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Abstract: In this paper, by using the Riccati transformation and integral inequality technique, we
establish several oscillation criteria for second-order Emden–Fowler neutral delay differential equa-
tions under the canonical case and non-canonical case, respectively. Compared with some recent
results reported in the literature, we extend the range of the neutral coefficient. Therefore, our results
generalize to some of the results presented in the literature. Furthermore, several examples are
provided to illustrate our conclusions.
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1. Introduction

In this paper, we consider the oscillation of the following second-order Emden–Fowler
neutral delay differential equation

(a(t)|z′(t)|α−1z′(t))′ + q(t)|x(σ(t))|β−1x(σ(t)) = 0, (1)

where t ≥ t0, z(t) = x(t) + p(t)x(τ(t)), a(t), τ(t), σ(t) ∈ C1([t0, ∞), (0, ∞)), p(t), q(t) ∈
C([t0, ∞), [0, ∞)), α > 0, and β > 0. Additionally, the following two assumptions are satisfied:

(H1). a′(t) ≥ 0, τ′(t) > 0, σ′(t) > 0, σ(t) ≤ t, τ(t) ≤ t, lim
t→∞

τ(t) = lim
t→∞

σ(t) = ∞;

(H2). p(t) > 1.

If ∫ ∞

t0

1
a1/α(t)

dt = ∞, (2)

then we say that Equation (1) satisfies the canonical case.
If ∫ ∞

t0

1
a1/α(t)

dt < ∞, (3)

then we say that Equation (1) satisfies the non-canonical case.
In this paper, we investigate the oscillation of Equation (1) when it satisfies (2) and (3),

respectively.
We only consider the nontrivial solution of (1), which satisfies sup{|x(t)| : t ≥ T} > 0

for all T ≥ t0.

Definition 1. A nontrivial solution of (1) is oscillatory if it has an arbitrarily large zero point on
the interval I = [t0, ∞). Otherwise, it is nonoscillatory.
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Definition 2. Equation (1) is oscillatory if all its solutions are oscillatory.

The Emden–Fowler equation is in honor of astrophysicist Jacob Robert Emden (1862–1940)
and astronomer Sir Ralph Howard Fowler. This equation was established by Fowler to model
some phenomena in fluid mechanics [1]. With the development of science, this equation has
many applications to model various physical phenomena, such as in the study of astrophysics,
gas dynamics, fluid physics, and nuclear physics [2–5]. Wong [5] established the oscillation
criteria of the following second-order super-linear equation

x′′(t) + q(t)|x(t)|βsgnx(t) = 0.

Since then, many researchers have found that delay and oscillation effects are often formu-
lated with the help of external sources and/or nonlinear diffusion, perturbing the natural
evolution of related systems; see, e.g., [6–8]. Therefore, the oscillatory properties for Emden–
Fowler delay differential equations have attracted the attention of many researchers. We
refer the reader to the papers [9–30].

In [11,17–20,26], the authors considered the oscillation of the following second-order
half-linear equation:

(a(t)(z′(t))α)′ + q(t)xα(σ(t)) = 0, t ≥ t0, (4)

where α ∈ Q∗, Q∗ represents the set of all the ratios of odd positive integers. When the
neutral coefficient p(t) satisfied 0 ≤ p(t) < 1, Agarwal et al. [11] studied the oscillation of
Equation (4) under the non-canonical case. Grace et al. [17] and Jadlovská [20] considered
the oscillation of Equation (4) under the canonical case. When the neutral coefficient p(t)
satisfied p(t) ≡ p0 > 1, Hassan et al. [19] studied the oscillation of Equation (4) under
the non-canonical case. In [26], based on condition (2), Moaaz et al. obtained several
oscillation criteria for (4) under the condition 0 ≤ p(t) ≤ p0 < ∞ (p0 is a constant). In [18],
based on condition (3), Hindi et al. provided several oscillation criteria for (4) under the
condition 0 ≤ p(t) ≤ p0 < ∞. These results expanded the range of the neutral coefficient
p(t) in [11,17,20].

