally. The market can be divided into segments based
on process, raw material, and application [94]. From a technological point of view, slow
pyrolysis currently dominates biochar production, with a market share of more than 70%,
and is expected to present significant growth opportunities in the coming years [95]. In the
past decade, new applications for biochar—e.g., construction, high-tech materials, livestock,
medicine, and water and air purification [96]—have driven growth in the sector, especially
in China, the United States, and Europe [94].

The growing number of biochar industries around the world reflects the increasing
recognition of the environmental and economic advantages of this product. Table 2 provides
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an overview of some biochar industries worldwide by presenting their location, starting
year, capacity, process, and feedstock.

Table 2. Some biochar industries worldwide.

Company Location Starting Year Production Capacity
(Ton/Year) Process Feedstock

Airex Energy Bécancour, QC,
Canada 2024 ** 10,000 Pyrolysis Wood waste and forest

biomass

Antaco London, UK 2014 500 HTC Organic waste

Aries Clean
Energy Franklin, TN, USA 2016 3500 Gasification Mixture of wood waste

Arigna Fuels Carrick On Shannon,
Ireland 2019 5000 Pyrolysis Mixed agricultural

waste

Carbo Culture Helsinki, Finland 2023 940 Pyrolysis Wood waste

Carbofex Nokia, Finland 2017 2000 Pyrolysis Wood waste

Carbonis Garrel, Germany 2016 360 Gasification Wood waste

CharTech
Solutions

Toronto, ON,
Canada 2024 ** 2000 Pyrolysis -

CPL Industries Immingham, UK 2025 ** 2700 HTC Organic waste

Circular Carbon Straubing, Germany 2023 3500 Pyrolysis Agricultural waste

Coaltec Energy Evansville, IN, USA 2012 3000 Gasification Manure and distillery
grains

ECOERA Falkenberg, Sweden 2019 300 Pyrolysis Agricultural waste

Husk Ventures Kampong Thom,
Cambodia 2017 1400 Pyrolysis Agricultural waste

Ingelia Valencia, Spain 2017 6800 * HTC Sewage sludge, urban
organic waste

Meva Energy Gothenburg, Sweden 2023 6000 Gasification Wood waste

Netzero Rio Casca, Brazil 2023 4500 Pyrolysis Agricultural waste

Netzero Nkongsamba,
Cameroon 2022 2000 Pyrolysis Agricultural waste

Novocarbo Hamburg, Germany 2023 1700 Pyrolysis Wood waste

SoMax Spring City, PA, USA 2022 1500 HTC Swage sludge

TerraNova
Energy Solina, Poland 2024 ** 450 HTC Sewage sludge, urban

organic waste

* Estimated value based on the amount of waste processed, with a yield of 48.7% [37]. ** In construc-
tion/implementation phase.

Accordingly, biochar has been produced by companies in several countries, using
different raw materials, such as forestry and agricultural waste, and production techniques
(pyrolysis, gasification, and HTC). It is important to note, however, that those industries
are predominantly in economically developed countries, which have dominated the pro-
duction technologies.

In order to take advantage of the waste available in each territory, biochar companies
use the most abundant raw materials. For instance, Airex Energy employs byproducts
from sawmills, wood waste, and forest biomass as feedstock. The company has invested
$38 million in a biochar production project in Quebec, Canada, in collaboration with the
SUEZ Group, and its goal is to develop a production facility with a capacity of 30,000 tons
per year, divided into three phases of 10,000 tons per year. The intention is to start operations
by the end of the first quarter of 2024, with the phases planned to be fully completed by 2026.
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Airex Energy is looking to expand its operations for future projects, to reach 350,000 tons
per year by the year 2035, with Europe and North America being the target markets [97].
Another example is Meva Energy, which started its operations in the second quarter of
2023 at the Sofidel textile mill in Kisa, Sweden, producing biochar from local wood waste
through the gasification process. It is estimated that a total of 10,300 tons of CO2 will
be reduced per year from the biochar generated, and the plant has replaced fossil gas
consumption in the textile factory with renewable gas [98].

In Brazil, NetZero is in the state of Minas Gerais. It is the first industrial unit in South
America entirely dedicated to the production of biochar and the largest in the world that
uses only agricultural waste. The company officially opened on 20 April 2023. The raw
material (coffee husks) is supplied with the help of local partners—Coocafé, which is a
cooperative of around 10,000 producers. The biochar produced is sold to Coocafé farmers
to help them reduce their use of fertilizers while increasing their yields and the health of
their soils. The company’s production capacity reaches 4500 tons of biochar per year. It
is currently building Brazil’s second plant in the state of Espírito Santo, with a biochar
production capacity like the first one.

