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Abstract: In this paper, we present the design of a fractional-order sliding mode observer (FO-SMO)
for actuator fault estimation in a quadrotor unmanned aerial vehicle (QUAV) system. Actuator
faults can significantly compromise the stability and performance of QUAV systems; therefore, early
detection and compensation are crucial. Sliding mode observers (SMOs) have recently demonstrated
their accuracy in estimating faults in QUAV systems under matched uncertainties. However, existing
SMOs encounter difficulties associated with chattering and sensitivity to initial conditions and
noise. These challenges significantly impact the precision of fault estimation and may even render
fault estimation impossible depending on the magnitude of the fault. To address these challenges,
we propose a new fractional-order SMO structure based on the Caputo derivative definition. To
demonstrate the effectiveness of the proposed FO-SMO in overcoming the limitations associated with
classical SMOs, we assess the robustness of the FO-SMO under three distinct scenarios. First, we
examined its performance in estimating actuator faults under varying initial conditions. Second, we
evaluated its ability to handle significant chattering phenomena during fault estimation. Finally, we
analyzed its performance in fault estimation under noisy conditions. For comparison purposes, we
assess the performance of both observers using the Normalized Root-Mean-Square Error (NRMSE)
criterion. The results demonstrate that our approach enables more accurate actuator fault estimation,
particularly in scenarios involving chattering phenomena and noise. In contrast, the performance of
classical (non-fractional) SMO suffers significantly under these conditions. We concluded that our
FO-SMO is more robust to initial conditions, chattering phenomena, and noise than the classical SMO.

Keywords: fractional calculus; fractional derivative; Caputo derivative; sliding mode observer; fault
estimation; unmanned aerial vehicle

MSC: 26A33; 34A08; 34K37; 65L03

1. Introduction

Over the past decade, unmanned aerial vehicles (UAVs) have received significant
attention from researchers due to their wide-ranging potential applications in both military
and civilian sectors [1,2]. In particular, the quadrotor unmanned aerial vehicle (QUAV) is
increasingly popular due to its advantageous characteristics, such as vertical take-off and
landing capabilities and stable hovering [3], making it the preferred UAV for tasks such as
search and rescue, law enforcement, inspection [4], sample collection, and inspection of
power lines [5].
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To ensure that QUAVs can effectively navigate various environments and demonstrate
high performance and autonomy, the design of an effective motion control scheme is
crucial [6]. However, load conditions, parameter uncertainties, and external disturbances
affect the control system performance. To overcome these control challenges of the QUAV,
various advanced control techniques have been proposed [7]. Popular control approaches
that have received great interest are based on sliding mode control [8], backstepping
control [9], H∞ control [10], gain scheduling control [11], adaptive control [12], fuzzy logic
control [13], and neuronal network control [14].

Due to their high complexity, automation, and operational environments, QUAVs are
susceptible to faults. The faults are a great danger not just to the QUAV but also to people’s
safety and the environment, particularly when flying over urban areas. Therefore, ensuring
the safety and reliability of QUAVs is paramount [15]. One of the critical components
of a QUAV is the actuator system. Owing to unforeseen damage and the degradation
of components, actuators are increasingly susceptible to a range of faults [16]. Actuator
faults reduce the performance of the QUAV control system and may even cause a complete
breakdown of the QUAV. Even a minor fault in a single subsystem can significantly impact
the closed-loop system and potentially lead to catastrophic damage [17]. It is, therefore,
crucial to detect and diagnose these faults as quickly as possible and compensate for their
effect on the QUAV control system until a safe landing is achieved.

Different effective fault detection and diagnosis (FDD) schemes to address actuator
faults in QUAVs have been proposed in the literature [18]. Data-driven and model-based
methods have been proposed for detecting and diagnosing faults in QUAVs [19]. Over the
last 30 years, model-based methods for FDD have evolved significantly [20]. A model-based
method that has received particular attention is the dynamical observer, also known as an
estimator (or simply an observer). This observer has become popular because it allows the
integration of FDD algorithms with control system strategies.

Several observers have been proposed to address FDD problems in QUAVs, such as
the nonlinear adaptive observer [21], Thau observer [22], robust observer [23], and Kalman
filter [24]. The residual approach is typically utilized by these observers for FDD tasks.
However, this approach relies on a precise mathematical model of the QUAV, which can be
challenging to obtain due to its complex dynamics and susceptibility to uncertainties and
disturbances. As a result, false alarms or missed detections may be experienced.

In recent decades, sliding mode observers (SMOs) have attracted considerable atten-
tion, and researchers have extensively explored their application across diverse areas. For
instance, in [25], a novel approach was introduced, employing a nonsingular terminal SMO
along with an adaptive observer for controlling electrical drive systems. The robustness
and capability of SMOs in managing uncertainties in dynamic systems make them highly
appealing for fault detection tasks [26]. Consequently, studies have reported the inherent
robustness properties of SMOs to certain classes of uncertainty in QUAVs, including their
ability to directly estimate and handle actuator faults without requiring the fault to be
detected [27].

Despite being widely adopted, SMOs are associated with certain drawbacks. Signifi-
cant challenges include chattering, sensitivity to initial conditions, and noise. Chattering,
characterized by high-frequency oscillations, can adversely affect the performance of fault
estimation conducted by the SMO. Conversely, initial conditions can impact the stability
and convergence speed of the observer. Noise, on the other hand, introduces uncertainty
into the measurements, affecting the accuracy of fault estimation [28]. Mitigating chat-
tering and noise in SMOs is crucial for improving their performance and reliability in
practical applications. Various techniques, such as smoothing algorithms (quasi-sliding
modes) [29] and high-order sliding modes [30], have been employed to address these issues
and enhance the effectiveness of SMOs in real-world scenarios.

In recent years, fractional-order calculus (FOC), a branch of mathematical analysis
focusing on derivatives and integrals of non-integer order, has gained considerable impor-
tance across various academic disciplines [31]. The prevalent adoption of the FOC stems
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from its inherent capability to offer more precise descriptions of intricate phenomena and
systems, surpassing the conventional calculus methods that heavily rely on integer-order
operations [32]. The increased precision offered by FOC has proven indispensable in fields
such as physics, engineering, biology, neuroscience, and finance [33]. FOC enables the
modeling of systems with memory effects, non-local interactions, and unconventional
behaviors, therefore enabling researchers and practitioners to deepen their understanding,
improve prediction capabilities, and enhance control over complex dynamic systems [34].