Abdelnaser et al. [10] studied the oscillation of the following second-order Emden–
Fowler equation under the canonical case

(a(t)(z′(t))α)′ +
l

∑
i=1

qi(t)xβ(σi(t)) = 0, (5)

where α, β ∈ Q∗.
When l = 1, Equation (5) becomes the following second-order Emden–Fowler-type

equation:
(a(t)(z′(t))α)′ + q(t)xβ(σ(t)) = 0. (6)

Under the non-canonical case and 0 ≤ p(t) < 1, Agarwal et al. [9] provided some oscillation
criteria for Equation (6) when β ≥ α, β < α and β < α = 1 are satisfied, respectively.
By introducing some new comparison theorems, Baculíková et al. [13] established several
new results. They transformed the study of second-order neutral differential equations
into the research on first-order delay differential equations and extended the range of p(t)
from 0 ≤ p(t) < 1 to 0 ≤ p(t) ≤ p0 < ∞. Based on the assumptions that 0 < β ≤ 1
and the neutral coefficient p(t) satisfies 0 ≤ p(t) ≤ p0 < ∞, p(t) ≡ p0 ̸= 1 and p(t) > 1,
respectively, Li et al. [22] provided some oscillation criteria for Equation (6) under the
canonical case and non-canonical case, respectively.

In [21,23,27–29], the scholars obtained some oscillation criteria for Equation (1). When
α = 1, then (1) becomes the following equation:

(a(t)z′(t))′ + q(t)|x(σ(t))|β−1x(σ(t)) = 0. (7)
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Under the non-canonical case, β ≥ 1 and 0 ≤ p(t) < 1, Li et al. [21] obtained some
oscillation criteria for (7). In [23], Li et al. provided some oscillation criteria of (7) under the
canonical case. They extended the range of p(t) from 0 ≤ p(t) < 1 to 0 ≤ p(t) ≤ p0 < ∞,
with the conditions β > 1, τ′(t) ≥ τ0 > 0, and σ ◦ τ = τ ◦ σ.

Under the canonical case and non-canonical case, respectively, and 0 ≤ p(t) < 1,
Wu et al. [27,28] and Zeng et al. [29] provided some different oscillation criteria for Equa-
tion (1) by different methods.

In this article, we study the oscillation of Equation (1). When the neutral coefficient
p(t) satisfies p(t) > 1 and α = β = 1, compared with the results of Baculíková et al. [13],
Li et al. [22,23], and Moaaz et al. [26], we establish a new oscillation criterion of Equation (1)
without the condition τ ◦ σ = σ ◦ τ. For the same Equation (1), compared with the above
results of [21,27–29], we extend the range of neutral coefficient p(t) from 0 ≤ p(t) < 1
to p(t) > 1 (see also [31,32]). The main difficulty is, under the non-canonical case, when
p(t) > 1 and z′(t) < 0 hold, the inequality

x(t) > (1 − p(t))z(t)

is not valid. Moreover, we extend the ranges of α and β. Compared with the research
of [9,29], we do not need to discuss α ≥ β or α ≤ β separately because we provide a unified
form of the oscillation criteria for Equation (1). Therefore, our results extend the works
of previous researchers. At the end of this article, we provide some examples to verify
our criteria.

2. Main Results

For simplicity, we introduce the following temporary notation:

P(t) :=
1

p(t)

(
1 − (τ−1(t))

1
l

p(τ−1(t))t
1
l

)
, P∗(t) :=

1
p(t)

(
1 − 1

p(τ−1(t))

)
,

where l ∈ (0, 1), p(τ−1(t)) > ( τ−1(t)
t )

1
l .

Before starting to present our main results, we first introduce the following useful
lemmas.

Lemma 1 ([30]). Let g(u) = Eu − Fu
β+1

β ; where E and F are positive constants, β is a quotient of
odd natural numbers. Then, g attains its maximum value on ℜ+ at u∗ = ( βa

(β+1)b )
β and

max
u∈ℜ+

g = g(u∗) =
ββ

(β + 1)β+1
Eβ+1

Fβ
.

Lemma 2 ([33,34]). If a function f (t) satisfies f (i)(t) > 0, i = 1, 2, · · · , k, and f (k+1)(t) ≤ 0,
then, for every l ∈ (0, 1), f (t)

f ′(t) ≥
lt
k .

First, we consider the oscillation criteria for Equation (1), which satisfy the canonical
case; that is, (2) holds.