7. Brazilian Potential Biochar Production—Waste Biomass Availability

In the Brazilian context, the potential to produce biochar could be a promising solution
for dealing with a variety of residues from different sectors [99]. It is known that biochar
production is also dependent on the availability and quantity of raw materials. The source
could be agricultural and forestry waste, sewage sludge from municipal WWTP, and
MSW [100]. Moreover, Brazil has a vast production of agricultural and forestry waste [101],
as well as WWTP sewage sludge and MSW [102–104], which also stand out as potential
sources for biochar production.

The annual production of Brazilian agriculture is significant, as Brazil is one of the
largest agricultural producers in the world [105]. The country has a vast arable area,
with 340 million hectares, of which 63 million hectares are agricultural areas [106]. Thus,
the significantly high generation of agricultural waste from different crops is inevitable—
sugarcane, soy, corn, cassava, cotton, orange, beans, rice, wheat, and coffee—as reported in
Table 3. Brazil is also known for its livestock production, which is another source of waste.
The estimated waste generation from livestock is presented in Table 4.

Table 3. Estimated waste generated from the most significant crops in Brazil.

Crop Production
(Mton/Year) a Waste b Estimated Waste Generated

(Mton/Year)

Sugarcane 724.4 64% (30%—bagasse; 34%—straw and leaves) 463.6
Soy 120.7 150% (bark, stems, and leaves) 181.0

Corn 109.4 120% (20%—germ and envelopes; 78%—straw,
stems, and leaves; 22%—corncob) 131.3

Cassava 17.6 216% (16%—bran; 200%—straw, stems, and leaves) 38.0
Cotton 6.4 278% (straw, stems, and leaves) 17.8
Orange 16.9 50% (bagasse, bark, and seeds) 8.5
Beans 2.8 116% (straw, stems, and leaves) 3.2
Rice 10.8 23% (husks) 2.5

Wheat 10.3 23% (bran) 2.4
Coffee 3.2 55% (husks) 1.8

Total 850.1
a [107]; b [108–112].
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Table 4. Estimation of the most significant wastes generated by livestock in Brazil.

Livestock Number of
Heads a

Amount of Manure Per
Day Per Animal (Kg) b

Estimated Availability
of Manure (%) b

Estimated Waste
Generated (Mton/Year)

Cattle 234,352,649 27.8 47.3 1124.8
Swine 44,393,930 2.96 89.5 42.9

Poultry (chickens and quails) 1,600,076,425 0.0275 80.0 12.8
Buffalo 1,598,268 40.0 50.0 11.7
Equines 5,834,544 13.8 29.0 8.5

Goats and Sheep 33,880,507 1.45 11.5 2.1

Total 1202.8
a [107]; b [113].

In addition to crop and livestock wastes, there are other widely available waste
biomasses in Brazil: forestry residues, sewage sludge from WWTP, and MSW. Regarding
forestry residues, Brazil’s production of roundwood from planted forests reached almost
158.3 million cubic meters in 2022 [114]. In 2018, it was estimated that about 8.2 million
tons of wood processing waste were produced [115]. Thus, given their content of cel-
lulose, hemicellulose, and lignin, these residues have the potential to be used in other
processes [116–118]. The sewage sludge from municipal WWTP is another waste produced
in large amounts. Estimates suggest that 2.5 million tons of sewage sludge are produced in
Brazil annually [119]. The MSW generated in the country has increased over the years to
an estimated 81.8 million tons in 2022 [120].

Considering the waste generated by several activities, producing biochar is a possi-
bility for waste treatment and valorization. Recent studies have proposed biochar pro-
duction from agricultural waste, such as sugarcane bagasse [121], soy [122], corn [123],
cassava [124], cotton [125], and orange [126]. Biochar can also be obtained from livestock
waste, as reported for cattle [127], swine [128], and poultry [129] manures. Forestry waste
is another type of waste suitable to produce biochar [38,130], as well as sewage sludge from
WWTP [131] and MSW [132].

Before reaching the industrial level, however, studies addressing techno-economic
analysis (TEA) and life cycle assessment (LCA) are crucial to evaluate the economic and
environmental feasibility of the process, respectively [7]. The discussion proposed herein
emphasizes the Brazilian potential to supply raw materials to be converted into biochar.
Nevertheless, TEA and LCA must be performed to ensure the sustainability of biochar
production from economic and environmental perspectives. TEA is essential to identify
the profitability of the biochar production process and bring it to market [133]. Operating,
raw material collection, equipment, and manufacturing costs are important characteristics
of any process or product in terms of technical and economic performance, and therefore
they need to be evaluated. Besides, alongside these costs, energy efficiency is always a
crucial factor in determining the economic viability of the process [134]. Regarding LCA,
it is a methodology that systematically assesses the environmental impacts of a product,
process, or service throughout all its phases, from the extraction of raw materials to final
disposal [135]. In the context of biochar, this approach is important for understanding
the environmental effects associated with the production, transportation, application, and
eventual disposal of this carbonaceous material.