Several researchers have demonstrated the significant efficacy of FOC in designing
dynamical observers [35,36]. For instance, in [37], the authors highlight the robustness to
noise of a fractional-order high-gain observer in a heat exchanger process. A fractional-
order sliding mode control based on a nonlinear disturbance observer aimed at reducing
chattering and improving transient response in an electric drive system is presented in [38].
In [39], a new fractional-order disturbance observer is presented. The proposed observer
is combined with fractional-order sliding mode control for the regulation of a variety of
fractional and integer-order systems experiencing mismatched disturbances. Enhanced
control performance is demonstrated by the method, which is characterized by faster re-
sponse speed, lower overshooting, and reduced chattering effect. In [40], three cascaded
fractional-order SMOs are developed to estimate the state of charge of lithium batteries.
Compared to existing SMOs, the proposed method achieves weaker chattering, faster
response times, and higher estimation accuracy. In [41], an SMO is modified to employ
a fractional-order approach for estimating disturbances in a QUAV. This adaptation ex-
hibits superior transient performance compared to the classical observer. An SMO for
nonlinear fractional-order systems is introduced in [42]. The proposed observer, using the
Caputo derivative, focuses on the estimation challenges in chaotic nonlinear systems with
fractional order.

Although the application of FOC in the design of SMOs has been explored, its use for
actuator fault estimation remains an open issue. Additionally, the problems of chattering,
sensitivity to initial conditions, and measurement noise, which are present in classical
SMOs, have not been simultaneously addressed. Therefore, we propose a new fractional-
order sliding mode observer (FO-SMO) for actuator fault estimation in a QUAV. Our novel
approach focuses on the use of fractional differential equations based on the Caputo Def-
inition to build the SMO since it has been demonstrated that fractional-order dynamics
provide robustness and can model physical phenomena in systems that cannot be modeled
with classical dynamics. Unlike existing methods, our proposed FO-SMO exhibits robust-
ness to initial conditions, chattering, and noise. To illustrate the substantial effectiveness
of our proposed observer, we conduct comparative analyses between the FO-SMO and
the classical (integer-order) SMO under various conditions. The robustness against the
chattering phenomenon, initial conditions, and noise are assessed using the Normalized
Root-Mean-Square Error (NRMSE) criterion.

The manuscript is structured as follows: Section 2 introduces fractional calculus
definitions and explains the approach to solving fractional-order differential equations.
Section 3 covers the mathematical model, control algorithm, and actuator faults of the
QUAV system. Section 4 describes the development of the integer (SMO) and the non-
integer (FO-SMO) sliding mode observers for estimating actuator faults in a QUAV. Section 5
presents the research results, and Section 6 concludes the manuscript.

2. Fractional Calculus Definitions

Fractional calculus, a field within mathematical analysis, expands upon conventional
calculus through the inclusion of non-integer-order derivatives and integrals. In contrast to
traditional calculus, which focuses on integer-order derivatives and integrals, fractional
calculus introduces the notion of fractional-order operators. Exploring fractional calculus
allows for a deeper comprehension of systems with intricate dynamics and serves as a
valuable resource for modeling and examining real-world phenomena [43].
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Three fundamental definitions within fractional-order calculus are the Riemann-
Liouville (RL), Grunwald–Letnikov (GL), and Caputo definitions. To begin, we introduce
the RL definition of a fractional-order integral.

Let f : [0, ∞) → R be a continuous function. Then, the formulation of the fractional
Riemann-Liouville (RL) integral is presented as follows [44]:

RL
0 Iβ

t f (t) =
1

Γ(β)

∫ t

0
f (η)(t − η)β−1dη, t > 0, (1)

In this context, β ∈ R+ represents the fractional order in the integral. The symbol Γ(·)
refers to the Gamma function which is defined as

Γ(z) =
∫ ∞

0
tz−1exp(−t)dt, (2)

Please note that in Equation (1), when β = 1, the RL integral is just the classical integral
definition. Using the same conditions for the function f (t) we define the fractional RL
derivative of order α as

RL
0 Dα

t f (t) =
1

Γ(m − α)

dm

dtm

∫ t

0
f (η)(t − η)m−α−1dη, t > 0 (3)

where α > 0 and m = [α] + 1, [α] is the integer part of α. It is important to mention that
when α is 1, the RL derivative is just like the classical derivative. Finally, we define the
Caputo derivative of order α as

C
0 Dα

t f (t) =
1

Γ(m − α)

∫ t

0
f (m)(η)(t − η)m−α−1dη, t > 0, (4)

for the Caputo derivative, we have that when α = 1, we recover the classical derivative
definition [45].

Numerical Methods for Solving Fractional-Order Differential Equations

Solving fractional-order differential equations often presents difficulties. However, vari-
ous numerical methods offer solutions. In this research, we utilize the Grunwald–Letnikov
(GL) algorithm, known for its effectiveness in computing numerical solutions for such
equations [46]. This algorithm, based on the GL derivative, is especially suited for dealing
with both RL and Caputo derivatives [47]. Its widespread adoption in numerically solving
fractional-order differential equations is well-documented, with numerous studies attesting
to its reliability and performance [48].

We first show the GL definition as follows:

GL
0 Dθ

t f (t) = lim
h→0

1
hθ

⌈t/h⌉

∑
j=0

(−1)j
(

θ
j

)
f (t − jh), (5)

here θ represents the order in the derivative, where θ belongs to the set of the real numbers
(θ ∈ R), j represents the time increment. It is important to note that when θ ∈ [−1, 0),
the definition denotes the fractional-order integral, while when θ ∈ (0, 1] indicates the
fractional-order derivative. To compute binomial coefficients, we utilize the connection
between Euler’s Gamma function and factorial, expressed as(

θ
j

)
=

Γ(θ + 1)
Γ(j + 1)Γ(θ − j + 1)

, (6)
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The GL method facilitates the computation of the numerical solution for a fractional-
order differential equation expressed as follows:

GL
0 Dθ

t f (t) = g( f (t)), (7)

and the numerical solution of the method is expressed as

f (tk) = g( f (tk−1))hθ −
k

∑
j=1

cθ
j f
(

tk−j

)
, (8)

cθ
j =

(
1 − 1 + θ

j

)
cθ

j−1, (9)

where h represents the time step, the initial coefficient value is initialized as cθ
0 = θ, and

the summation component of the numerical solution is referred to as the intrinsic memory
trace [49].

3. Mathematical Model of the Quadrotor Unmanned Aerial Vehicle

Unmanned aerial vehicles (UAVs) have emerged as transformative technologies across
multiple applications, from surveillance and reconnaissance to environmental monitoring
and disaster response. Among these UAVs, the quadrotor UAV (QUAV) system has
attracted considerable attention due to its distinctive four-rotor configuration, offering a
unique blend of stability and agility, vertical take-off and landing, and stable hovering [50].

The mechanical structure of the QUAV, as depicted in Figure 1, is relatively simple. It
comprises four autonomously controlled rotors affixed to a rigid cross frame. Five forces
exert influence on the QUAV: the gravitational force, denoted by mg, and the four propeller
forces, each labeled fi, which operate along the z-axis in the body-fixed reference frame,
as illustrated in Figure 1. The indices i = 1, 2, 3, 4 correspond to the four individual
propellers, respectively.
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Figure 1. Architecture of the quadrotor unmanned aerial vehicle (QUAV).