2.1. Equation (1) Satisfies Condition (2)

Theorem 1. Assume that (2) and∫ ∞

t0

q(s)(P(τ−1(σ(s))))βds = ∞ (8)

hold; then, (1) is oscillatory.
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Proof. Conversely, suppose that (1) has a nonoscillatory solution x(t). Without loss of
generality, we may assume that x(t) is eventually positive. That is, there exists t1 ≥ t0,
such that x(t) > 0 , x(τ(t)) > 0, and x(σ(t)) > 0 for t ≥ t1. A similar approach applies to
the case that x(t) is an eventually negative solution. According to (1), we obtain

(a(t)|z′(t)|α−1z′(t))′ = −q(t)xβ(σ(t)) < 0, t ≥ t1. (9)

Therefore, a(t)|z′(t)|α−1z′(t) is decreasing. Thus, we know that z′(t) < 0 or z′(t) > 0 for
t ≥ t1.

Case 1. z′(t) < 0 for t ≥ t1. By means of the fact that a(t)|z′(t)|α−1z′(t) is decreasing,
we have

a(t)|z′(t)|α−1z′(t) ≤ a(t2)|z′(t2)|α−1z′(t2), t ≥ t2 ≥ t1. (10)

Dividing both sides of (10) by a(t), integrating from t2 to t and using (2), we obtain

z(t) ≤ z(t2)− a
1
α (t2)|z′(t2)|

∫ t

t2

a−
1
α (s)ds → −∞ as t → ∞;

this contradicts the fact that z(t) > 0.
Case 2. z′(t) > 0 for t ≥ t1. According to (1), a(t) > 0 and a′(t) ≥ 0; we know

that z′′(t) < 0. Thus, by Lemma 2, we have z(t)
z′(t) ≥ lt, where 0 < l < 1. Then, we

have that z(t)

t
1
l

is nonincreasing. By τ(t) ≤ t and τ′(t) ≥ 0, we obtain (τ−1(t))′ ≥ 0; thus,

τ−1(t) ≤ τ−1(τ−1(t)), and then

z(τ−1(t))

(τ−1(t))
1
l
≥ z(τ−1(τ−1(t)))

(τ−1(τ−1(t)))
1
l

. (11)

By the definition of z(t), we have

x(t) =
1

p(τ−1(t))
(z(τ−1(t))− x(τ−1(t)))

=
z(τ−1(t))
p(τ−1(t))

− 1
p(τ−1(t))

(
z(τ−1(τ−1(t)))
p(τ−1(τ−1(t)))

− x(τ−1(τ−1(t)))
p(τ−1(τ−1(t)))

)
≥ z(τ−1(t))

p(τ−1(t))
− 1

p(τ−1(t))
z(τ−1(τ−1(t)))
p(τ−1(τ−1(t)))

. (12)

By (11) and (12), we arrive at

x(t) ≥ z(τ−1(t))P(τ−1(t)), t ≥ t3 ≥ t2. (13)

From (1), we have

(a(t)(z′(t))α)′ ≤ −q(t)zβ(τ−1(σ(t)))Pβ(τ−1(σ(t))). (14)

Now, we introduce a Riccati substitution

u(t) :=
a(t)(z′(t))α

zβ(τ−1(σ(t)))
, t ≥ t3. (15)

Then, u(t) > 0 on [t3, ∞), and we have

u′(t) =
(a(t)(z′(t))α)′

zβ(τ−1(σ(t)))
−

βa(t)(z′(t))αz′(τ−1(σ(t)))(τ−1)′(v)|v=σ(t)σ
′(t)

zβ+1(τ−1(σ(t)))

≤ −q(t)Pβ(τ−1(σ(t)))−
βa(t)(z′(t))αz′(τ−1(σ(t)))(τ−1)′(v)|v=σ(t)σ

′(t)

zβ+1(τ−1(σ(t)))
. (16)
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By β > 0, a(t) > 0, (τ−1)′(t) ≥ 0, σ′(t) > 0, z(t) > 0, and z′(t) > 0, we obtain

u′(t) + q(t)Pβ(τ−1(σ(t))) ≤ 0, t ≥ t3. (17)

Integrating both sides of (17) from t3 to t and using (8), we obtain

u(t) ≤ u(t3)−
∫ t

t3

q(s)Pβ(τ−1(σ(s)))ds → −∞, as t → ∞,

which contradicts the positivity of u(t). Therefore, the assumption does not hold.

Obviously, Theorem 1 is a generalization of [27] (Theorem 2.1).
If condition (2) is satisfied and condition (8) is not valid, we can also provide an

oscillation criterion of Equation (1). First of all, we need the following useful lemmas.