8. Biochar and the Sustainable Development Goals (SDGs)

The SDGs are a set of 17 targets drawn up by the United Nations in 2015 to deal with
environmental, economic, and sociopolitical issues. The goals have been subdivided into
169 targets, and 2030 was established as the deadline for achieving them [136]. Reaching
these goals will be crucial to preserving the planet from the threats that continually damage
the environment [137]. Thus, technologies that contribute to achieving some of the SDGs
are fundamental. Regarding biochar, it is possible to point out its potential contribution to
some of the SDGs. Herein are considered goals 6 (Clean water and sanitation), 7 (Affordable
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and clean energy), and 13 (Climate action), for which biochar production and application
might have a direct impact.

Regarding SDG 6, biochar can be used for water and wastewater treatment. Gwenzi
and co-workers highlighted that, given the biochar capacity of removing pollutants from
aqueous solutions, it can be considered as a technology for drinking water treatment.
Indeed, biochar is a low-cost and renewable adsorbent, which could be appropriate for
low-income communities. Furthermore, it can remove physical, chemical, and biologi-
cal contaminants while maintaining the organoleptic properties of the water [138]. For
wastewater treatment, biochar can also be an option, since it has been extensively tested as
an adsorbent to remove heavy metals, organic pollutants, and nutrients from wastewater.
Therefore, biochar is suggested as an efficient material to treat several effluents such as
municipal, industrial, and agricultural wastewater as well as stormwater [139].

As a solid biofuel, biochar can also be used to achieve SDG 7. For instance, the calorific
value of agricultural waste biochar produced at 250, 350, and 450 ◦C is about 24 MJ/kg [140].
Biochar can also be mixed with fossil fuels to improve the combustion process instead of
being burnt alone. It was reported that fossil fuels mixed with biochar in equal proportions
showed increased combustion efficiency and improved thermal characteristics compared
to coal fuels. In addition, soot yield, CO emissions, and unburned carbon in the ash were
significantly reduced in fossil fuels blended with biochar. The potential for volatilization
of potentially toxic elements during the combustion of biochar and its mixtures with coal
decreased by up to 21% compared to burning coal alone [141]. Therefore, biochar is a
promising solid biofuel, which can provide clean and renewable energy.

The environmental benefits of biochar production are evident, given the raw ma-
terial used in its production (highly available waste) and its environmentally oriented
applications. Thus, one can say that biochar production and utilization are aligned with
SDG 13. Nowadays, the global community has committed itself to adopting sustainable
strategies to reduce greenhouse gas emissions, promote renewable energies, and implement
policies and practices that guarantee adaptation and resilience to the challenges posed by
climate change. In this sense, biochar has been recognized as a promising technology for
contributing to climate change mitigation and achieving SDG 13 [140]. Indeed, biochar
production is a way of carbon sequestration when applied to soils [142]. Besides, carbon
sequestration is not only considered an efficient CO2 removal technology but also improves
soil quality by enhancing ecosystem functions and services, food security, and resilience to
climate change [143].

Accordingly, it is undeniable that biochar has the potential to contribute to the SDGs’
achievement. Biochar has emerged as a multifunctional technology, which can assist
water and wastewater treatment, provide clean energy production, and promote carbon
sequestration. It offers, therefore, effective and sustainable solutions to contemporary
environmental challenges.

9. Conclusions

This overview shows a growing interest in biochar research in the past 10 years. The
analysis of published research articles highlighted the leadership of China and the United
States in biochar research. It suggests the importance of biochar as an environmentally
favorable solution for the treatment and valorization of wastes. Besides being a solution
for waste management, biochar can also be applied as an adsorbent material to capture
pollutants from water and soils, as a solid biofuel for energy production, and to perform
carbon sequestration. Concerning patent development, the United States and China are
the main patent depositors, which may be attributed to the fact that these countries have
assumed a leading role in biochar research. The increase in the number of patents demon-
strates the interest in biochar production and represents a step towards consolidating
the technology at an industrial scale. In that regard, the global biochar market has been
growing, with increasing industrial production and diversification of applications. In the
Brazilian context, a potential for biochar production has been identified regarding the
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availability of feedstocks (biomass wastes) in the country. Evidently, more studies, such
as LCA and TEA, must be performed to demonstrate the environmental and economic
feasibility of producing biochar in Brazil considering different scenarios. However, by
producing biochar and applying it to manage environmental problems, it is possible to
contribute to reaching some of the SDGs (Clean water and sanitation, Affordable and clean
energy, and Climate action).
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