The generation of thrusts and torques on the QUAV involves two sets of identical fixed-
pitch propellers. To maintain torque equilibrium, one pair of propellers (1 and 3) rotates
clockwise, while the other pair (2 and 4) rotates counterclockwise. Control over the QUAV’s
movements is achieved by manipulating the speeds of these independent rotors. Altering
the speeds of diametrically opposite rotors induces pitch or roll motion, while yaw motion
results from a discrepancy in speed balance between clockwise and counterclockwise rotors.
Simultaneous adjustments of these rotor speeds enable vertical motion.
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3.1. Mathematical Description

The dynamics of the QUAV have been explored in existing literature. As outlined
in [51], when considering small angular velocities, the dynamics of the QUAV can be
expressed as follows:

..
ψ(t) = uψ(t)

Izz
+

(Ixx−Iyy)
.
ϕ(t)

.
θ(t)

Izz
+

.
ϕ(t)

.
θ(t),

..
θ(t) = uθ(t)

Iyy
+ (Izz−Ixx)

.
ψ(t)

.
ϕ(t)

Iyy
−

.
ψ(t)

.
ϕ(t),

..
ϕ(t) = uϕ(t)

Ixx
+

(Iyy−Izz)
.
ψ(t)

.
θ(t)

Ixx
+

.
ψ(t)

.
θ(t),

..
x(t) = (Sψ(t)Sϕ(t) + Cψ(t)Sθ(t)Cϕ(t)) uz(t)

m ,
..
y(t) = (−Cψ(t)Sϕ(t) + Sψ(t)Sθ(t)Cϕ(t)) uz(t)

m ,
..
z(t) = (Cθ(t)Cϕ(t)) uz(t)

m − g,

(10)

where, in the horizontal plane, the coordinates x(t) and y(t) define the position, while
the vertical position is represented by the coordinate z(t) (see Figure 1), ψ(t) is the yaw
angle around z axis, θ(t) is the pitch angle around the y axis, and ϕ(t) is the roll angle
around the x axis. m denotes the mass of the QUAV, g is the acceleration due to gravity,
Ixx, Iyy, and Izz are the moments of inertia along the x, y, and z axes, respectively. C and
S represent the trigonometric functions cosine and sine, respectively. The control inputs
uz(t), uψ(t), uθ(t), and uϕ(t) are the total thrust input and the angular yaw, pitch, and roll
moments, respectively.

The control inputs of the QUAV model are defined by
uz(t)
uψ(t)
uθ(t)
uϕ(t)

 =


1 1 1 1
l −l l −l
l 0 −l 0
0 l 0 −l




f1(t)
f2(t)
f3(t)
f4(t)

 (11)

where l is the distance from the motors to the center of gravity of the QUAV and fi (with
i = 1, 2, 3, 4) denotes the generated force for each motor of the QUAV.

We use state-space representation since it facilitates the analysis of the system’s sta-
bility, controllability, and observability using mathematical tools such as linear algebra
and modern control theory used for the design of dynamical observers. Therefore, we
transform the QUAV model into the state-space representation. Selecting the state vector as

Z =
[

x,
.
x, y,

.
y, z,

.
z, ψ,

.
ψ, θ,

.
θ, ϕ,

.
ϕ
]T

, the state-space representation of the QUAV model is
given by

.
Z(t) =



z2(t)
p1(t)uz(t)/m

z4(t)
p2(t)uz(t)/m

z6(t)
(p3(t)uz(t)/m)− g

z8(t)
a1z10(t)z12(t) + z10(t)z12(t) + b1uψ(t)

z10(t)
a2z8(t)z12(t)− z8(t)z12(t) + b2uθ(t)

z12(t)
a3z8(t)z10(t) + z8(t)z10(t) + b3uϕ(t)



, (12)
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where Z =
[
x,

.
x, y,

.
y, z,

.
z, ψ,

.
ψ, θ,

.
θ, ϕ,

.
ϕ
]
= [z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12] ∈ R12 is the

state vector, and the parameters of the model are defined as follows

a1 =
((

Ixx − Iyy
))

/Izz,

a2 = ((Izz − Ixx))/Iyy,

a3 =
((

Iyy − Izz
))

/Ixx,

b1 = 1/Izz,

b2 = 1/Iyy,

b3 = 1/Ixx,

p1(t) = Sz7(t)Sz11(t) + Cz7(t)Sz9(t)Cz11(t),

p2(t) = −Cz7(t)Sz11(t) + Sz7(t)Sz9(t)Cz11(t),

p3(t) = Cz9(t)Cz11(t).

(13)

The nonlinear dynamic model of the QUAV represented by Equation (12) is trans-
formed into a linear-time invariant model through a linearized process around the equilib-
rium point of the QUAV. The QUAV has a main operating point, which corresponds to the
point where the QUAV is fixed at coordinates x, y, z. This operating point occurs when
the acceleration on the z axis and the angles of the QUAV are zero, corresponding to an
equilibrium point

(
ϕ, θ, ψ,

..
z
)
= (0, 0, 0, 0) [41]. The resulting linear model is expressed in

state-space form:
.
Z(t) = AZ(t) + BU (t),

Y(t) = HZ(t),
(14)

where the system matrix A, and the input matrix B, are defined as

A =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 g 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −g 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0



,

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1/m 0 0 0
0 0 0 0
0 0 0 1/Izz
0 0 0 0
0 0 1/Iyy 0
0 0 0 0
0 1/Ixx 0 0



,

(15)
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respectively, and assuming Y =
[

x
.
x y

.
y z

.
z ψ

.
ψ θ

.
θ ϕ

.
ϕ
]T

as the system output vector, it
follows that the output matrix is given by

H =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



. (16)

3.2. Control of the Quadrotor Unmanned Aerial Vehicle (QUAV)

Due to the dynamic instability of the QUAV, a control algorithm is required to stabilize
it. Hence, this section is dedicated to the development of a control strategy aimed at
stabilizing the QUAV at its origin. Specifically, we introduce an optimal control strategy
designed to regulate the QUAV’s position at the origin.

The adoption of an optimal regulator control strategy over alternative methods, such
as sliding mode control, for addressing the regulation challenges of the QUAV is driven
by several crucial factors. Primarily, a structured and mathematically rigorous approach
is provided by optimal regulator control methodologies for developing controllers that
minimize predetermined cost functions while adhering to system constraints. This frame-
work enables the customization of control strategies to meet specific performance goals
and operational needs, including considerations for energy efficiency. Furthermore, the
integration of complex dynamics and constraints inherent to QUAVs, such as actuator
saturation and state constraints, is enabled by optimal regulator control. This ensures that
operational boundaries are maintained within safe operational limits while overall perfor-
mance is optimized. Additionally, flexibility in selecting cost functions and optimization
criteria is offered by optimal regulator control techniques, allowing for the prioritization of
various performance metrics based on the specific demands of the application [52]. This
adaptability is particularly advantageous in the realm of QUAVs, where a range of control
strategies may be required due to diverse mission objectives and environmental conditions.