Lemma 3. Assume that x(t) is an eventually positive solution of (1), u(t) is defined by Equation (15),
and σ(t) ≤ τ(t). Then,

u′(t) ≤ −q(t)Pβ(τ−1(σ(t)))−
ϑ(τ−1)′(v)|v=σ(t)σ

′(t)Q

a
1
ϑ (ϕ(t))

u
ϑ+1

ϑ (t), (18)

where ϑ = min{α, β} and

Q :=

{
1, α = β

const > 0, α ̸= β
, ϕ(t) :=

{
t, α > β

τ−1(σ(t)), α ≤ β
.

Proof. Continuing the proof of Case 2 of Theorem 1, we obtain (16). By σ(t) ≤ τ(t) and
z′′(t) < 0, we have

u′(t) ≤ −q(t)Pβ(τ−1(σ(t)))−
βa(t)(z′(t))αz′(τ−1(σ(t)))(τ−1)′(v)|v=σ(t)σ

′(t)

z(τ−1(σ(t)))β+1

≤ −q(t)Pβ(τ−1(σ(t)))−
βa(t)(z′(t))α+1(τ−1)′(v)|v=σ(t)σ

′(t)

z(τ−1(σ(t)))β+1 . (19)

If β ≥ α, by the fact that z(τ−1(σ(t))) is increasing, then there exist constant Q1 > 0

and t4 ≥ t3 such that [z(τ−1(σ(t)))]
β−α

α ≥ Q1 for t ≥ t4. Thus, according to (19), a′(t) ≥ 0,
a(t) > 0, and σ(t) ≤ τ(t), we obtain

u′(t) ≤ −q(t)Pβ(τ−1(σ(t)))−
β(τ−1)′(v)|v=σ(t)σ

′(t)[z(τ−1(σ(t)))]
β−α

α

a
1
α (τ−1(σ(t)))

u
α+1

α (t)

≤ −q(t)Pβ(τ−1(σ(t)))−
α(τ−1)′(v)|v=σ(t)σ

′(t)Q1

a
1
α (τ−1(σ(t)))

u
α+1

α (t). (20)

Obviously, if α = β, Q1 = 1.

Next, if α > β, by z′′(t) < 0, then z′(t) is decreasing and [z′(t)]
β−α

β is increasing. Then,

there exist constant Q2 > 0 and t5 ≥ t4 such that [z′(t)]
β−α

β ≥ Q2 for t ≥ t5. Hence, by (19),
it has

u′(t) ≤ −q(t)Pβ(τ−1(σ(t)))−
β(τ−1)′(v)|v=σ(t)σ

′(t)[z′(t)]
β−α

β

a
1
β (t)

u
β+1

β (t)

≤ −q(t)Pβ(τ−1(σ(t)))−
β(τ−1)′(v)|v=σ(t)σ

′(t)Q2

a
1
β (t)

u
β+1

β (t). (21)
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Combining (20) and (21), we obtain that inequality (18) holds.

In order to continue the analysis, we need the following notation:

M(t) :=
∫ ∞

t
q(s)Pβ(τ−1(σ(s)))ds, A(t) :=

ϑ(τ−1)′(v)|v=σ(t)σ
′(t)Q

a
1
ϑ (ϕ(t))

. (22)

Define a sequence of functions {ωn}∞
n0 by

ω0 = M(t), t ≥ t0,

and
ωn(t) =

∫ ∞

t
A(s)ω

ϑ+1
ϑ

n−1(s)ds + ω0(t), t ≥ t0, n = 1, 2, 3, . . . . (23)

By induction, it is thus established that ωn(t) ≤ ωn+1(t), t ≥ t0, n = 1, 2, 3, . . ..

Lemma 4. Assume that x(t) is an eventually positive solution of (1). Then, we obtain ωn(t) ≤
u(t), where u(t) and ωn(t) are defined by (15) and (23), respectively. Moreover, there exists a
function ω(t) ∈ C([T, ∞), (0, ∞)), such that lim

t→∞
ωn(t) = ω(t) for t ≥ T ≥ t0 and

ω(t) =
∫ ∞

t
A(s)ω

ϑ+1
ϑ (s)ds + ω0(t), t ≥ T. (24)

Proof. Proceeding as in the proof of Lemma 3, we have

u′(t) ≤ −q(t)Pβ(τ−1(σ(t)))− A(t)u
ϑ+1

ϑ (t). (25)