For the optimal regulator design, we consider the multi-input, multi-output dynamic
system described by

.
Z(t) = AZ(t) + BU (t),

Y(t) = HZ(t),
(17)

and we design a linear quadratic regulator (LQR) law as

U (t) = −KZ(t), (18)

to minimize the performance index

J =
∫ ∞

0
(ZT(t)QZ(t) + UT(t)RU (t))dt, (19)

where Q, and R are positive-definite real symmetric matrices. It is important to note that
if the unknown elements of the matrix K are determined to minimize the performance
index given by Equation (19), then the control law U (t) is optimal for any initial state Z(0).
The Q, and R matrices serve as weighting matrices for the state variables and the input
variables, respectively. The first term of the control law penalizes the error of the state
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variables, while the second term takes into account the expenditure of energy of the control
signals. To solve the optimization problem, we proceed as follows:

1. We select the matrices Q and R. To limit the magnitude of the state variables, we
penalize states by defining the weight matrix Q as follows:

Q =



10 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 50 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



, (20)

and equal penalties are applied to each control input by selecting the weighting matrix
R as an identity matrix, as follows:

R =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. (21)

The choice of Q and R matrices depends on the specific requirements and objectives of
the control problem. It often involves a trade-off between achieving desired performance
and minimizing control effort. The selection process may involve system identification,
optimization techniques, tuning methods, and, in this particular case, heuristics based on
experience and domain knowledge. In the Q matrix, the first and tenth components of the
QUAV state are penalized more than other components to reduce the error to less than 5.
Meanwhile, the matrix R was selected as an identity matrix to apply equal penalties to each
control input.

2. We solve the reduced-matrix Riccati equation given by

AT P + PA− PBR−1BT P + Q = 0 (22)

for the matrix P. Since more than one matrix P may satisfy the Riccati equation, we
select one that is a positive-definite matrix.

3. We find the feedback gain matrix solving the equation K = −R−1BTP. Thus, the
resulting gain matrix that stabilizes the QUAV system is given by

K =


0 0 0 0 1 1.95 0 0 0 0 0 0
0 0 −1 −1.46 0 0 0 0 0 0 5.59 1.07

3.16 4.04 0 0 0 0 0 0 23.74 7.11 0 0
0 0 0 0 0 0 1 1.03 0 0 0 0

 (23)

Since all the closed-loop eigenvalues of A− KB are in the left half-complex plane, the
closed-loop system is asymptotically stable. To verify this assumption, we simulate the closed-
loop system subject to the initial conditions Z = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] ∈ R12, and
the operation parameters shown in Table 1. These parameters were obtained from [41].
Figure 2 shows the simulation results of using the linear quadratic regulator (LQR). It
demonstrates how the positions (x, y, z), and the orientations (ψ, θ, ϕ) converge to zero.
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Table 1. Parameters of the QUAV system [41].

Parameter Symbol Value

Mass m 1.4 kg
Arm length l 1 m

Moment of Inertia along the x-axis Ixx 0.0116 kg m2

Moment of Inertia along the y-axis Iyy 0.0116 kg m2

Moment of Inertia along the z-axis Izz 0.0232 kg m2
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3.3. Actuator Faults in the Quadrotor Unmanned Aerial Vehicle (QUAV)

The propulsion system of a QUAV consists of four identical brushless motors paired
with fixed-pitched propellers, illustrated in Figure 1. Therefore, the QUAVs heavily de-
pend on precise control of their four rotors to maintain stability, maneuverability, and
overall operational efficiency. Actuator faults, ranging from motor deterioration to sudden
malfunctions or partial failures in the propulsion system, can significantly disrupt the
QUAV’s flight dynamics and compromise its mission objectives, therefore diminishing its
reliability and safety. The effects of actuator faults in QUAVs go beyond just making them
perform worse; they can also put the vehicle’s safety at risk, along with nearby buildings
and people. Consequently, research and development efforts have increasingly focused on
understanding, modeling, and mitigating actuator faults in QUAVs to bolster the reliability
and resilience of these aerial vehicles [53].

In this research, we adopt an approach where actuator faults are conceptualized as
additional signals occurring within the input channel of the QUAV system. By viewing
actuator faults in this manner, we aim to distinguish this fault. To achieve this, we propose
an observer-based method for estimating these faults. Through analysis and simulation,
we explore the implications of incorporating such fault models into QUAV dynamics.

The actuator fault considered in this paper refers to a partial loss of control effective-
ness, which is recognized as one of the most common actuator faults. We modeled this
fault as a time-variant sinusoidal signal given by

F (t) = Msin(ωt), (24)
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where M, and ω are the amplitude and the frequency of the actuator fault, respectively. We
assume that this fault acts additively. Therefore, the actuator fault is modeled as

u f
i (t) = ui(t) + µiF (t), (25)

where u f
i (t) denotes the ith component of the input control vector U (t). A value of µi = 0

indicates that the ith actuator is functioning normally, while a value of µi > 0 indicates a
loss of control effectiveness in the i-th actuator.

Therefore, the dynamics model of the QUAV considering actuator faults can be
written as .

Z(t) = AZ(t) + BU (t) +DF (t), (26)

where the term DF (t) denotes the addition of an actuator fault, and the matrix D = BM,
with M = [µ1 µ2 µ3 µ4]

T is a fault-coupling matrix.

4. Actuator Fault Estimation Using Dynamical Observers

In QUAV systems, ensuring the accurate and reliable performance of actuators is
pivotal for the overall functionality of the aircraft. Nevertheless, actuator faults, such
as degradation or unexpected damage, can significantly impact the system’s behavior,
potentially leading to a QUAV crash. To avoid these issues, it is important to detect and
isolate these faults as quickly as possible [54].

The actuator fault detection and isolation (FDI) problem involves the timely identifica-
tion of deviations from normal system behavior and the accurate identification of the faulty
components responsible for these deviations [55]. Over the last few decades, the application
of dynamical observers (also known as observers or estimators) for fault detection and
isolation problems has garnered significant attention. This attention is owed to their ability
to provide early and accurate fault detection, adapt to diverse system dynamics, and remain
compatible with nonlinear and complex systems [56].

Traditionally, the concept of residual generation is employed to solve the fault detection
and isolation problem using observers. Residuals are computed by measuring the difference
between the system output and the output predicted by the observer. Under normal
operational conditions, the residual is expected to be negligible; however, in the presence
of faults, it is anticipated to show a significant deviation from zero. By analyzing these
residuals, one can detect and isolate faults in a system [57]. However, because residual-
based approaches rely heavily on an accurate model of the system, any discrepancies
between the model and the actual system behavior can lead to false alarms or missed
detections [58].

In recent decades, there has been a growing interest in employing observers to address
FDI problems, obviating the need for residual generators. This methodology, known as the
fault estimation approach, seeks to directly quantify or infer the magnitude and charac-
teristics of faults within a system [59]. Over the past two decades, sliding mode observers
(SMOs) have emerged as valuable tools for fault estimation in dynamic systems due to their
robustness and simplicity. Leveraging the sliding mode control principle, SMOs facilitate
the estimation of system states and fault signals, even in the presence of uncertainties and
disturbances [60]. A key advantage of SMOs lies in their capacity to operate without explicit
knowledge of system dynamics, rendering them suitable for diverse applications where
accurate system models may be elusive or impractical to obtain. Moreover, SMOs offer
robust performance in the face of modeling errors and disturbances, therefore enhancing
their efficacy in tasks related to fault detection and estimation, particularly within the
domain of QUAVs [61].

4.1. Actuator Fault Estimation Using a Sliding Mode Observer (SMO)

A sliding mode observer (SMO) is essentially a mathematical model of a system driven
by its inputs and measured outputs, as well as the output estimation error. The output
estimation error is injected into the SMO as a corrective term through a nonlinear switching
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function (referred to as the nonlinear output estimation error) to force the observer states
to converge to the system states. When this occurs, it is said that a sliding motion takes
place. During the sliding motion, the low-frequency component of the nonlinear output
estimation error (known as equivalent output error injection) contains information about
actuator faults acting in the input channel of the system. By suitably filtering the equivalent
output error injection, an accurate estimate of the actuator faults can be obtained [62].

The design of the SMO is based on a linear system subject to actuator faults given by

.
X (t) = AX (t) + BU (t) +DF (t),

Y(t) = HX (t),
(27)

where X (t) ∈ Rn is the state vector, Y(t) ∈ Rp is the output vector, and U (t) ∈ Rm is the
input vector. A ∈ Rn×n is the system matrix, B∈ Rn×m is the input matrix, H ∈ Rp×n is the
output matrix, and D ∈ Rn×q is the fault-coupling matrix. To design an SMO for the system
described by Equation (27), it is necessary for matrices B,H, and D to be full rank and for
the function F : R+ → Rq , which represents an actuator fault, to be bounded such that
∥F (t)∥ ≤ ρ, where ρ ∈ R+. Hence ∥F (t)∥ denotes the Euclidian norm. Furthermore, we
presume that the system outputs are being measured. We also assume that the dynamical
system adheres to the following two conditions: rank(HD) = q, and the invariant zeros of
the triple (A, B, H) must lie in C− (left half-complex plane).

Given the conditions stated above, it is possible to find a linear transformation T that
allows for the reformulation of the system model in Equation (27). This transformation
enables a new representation of the system, facilitating further analysis and observer design.
In this new coordinate system, the system, input, coupling fault, and output matrices are
given as follows:

TAT−1 =

[
A11 A12
A21 A22

]
, TB =

[
B1
B2

]
, TD =

[
0
D2

]
, and HT−1 =

[
0 Ip

]
, (28)

respectively. Where A11 ∈ R(n−p)×(n−p), A12 ∈ R(n−p)×p, A21 ∈ Rp×(n−p), A22 ∈ Rp×p,
B1 ∈ R(n−p)×m, B2 ∈ Rp×m, D2 ∈ Rp×q, and Ip ∈ Rp×p represents the identity matrix.
Thus, the dynamical model of the new system can be written as

.
X 1(t) = A11X1(t) +A12X2(t) + B1U (t),

.
X 2(t) = A21X1(t) +A22X2(t) + B2U (t) +D2F (t),

Y(t) = X2(t),

(29)

where X1(t) ∈ Rn−p represents the vector of unmeasured states, X2(t) ∈ Rp represents
the vector of measured states, and the matrix A11 has stable eigenvalues. The transformed
system model outlined by Equation (29) will serve as the basis for designing the SMO. The
observer structure under consideration can be succinctly represented as

.
X̂1(t) = A11X̂1(t) +A12X̂2(t) + B1U (t)−A12Ey(t),

.
X̂2(t) = A21X̂1(t) +A22X̂2(t) + B2U (t)− (A22 −As

22)Ey(t) + V2(t).
(30)

where X̂1(t) and X̂2(t) represent the state estimates for X1(t) and X2(t), respectively. Ey(t)
denotes the error between the estimates and the true outputs of the system, As

22 denotes a
stable design matrix, and the discontinuous signal V2(t) ∈ Rp, is expressed as

V2(t) =

{
−ρ∥D2∥

Q2Ey(t)
∥Q2Ey(t)∥ if Ey(t) ̸= 0

0 otherwise,
(31)
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where Q2 ∈ Rp×p is a symmetric positive-definite Lyapunov matrix for As
22, D2 ∈ Rp×q

is the transformed fault-coupling matrix, Ey(t) is the output estimation error vector, and
ρ is a design parameter. To achieve adequate fault estimation, the value of ρ should be
selected to satisfy ρ > ∥F (t)∥. However, it should not be chosen that is much larger than
the magnitude of the fault, as this increases the chattering.

The state estimation error vector of the unmeasured states E1(t), is defined as the
difference between the estimated state vector X̂1(t) and the actual state vector X1(t).
Similarly, the output estimation error vector Ey(t), is defined as the difference between the
estimated output vector X̂2(t) and the actual output vector X2(t). Thus, the dynamics of
the error are expressed as

.
E1(t) = A11E1(t)

.
Ey(t) = A21E1(t) +As

22Ey(t) + V2(t)−D2F (t)
(32)

To establish the stability of the proposed observer, our objective is to demonstrate
the asymptotic convergence of both Ey(t) and

.
Ey(t) to zero as the error dynamics attain

sliding motion within a finite time frame. This endeavor is accomplished through the
application of the Lyapunov approach, which provides a rigorous framework for analyzing
the system’s stability properties.

Proposition 1. A family of symmetric positive-definite matrices Q2 exists, ensuring the asymptotic
stability of the dynamical error system depicted in Equation (32).

Proof. Let W1 ∈ R(n−p)×(n−p) and W2 ∈ Rp×p denote symmetric positive-definite design
matrices. We define Q2 ∈ Rp×p as the unique symmetric positive-definite solution to the
Lyapunov equation

Q2 As
22 + (As

22)
TQ2 = −W2, (33)

utilizing the computed value of Q2, we establish the definition of a matrix Ŵ as follows:

Ŵ = AT
21Q2W−1

2 Q2 A21 + W1, (34)

where Ŵ = ŴT > 0 (i.e., it is a positive-definite matrix). Let Q1 ∈ R(n−p)×(n−p) be the
unique symmetric positive-definite solution to the Lyapunov equation

Q1 A11 + AT
11Q1 = −Ŵ. (35)

Consider as a candidate Lyapunov function the function given by

V(t) = ET
1 (t)Q1E1(t) + ET

y (t)Q2Ey(t). (36)

The derivative of the candidate Lyapunov function yields

.
V(t) =

.
E

T
1 (t)Q1E1(t) + ET

1 (t)Q1
.
E1(t) +

.
E

T
y (t)Q2Ey(t) + ET

y (t)Q2
.
Ey(t), (37)

where
.
E

T
1 (t)Q1E1(t) + ET

1 (t)Q1
.
E1(t) = −ET

1 (t)ŴE1(t), (38)

and

.
E

T
y (t)Q2Ey(t) + ET

y (t)Q2
.
Ey(t)

= ET
1 (t)AT

21Q2Ey(t) + ET
y (t)Q2 A21E1(t)− ET

y (t)W2Ey(t)

+2ET
y (t)Q2V2(t)− 2ET

y (t)Q2D2F (t).