Thus, u(t) is decreasing. Then, integrating both sides of (25) from t to t′, we obtain

u(t′)− u(t) +
∫ t′

t
q(s)Pβ(τ−1(σ(s)))ds +

∫ t′

t
A(s)u

ϑ+1
ϑ (s)ds ≤ 0. (26)

Then, it is not difficult to know that

u(t′)− u(t) +
∫ t′

t
A(s)u

ϑ+1
ϑ (s)ds ≤ 0. (27)

Thus, we claim that ∫ ∞

t
A(s)u

ϑ+1
ϑ (s)ds < ∞, t ≥ T. (28)

Otherwise, by (27), u(t′) ≤ u(t)−
∫ t′

t A(s)u
ϑ+1

ϑ (s)ds → −∞ as t′ → ∞, which contradicts
the positivity of u(t). By u(t) > 0 and the fact that u(t) is decreasing, from (28), we obtain
lim
t→∞

u(t) = 0. Thus, from (26), we have

u(t) ≥ M(t) +
∫ ∞

t
A(s)u

ϑ+1
ϑ (s)ds = ω0(t) +

∫ ∞

t
A(s)u

ϑ+1
ϑ (s)ds; (29)

that is,
u(t) ≥ M(t) = ω0(t).

Moreover, by induction, we obtain that u(t) ≥ ωn(t) for t ≥ t0, n = 1, 2, 3, . . .. Thus, since
the sequence {ωn(t)}∞

n=0 is monotone increasing and bounded above, it converges to ω(t).
Using Lebesgue’s monotone convergence theorem in (23), we obtain that (24) holds.
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Theorem 2. Suppose (2) is valid and (8) is not satisfied. Assume that

lim inf
t→∞

1
M(t)

∫ ∞

t
A(s)M

ϑ+1
ϑ (s)ds = ∞ (30)

holds, where ϑ, M(t), and A(t) are defined by (18) and (22). Then, (1) is oscillatory.

Proof. Suppose that x(t) is an eventually positive solution of (1). Then, proceeding as in
the proof of Lemmas 3 and 4, we obtain (29) and

u(t)
M(t)

≥ 1 +
1

M(t)

∫ ∞

t
A(s)M

ϑ+1
ϑ (s)

(
u(s)
M(s)

) ϑ+1
ϑ

ds, t ≥ T. (31)

From (30), we obtain that the following inequality is satisfied

lim inf
t→∞

1
M(t)

∫ ∞

t
A(s)M

ϑ+1
ϑ (s)ds >

ϑ

(ϑ + 1)
ϑ+1

ϑ

. (32)

Then, by (32), we know that there exists a constant C such that

lim inf
t→∞

1
M(t)

∫ ∞

t
A(s)M

ϑ+1
ϑ (s)ds > C >

ϑ

(ϑ + 1)
ϑ+1

ϑ

.

Thus, there exists T0 sufficiently large enough such that

inf
t≥T0

1
M(t)

∫ ∞

t
A(s)M

ϑ+1
ϑ (s)ds > C >

ϑ

(ϑ + 1)
ϑ+1

ϑ

. (33)

Let λ = inf
t≥T0

u(t)
M(t) . Then from (31), we have

λ ≥ 1 + λ
ϑ+1

ϑ C. (34)

According to Lemma 1 and (33), we obtain

λ − Cλ
ϑ+1

ϑ ≤ ϑϑ

(ϑ + 1)ϑ+1
1

Cϑ

< 1.

Thus, we have
λ < 1 + Cλ

ϑ+1
ϑ ,

which contradicts inequality (34). Therefore, the assumption does not hold. Thus, Equa-
tion (1) is oscillatory.

Remark 1. The conclusion of Theorem 2 remains valid if we replace (32) with (30).

Finally, we provide an oscillation criterion for Equation (1) that satisfies the non-
canonical case; that is, (3) holds.