(39)
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Defining Ey(t) = Ey(t)− W−1
2 Q2 A21E1(t), then Equation (39) can be rewritten as

.
E

T
y (t)Q2Ey(t)+ET

y (t)Q2
.
Ey(t)

= −ET
y (t)W2Ey(t) + ET

1 (t)AT
21Q2W−1

2 Q2 A21E1(t) + 2ET
y (t)Q2V2(t)

−2ET
y Q2D2F (t).

(40)

Therefore, the derivative of the candidate Lyapunov function can be rewritten
as follows:

.
V(t) = −ET

1 (t)ŴE1(t)− ET
y (t)W2Ey(t) + ET

1 (t)AT
21Q2W−1

2 Q2 A21E1(t)

+2ET
y (t)Q2V2(t)− 2ET

y Q2D2F (t)

= −ET
1 (t)W1E1(t)− ET

y (t)W2Ey(t) + 2ET
y (t)Q2V2(t)

−2ET
y (t)Q2D2F (t)

= −ET
1 (t)W1E1(t)− ET

y (t)W2Ey(t)− 2ρ∥D2∥
∥∥Q2Ey(t)

∥∥
−2ET

y (t)Q2D2F (t)

(41)

Using the fact that ∥F (t)∥ ≤ ρ, with ρ ∈ R+, we obtain

.
V(t) ≤ −ET

1 (t)W1E1(t)− ET
y (t)W2Ey(t)− 2ρ∥D2∥

∥∥Q2Ey(t)
∥∥

+2ρ∥D2∥
∥∥Q2Ey(t)

∥∥ = −ET
1 (t)W1E1(t)− ET

y (t)W2Ey(t)

< 0, ∀
(
E1(t), Ey(t)

)
̸= 0,

(42)

therefore, if the actuator fault satisfies ∥F (t)∥ ≤ ρ, then the Lyapunov derivative is always
negative, and the stability of the observer is proved. □

In the above analysis, it is demonstrated that the error dynamics described by
Equation (32) exhibit quadratic stability. This stability property implies that both Ey(t), and
.
Ey(t) converge to zero asymptotically as the error dynamics achieve sliding motion within
a finite time frame.

The observer provided in Equation (30) can be expressed more conveniently in the
original coordinates of the system as follows:

.
X̂ = AX̂ (t) + BU (t)− GlEy(t) + GnlV(t)

Ŷ(t) = HX̂ (t)
(43)

where Gl , and Gnl are the linear and nonlinear gain matrices given by

Gl = T−1
[

A12
A22 −As

22

]
,

Gnl = ∥D2∥T−1
[

0
Ip

]
,

(44)

respectively, and V(t) is the output estimation error injection term, which is a nonlinear
discontinuous signal defined as

V(t) =
[

0
V2(t)

]
. (45)

To tackle the actuator fault estimation issue employing an SMO, we leverage its
robustness properties. Upon achieving sliding motion, both Ey(t) = 0 and

.
Ey(t) = 0 are
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forced to zero in finite time. Consequently, the dynamics of the output estimation error
given in Equation (32) can be expressed as

0 = A21E1(t) + V2(t)−D2F (t). (46)

Given the stability of A11, it ensures that E1(t) tends towards zero, therefore indicating
V2(t) converges to D2F (t). Consequently, the fault information is encapsulated within the
signal V2(t). Given that V2(t) represents a high-frequency signal, one method to discern
the fault dynamics involves employing a filtering process.

Figure 3 illustrates the architecture employed for actuator fault estimation using the
proposed SMO. This architecture is based on the mathematical model for the QUAV, encom-
passing the dynamics of the system, actuators, and sensors. The model is further expanded
to incorporate potential faults in the actuators. Subsequently, an SMO is developed to
iteratively reduce the output estimation error to zero, even in the presence of actuator faults.
The SMO is driven by the inputs of the QUAV and the output estimation error. This error
signal is then fed back into the observer via a nonlinear function to compensate for the
effect of actuator faults across the system. In fact, it is found that when the sliding motion
occurs, the nonlinear function of the output estimation error, also known as the nonlinear
output estimation error, contains information about the actuator faults in the system. As
the nonlinear output estimation error is a high-frequency switching signal, we propose the
use of a low-pass filter to obtain the signal’s average, thereby estimating the actuator fault.
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We implemented the proposed low-pass filter using a first-order differential equation as

.
V a(t) + δVa(t) = V2(t), (47)

where Va(t) denotes the average of the nonlinear output estimation error V2(t), while δ
represents the time constant of the low-pass filter. To ensure accurate fault estimation, it is
crucial to select the smallest possible value for the time constant, ensuring it exceeds the
sampling time of the computer-implemented low-pass filter.
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Numerical example

We design the SMO for the QUAV system, considering all the state variables as outputs.
Therefore, the coordinate transformation used for the SMO design results in

T =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



. (48)

Since it assumed that all the state variables are measured, both A11, and A21 are empty
matrices, and the matrix A22 is equal to the original system matrix A. The design matrix
As

22 is defined as

As
22 = (−10) ∗



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



. (49)

The linear Gl , and nonlinear Gnl gain matrices of the SMO are

Gl =



10 1 0 0 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 g 0 0 0
0 0 10 1 0 0 0 0 0 0 0 0
0 0 0 10 0 0 0 0 0 0 g 0
0 0 0 0 10 1 0 0 0 0 0 0
0 0 0 0 0 10 0 0 0 0 0 0
0 0 0 0 0 0 10 1 0 0 0 0
0 0 0 0 0 0 0 10 0 0 0 0
0 0 0 0 0 0 0 0 10 1 0 0
0 0 0 0 0 0 0 0 0 10 0 0
0 0 0 0 0 0 0 0 0 0 10 1
0 0 0 0 0 0 0 0 0 0 0 10



, (50)
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and

Gnl =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



, (51)

respectively. The matrix Q2 for the nonlinear discontinuous function V(t) results in

Q2 = (0.05) ∗



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



. (52)

The fault-coupling matrix is represented by D = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1]T .
Since we assume that all the states are measured in this particular case D = D2, and the
nonlinear function V(t) = V2(t). The nonlinear function is obtained from Equation (31).
The system and input matrices are given by Equation (15), and the output matrix is given
by Equation (16).

4.2. Fractional-Order Sliding Mode Observer (FO-SMO)

In recent years, there has been growing interest in adapting classical observers to a
fractional-order approach within the realm of control systems. This adaptation offers several
advantages over traditional methodologies, providing enhanced capabilities for state
estimation in dynamic systems [63]. Historically, classical observers have been preferred
due to their simplicity and effectiveness in estimating the state of dynamic systems [64].
In particular, classical sliding mode observers (SMOs), although very effective for the
estimation process subject to matched uncertainties, have struggled to adequately capture
the fault dynamics due to chattering and their sensitivity to initial conditions and noise [65].