2.2. Equation (1) Satisfies Condition (3)

Theorem 3. Suppose (3) holds. If there exists a function δ(t) ∈ C1([t0, ∞), (0, ∞)) such that for
all constants Q > 0, N > 0, the following integral formulas are satisfied

lim
t→∞

∫ t

T

[
q(s)δ(s)Pβ(τ−1(σ(s)))− (δ′(t))ϑ+1a(ϕ(s))

(ϑ + 1)ϑ+1(δ(s)(τ−1)′(v)|v=σ(s)σ
′(s)Q)ϑ

]
ds = ∞ (35)



Mathematics 2024, 12, 1559 8 of 14

and

lim
t→∞

∫ t

T

[
κθ(s)q(s)

(
κ(τ−1(τ−1(σ(s))))

κ(σ(s))
P∗(τ−1(σ(s)))

)β

− ϵ

κ(s)a1/α(s)

]
ds = ∞, (36)

where ϑ = min{α, β}, θ = max{α, β},

ϕ(t) :=

{
t, α > β

τ−1(σ(t)), α ≤ β
, κ(t) := lim

l→∞

∫ l

t

1

a
1
α (s)

ds,

ϵ = ( θ
θ+1 )

θ+1( θ
N )θ (when α = β, Q = 1, N = α), and then (1) is oscillatory.

Proof. To obtain a contradiction, suppose that (1) has a nonoscillatory solution x(t). With-
out loss of generality, we may assume that x(t) is eventually positive. That is, there exists
t1 ≥ t0, such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for t ≥ t1. If x(t) is an eventually
negative solution, it can be proved in a similar way. According to (1), we obtain

(a(t)|z′(t)|α−1z′(t))′ = −q(t)xβ(σ(t)) < 0, t ≥ t1. (37)

Therefore, a(t)|z′(t)|α−1z′(t) is decreasing. Thus, we have two possible cases for z′(t). That
is, there exists a t2 ≥ t1 such that z′(t) > 0 or z′(t) < 0 for t ≥ t2.

Case 1. z′(t) > 0 for t ≥ t2. In view of (10), we know that a(t)(z′(t))α is decreasing.
Proceeding as in the proof of Case 2 of Theorem 1, we have that (13) and (14) hold. Define
a function w(t) as follows

w(t) := δ(t)
a(t)(z′(t))α

zβ(τ−1(σ(t)))
, t ≥ t3. (38)

Then, w(t) > 0 for t ≥ t3. Taking differentiation on both sides of (38), we obtain

w′(t) = δ′(t)
a(t)(z′(t))α

zβ(τ−1(σ(t)))
+ δ(t)

(a(t)(z′(t))α)′

zβ(τ−1(σ(t)))

− δ(t)
βa(t)(z′(t))αz′(τ−1(σ(t)))(τ−1)′(v)|v=σ(t)σ

′(t)

zβ+1(τ−1(σ(t)))
. (39)

If β ≥ α, in view of the fact that z(τ−1(σ(t))) is increasing, z
β−α

α (τ−1(σ(t))) is thus

increasing, and there exist constants Q1 and t4 ≥ t3, such that z
β−α

α (τ−1(σ(t))) ≥ Q1 for
t4 ≥ t3. According to (39) and (14), a′(t) ≥ 0, a(t) > 0, and σ(t) ≤ τ(t), and we obtain

w′(t) ≤ −q(t)δ(t)Pβ(τ−1(σ(t))) +
δ′(t)w(t)

δ(t)

−
β(τ−1)′(v)|v=σ(t)σ

′(t)z
β−α

α (τ−1(σ(t)))

(a(τ−1(σ(t)))δ(t))
1
α

w
α+1

α (t)

≤ −q(t)δ(t)Pβ(τ−1(σ(t))) +
δ′(t)w(t)

δ(t)
−

α(τ−1)′(v)|v=σ(t)σ
′(t)Q1

(a(τ−1(σ(t)))δ(t))
1
α

w
α+1

α (t). (40)

It is not difficult to know that, if α = β, Q1 = 1.
If α > β, in view of (a(t)(z′(t))α)′ ≤ 0 and a′(t) ≥ 0, then z′′(t) < 0. Thus, z′(t) is

decreasing and [z′(t)]
β−α

β is increasing. Then, there exist constants Q2 and t5 ≥ t4, such that

[z′(t)]
β−α

β ≥ Q2 for t ≥ t5. Thus, by (39) and (14), we obtain
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w′(t) ≤ −q(t)δ(t)Pβ(τ−1(σ(t))) +
δ′(t)w(t)

δ(t)

−
β(τ−1)′(v)|v=σ(t)σ

′(t)[z′(t)]
β−α

β

(a(t)δ(t))
1
β

w
β+1

β (t)

≤ −q(t)δ(t)Pβ(τ−1(σ(t))) +
δ′(t)w(t)

δ(t)
−

β(τ−1)′(v)|v=σ(t)σ
′(t)Q1

(a(t)δ(t))
1
β

w
β+1

β (t). (41)