In response to these challenges, we propose a novel approach leveraging fractional-
order sliding mode observers (FO-SMOs), which emerges as a promising solution. By
integrating fractional-order calculus concepts into the observer design process, this ap-
proach offers a more flexible and adaptive framework for fault estimation, capable of
accommodating the intricate dynamics of UAV systems while mitigating the effects of
disturbances and uncertainties. This proposal aims to explore the potential of FO-SMOs in
enhancing fault estimation accuracy and robustness in UAV applications, paving the way
for safer and more reliable autonomous operations.
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The proposed fractional-order representation of the SMO (referred to in what follows
as FO-SMO) is based on the definition presented in Section 2. Applying the Caputo
derivative definition of Equation (4) to the SMO given in Equation (43) results in

C
0 Dα1

t X̂ (t) = AX̂ (t) + BU (t)− GlEy(t) + GnlV(t), (53)

and the factional-order representation of the differential equation for the low-pass filter
results in

C
0 Dα2

t Va(t) = −δVa(t) + V(t). (54)

It is important to note that in Equations (53) and (54), α1 and α2 represent the orders
of the observer and the low-pass filter, respectively. These orders can vary independently,
defining this novel approach as a fractional multi-order system. With the system dynamics
and low-pass filter now described in different orders, an additional degree of freedom in
the system parameters is introduced. One notable advantage of employing the proposed
fractional-order sliding mode observer (FO-SMO) is its capability to capture the intricate
dynamics inherent in QUAV systems with greater precision. It is important to underline
that when both α1 and α2 are equal to 1, we return to the classical case (integer order).
By leveraging fractional-order derivatives and integrals, the FO-SMO presents a more
adaptable depiction of system dynamics compared to its integer-order counterpart, the
classical SMO. This attribute enhances the observer’s flexibility, empowering it to effectively
mitigate the chattering phenomenon and exhibit reduced sensitivity to initial conditions
and measurement noise, ensuring more dependable fault estimation.

4.3. Numerical Solution of the FO-SMO

To compute the solutions of both the FO-SMO and the low-pass filter, we use the
Grunwald–Letnikov (GL) algorithm presented in Section 2. The solution of the FO-SMO is
represented as

X̂ (tk) =
[
AX̂ (tk) + BU (tk)− GlEy(tk) + GnlV(tk)

]
hα1 −

k

∑
j=1

cα1
j X̂

(
tk−j

)
, (55)

while the solution for the low-pas filter is represented as

Va(tk) = [−δVa(tk) + V(tk)]hα2 −
k

∑
j=1

cα2
j Va

(
tk−j

)
(56)

where cαi
j =

(
1 − 1+αi

j

)
cαi

j−1, with i =1,2. We performed this numerical solution using
MATLAB (latest v. 2024a). For all simulations, we selected the time step h = 0.001,
α1 = 0.86 and α2 = 1.

5. Simulation Results

In this section, we conduct simulations to assess the performance of the proposed ob-
server. We compare the fractional-order sliding mode observer (FO-SMO) with the classical
(integer-order) sliding mode observer (SMO) to determine its accuracy and effectiveness
in estimating actuator faults in a QUAV system. The parameters of the QUAV utilized in
this study are outlined in Table 1. Throughout the simulation, the QUAV is directed to
return to its initial position using LQR control, with actuator faults occurring at time t = 0.
These faults are modeled as bounded additive sinusoidal signals adhering to the matching
condition. To comprehensively evaluate the observer’s efficacy, we subject it to various
operational conditions.

Experiment Configuration.

To effectively compare the performance of the classical (integer-order) sliding mode
observer (SMO) with the proposed fractional-order sliding mode observer (FO-SMO) and
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to draw meaningful conclusions regarding their suitability for actuator fault estimation, the
simulation diagram depicted in Figure 4 was established. This experiment aims to compare
the performance of both observers in terms of convergence speed and robustness to initial
conditions and measurement noise.
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In all our tests, we used the LQR control strategy to stabilize the QUAV at the origin,
along with the parameters specified in Table 1. For both observers, the inputs consisted of
the actuator signals and measurement outputs. The experiment involved estimating the
actuator faults under different operational conditions of the QUAV. First, we considered
ideal conditions without measurement noise and evaluated the effect of initial conditions
on fault estimation accuracy. Second, we considered the effect of the chattering on fault
estimation. Finally, we considered a more realistic scenario where noise was added to all
measurement outputs to assess the robustness of both observers to measurement noise.
Additionally, we explored the advantages of using a non-integer low-pass filter rather than
the classical low-pass filter.

We implemented the observers using the Euler method with a time step of h = 0.001,
and we set the time constant δ of the low-pass filter to 0.02 for both SMO and FO-SMO. The
initial conditions for the observer were established as 0, whereas the initial conditions of
the QUAV system varied from zero. The order of the FO-SMO was defined as 0.86.

To quantitatively demonstrate that the performance is better in the FO-SMO than
in SMO, we utilize the Normalized Root-Mean-Square Error (NRMSE) criterion. The
NRMSE provides a valuable metric for evaluating the accuracy of estimations, expressing
the goodness of fit as a percentage, and offering insights into the relative performance of
the estimation process. The NRMSE is defined as

FIT =
∥Fm(:, i)−Fe(:, i)∥

∥Fm(:, i)− mean(F m(:, i))∥ (57)

In Equation (57), FIT represents the fit of the estimation in terms of the NRMSE, Fm
represents the actual fault, Fe represents fault estimation for the observer, and i represents
the number of samples.

Case 1. Robustness to the initial conditions

The initial conditions of the SMO are crucial for ensuring the region and speed of
convergence of the observer. These conditions represent the initial state of the observer’s
variables, which are used to estimate the system’s state and, in this specific approach, to
conduct fault estimation. If the initial conditions of the observer are far from those of the
QUAV system, the SMO may fail to converge or converge slowly. Since initial conditions
are often unknown in real-world scenarios, ensuring the observer’s robustness to these
conditions is essential. Therefore, we conducted simulations to evaluate the robustness of
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both SMO and FO-SMO to initial conditions. The simulation results compare how well
both observers estimate actuator faults under different initial conditions.

Initially, both observers were initialized to zero, and the initial conditions of the QUAV
system were set close, with all states assigned a value of 1. Figure 5 depicts the results
of fault estimation using both the FO-SMO and the SMO. The simulation reveals a better
performance of the FO-SMO. A sinusoidal signal with an amplitude of 5 was used to
simulate the actuator fault. For the FO-SMO and the low-pass filter, fractional orders of
α1 = 0.86 and α2 = 1 were employed, respectively. It should be noted that the low-pass
filter, in this case, was considered to be of integer order. Notably, the FO-SMO converges
more rapidly and exhibits more accurate fault estimation.
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In Figure 6, we observe a similar scenario but with a notable difference. The initial
conditions of the QUAV were selected further apart compared to the previous case, at
a value of 4. In this case, the FIT indicator of the SMO registers at 92.3781%, while the
FIT indicator of the FO-SMO stands at 94.2461%. Therefore, we observe that when the
initial conditions of the systems and observers are selected far apart, both a reduced
convergence rate and a decrease in the FIT of the fault estimation process are presented.
Despite these challenging conditions, it is worth noting that the FO-SMO demonstrates
superior performance.