Similarly, proceeding as in the proof of Lemma 3, we obtain that the following inequal-
ity holds for any α > 0 and β > 0,

w′(t) ≤ −q(t)δ(t)Pβ(τ−1(σ(t))) +
δ′(t)w(t)

δ(t)
−

ϑ(τ−1)′(v)|v=σ(t)σ
′(t)Q

(a(ϕ(t))δ(t))
1
ϑ

w
ϑ+1

ϑ (t) (42)

for t ≥ t5, where ϑ = min{α, β} and

Q :=

{
1, α = β

const > 0, α ̸= β
, ϕ(t) :=

{
t, α > β

τ−1(σ(t)), α ≤ β
.

Let y = w(t), E(t) := δ′(t)
δ(t) , and F(t) :=

ϑ(τ−1)′(v)|v=σ(t)σ
′(t)Q

(a(ϕ(t))δ(t))
1
ϑ

, where E > 0, y ≥ 0, and F > 0.

By (42) and Lemma 1, we have

Ey − Fy
ϑ+1

ϑ ≤ ϑϑ

(ϑ + 1)ϑ+1
Eϑ+1

Fϑ

=
(δ′(t))ϑ+1a(ϕ(t))

(ϑ + 1)ϑ+1(δ(t)(τ−1)′(v)|v=σ(t)σ
′(t)Q)ϑ

.

Then, we obtain

w′(t) ≤ −q(t)δ(t)Pβ(τ−1(σ(t))) +
(δ′(t))ϑ+1a(ϕ(t))

(ϑ + 1)ϑ+1(δ(t)(τ−1)′(v)|v=σ(t)σ
′(t)Q)ϑ

.

Integrating both sides of the above inequality from T to t, T ≥ t5, we obtain

w(t) ≤ w(T)−∫ t

T

[
q(s)δ(s)Pβ(τ−1(σ(s)))− (δ′(s))ϑ+1a(ϕ(s))

(ϑ + 1)ϑ+1(δ(s)(τ−1)′(v)|v=σ(s)σ
′(s)Q)ϑ

]
ds. (43)

Letting t → ∞ in (43) and using (35), we obtain w(t) < −∞, which contradicts the fact that
w(t) > 0.

Case 2. z′(t) < 0 for t ≥ t2. By means of (1), we have

(a(t)(−z′(t))α)′ > 0, t ≥ t2.

Then, a(t)(−z′(t))α is increasing and the following inequality holds

z′(s) ≤
(

a(t)
a(s)

) 1
α

z′(t), s ≥ t ≥ t2. (44)

Integrating both sides of (44) from t to l, we obtain

z(l) ≤ z(t) + a
1
α (t)z′(t)

∫ l

t
a−

1
α (s)ds, l ≥ t ≥ t2.
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Letting l → ∞, we obtain

z(t) ≥ κ(t)a
1
α (t)(−z′(t)), t ≥ t2. (45)

Then, we have
zα(t) ≥ κα(t)a(t)(−z′(t))α, t ≥ t2.

Define

W(t) :=
a(t)(−z′(t))α

zβ(t)
, t ≥ t2. (46)

Then, W(t) > 0 for t ≥ t2.
If α ≥ β, then zα−β(t) is decreasing and thus there exists a constant m1 > 0 such that

zα−β(t) ≤ m1 for t ≥ t2. Hence, we have

κα(t)W(t) ≤ zα−β(t) ≤ m1, t ≥ t2. (47)

If α < β, then (a
1
α (t)(−z′(t)))α−β is decreasing and thus there exists a constant m2 > 0

such that
κβ(t)W(t) ≤ (a

1
α (t)(−z′(t)))α−β ≤ m2, t ≥ t2. (48)

Using (47) and (48), we obtain

0 < κθ(t)W(t) ≤ m, t ≥ t2,

where θ = max{α, β} and m = max{m1, m2}.
According to (45), we know that z(t)

κ(t) is nondecreasing for t ≥ t2. Thus, by τ′(t) > 0,

t ≤ τ−1(t) ≤ τ−1(τ−1(t)), z′(t) < 0, and (12), we have

x(t) ≥ z(τ−1(τ−1(t)))P∗(τ−1(t)) ≥ z(t)κ(τ−1(τ−1(t)))
κ(t)

P∗(τ−1(t)).