In general, we can conclude that when the initial conditions are closer to the true state
of the system, the observer is likely to converge faster. Conversely, if the initial conditions
are far from the true state, the observer may require more time to adjust its internal variables
and converge to an accurate estimate of the system’s state.

Case 2. Robustness to the chattering

The chattering in SMOs is a well-known issue that can significantly impact their
performance. Chattering refers to the rapid switching of nonlinear output injection signals
near the sliding surface, resulting in high-frequency oscillations. The presence of chattering
in the fault estimation signal can significantly degrade the estimation. Furthermore, since
the estimation signal could be utilized to compensate for the fault effect in the control
system, this outcome becomes impractical.
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The chattering phenomenon in the SMO is heavily influenced by a nonlinear function
described in Equation (31), rewritten here for major clarity.

V2(t) =

{
−ρ∥Q2∥

Q2Ey(t)
∥Q2Ey(t)∥ if Ey(t) ̸= 0

0 otherwise,
(58)

In Equation (58), the parameter ρ plays a crucial role in the intensity of chattering. It
is important to note that the ρ parameter determines the speed of observer convergence.
To ensure an accurate estimation of actuator faults, the value of ρ should be chosen to
be greater than the magnitude of the actuator fault. While it is common to use high
values for this parameter, doing so can increase chattering. Therefore, it is wise to take
a conservative approach. Furthermore, the type of actuator fault being estimated also
affects chattering, with fault signals that undergo abrupt changes tending to cause more
pronounced chattering.
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To demonstrate the attenuation properties of the proposed FO-SMO, we compare the
performance of both the SMO and the FO-SMO under chattering conditions. To accomplish
this, we use a fault signal that exhibits abrupt changes, and we set the ρ value to 20, which
is considerably greater than the magnitude of the fault. Under these conditions, the effect
of chattering is increased.

In Figure 7, the results of actuator fault estimation under chattering conditions are
depicted. There is a significant presence of chattering in the fault estimation of the SMO
compared to that observed in Case 1. For the simulation, the initial conditions of the
observers were set to 0, while the initial conditions of the QUAV system were set to 2. It is
noteworthy that the presence of chattering has degraded the fault estimation in both the
SMO and FO-SMO, resulting in FIT values of 79.0311% and 84.2462%, respectively. It is
important to emphasize that while selecting ρ = 20 may have positive effects on increasing
the speed of convergence, it also has the adverse effect of increasing chattering, conse-
quently reducing the accuracy of fault estimation. However, the FO-SMO demonstrates
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superior FIT compared to the classical SMO. Additionally, the high-frequency component
is eliminated in the FO-SMO.
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Case 3. Robustness to the measurement noise

In the upcoming tests, we evaluate both the FO-SMO and the SMO under real-world
conditions, which involve adding noise to the measured outputs of the QUAV system.
This condition allows us to demonstrate that the FO-SMO is more robust to noise than the
classical SMO.

First, noise was introduced to all measurements of the QUAV system. Normally
distributed noise is the most common type occurring in natural processes, making the
normal distribution an appropriate approximation when exclusively natural noises are
incorporated into a signal. To introduce this noise, we utilized the randn function in
MATLAB, generating elements that adhere to a normal distribution with a mean of 0 and
a variance of 1. The noise was specified as r(t) = 0.2r and (1). The initial conditions of
the observers were set to zero, while those of the QUAV system were chosen at a value
of 2. Sinusoidal signals with an amplitude of 5 were used as actuator faults, and the
ρ parameter was set to 5. The fractional orders employed for the FO-SMO and the low-pass
filter were α1 = 0.86 and α2 = 1.7, respectively. The simulation results of actuator fault
estimation using both the SMO and the FO-SMO under noise measurement conditions are
presented in Figure 8. It is observed that the addition of noise notably affects the accuracy
of the estimated actuator faults, with the FIT for the SMO at 70.1405%, while the FIT for the
FO-SMO significantly outperforms it at 88.0419%.

In Figure 9, we observe a scenario similar to the previous one, with a notable difference.
A more significant noise measurement has been introduced, specified as r(t) = 0.6r and (1).
The fractional orders employed for the FO-SMO and the low-pass filter were the same
as in the above case, and the initial conditions were also set as in the previous case. The
simulation results for actuator fault estimation using both the SMO and the FO-SMO under
these more severe noise conditions are depicted in Figure 9. Notably, fault estimation using
the classical SMO becomes impractical due to the addition of noise. The FIT for the SMO is
merely 38.7587%, whereas the FIT for the FO-SMO significantly outperforms it at 82.7243%.
This stark contrast highlights the FO-SMO’s remarkable performance in conducting fault
estimation under severe noisy conditions. Furthermore, it underscores the effectiveness of
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employing a fractional-order approach for both the SMO and the low-pass filter, resulting
in enhanced fault estimation accuracy even in the presence of measurement noise.
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6. Conclusions and Discussion

In this study, we proposed a fractional-order sliding mode observer (FO-SMO) for
actuator fault estimation in a QUAV system. Our investigations included comparing the FO-
SMO with the classical (integer-order) sliding mode observer (SMO) to assess its correctness
and effectiveness. Through rigorous experimentation under various operational conditions
of the QUAV, we aimed to ascertain the robustness and accuracy of the FO-SMO in actuator
fault estimation. The simulations were meticulously designed, incorporating factors such
as initial conditions, chattering, and the influence of measurement noise. We also explored
the advantages of employing a non-integer low-pass filter in conjunction with the FO-
SMO. Our results indicate that the FO-SMO demonstrates superior performance compared
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to the classical SMO in fault estimation, particularly under challenging conditions such
as noise and chattering. Notably, the FO-SMO exhibited robustness to initial condition
variations and effectively mitigated the adverse effects of chattering, resulting in more
accurate fault estimation. Furthermore, when subjected to realistic scenarios with added
measurement noise, the FO-SMO showcased remarkable resilience and outperformed the
classical SMO by a significant margin. The introduction of a fractional-order low-pass filter
further enhanced the FO-SMO’s capability to accurately estimate actuator faults, even in
the presence of severe noise.

In conclusion, our findings underscore the effectiveness and practicality of the FO-
SMO for actuator fault estimation in dynamic systems like QUAVs. By leveraging fractional-
order techniques and incorporating robust design considerations, the FO-SMO offers promis-
ing prospects for enhancing fault detection and diagnosis in real-world applications. This
research contributes valuable insights into the advancement of fault estimation methodologies,
paving the way for more reliable and efficient operation of dynamic systems.
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