Thus,

xβ(σ(t)) ≥ zβ(t)
(

κ(τ−1(τ−1(σ(t))))
κ(σ(t))

P∗(τ−1(σ(t)))
)β

. (49)

Using (1) and (49), we obtain

(a(t)(−z′(t))α)′ − q(t)
(

κ(τ−1(τ−1(σ(t))))
κ(σ(t))

P∗(τ−1(σ(t)))
)β

zβ(t) ≥ 0. (50)

Differentiating on both sides of (46), using (50), we obtain

W ′(t) ≥ q(t)
(

κ(τ−1(τ−1(σ(t))))
κ(σ(t))

P∗(τ−1(σ(t)))
)β

+
βa(t)(−z′(t))α+1

zβ+1(t)
. (51)

If α ≥ β, z
β−α

α (t) is increasing, and then there exists a constant N1 > 0, such that z
β−α

α (t) ≥
N1. From (51), we have

W ′(t) ≥ q(t)
(

κ(τ−1(τ−1(σ(t))))
κ(σ(t))

P∗(τ−1(σ(t)))
)β

+
β

a1/α(t)
z

β−α
α (t)W

α+1
α (t)

≥ q(t)
(

κ(τ−1(τ−1(σ(t))))
κ(σ(t))

P∗(τ−1(σ(t)))
)β

+
βN1

a1/α(t)
W

α+1
α (t). (52)

Obviously, if α = β, N1 = 1.
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If α < β, (a1/α(t)(−z′(t)))
β−α

β is increasing and there exists a constant N2 > 0, such

that (a1/α(t)(−z′(t)))
β−α

β > N2. By (51), we obtain

W ′(t) ≥ q(t)
(

κ(τ−1(τ−1(σ(t))))
κ(σ(t))

P∗(τ−1(σ(t)))
)β

+
β

a1/α(t)
(a1/α(t)(−z(t)))

β−α
β W

β+1
β (t)

≥ q(t)
(

κ(τ−1(τ−1(σ(t))))
κ(σ(t))

P∗(τ−1(σ(t)))
)β

+
βN2

a1/α(t)
W

β+1
β (t). (53)

Thus, combining (52) and (53), we have

W ′(t) ≥ q(t)
(

κ(τ−1(τ−1(σ(t))))
κ(σ(t))

P∗(τ−1(σ(t)))
)β

+
N

a1/α(t)
W

θ+1
θ (t), (54)

where θ = max{α, β} and N =

{
α, α = β

K, α ̸= β
.

Multiplying both sides of (54) by κθ(t) and integrating from T to t, we obtain

∫ t

T
κθ(s)q(s)

(
κ(τ−1(τ−1(σ(s))))

κ(σ(s))
P∗(τ−1(σ(s)))

)β

ds ≤
∫ t

T
κθ−1(s)a−1/α(s)[θW(s)

− Nκ(s)W
θ+1

θ (s)]ds + κθ(t)W(t)− κθ(T)W(T).

Let y = W(s), E = θ, and F = Nκ(s). By Lemma 1, we arrive at

∫ t

T
κθ(s)q(t)

(
κ(τ−1(τ−1(σ(t))))

κ(σ(t))
P∗(τ−1(σ(t)))

)β

ds

≤
∫ t

T

ϵ

κ(s)a1/α(s)
ds + κθ(t)W(t)− κθ(T)W(T).

Thus, we have

∫ t

T

[
κθ(s)q(s)

(
κ(τ−1(τ−1(σ(s))))

κ(σ(s))
P∗(τ−1(σ(s)))

)β

− ϵ

κ(s)a1/α(s)

]
ds ≤ m,

where ϵ = ( θ
θ+1 )

θ+1( θ
N )θ , which contradicts condition (36). The proof is complete.

Clearly, Theorem 3 is also a generalization of ([27], Theorem 2.5).

3. Example

Example 1. Consider the following second-order neutral differential equation

(|z′(t)|α−1z′(t))′ + q(t)|x( t
2
)|β−1x(

t
2
) = 0, (55)

where z(t) = x(t) + 8x( t
8 ), a(t) ≡ 1, p(t) = 8, α > 0, β > 0, τ(t) = t

8 , σ(t) = t
2 , and

q(t) ∈ U1 = {btn|n ∈ Z, n ≥ −1, b ∈ ℜ+}. It is clear that U1 is a semigroup under the usual
multiplication operation.

Letting l = 1
2 , then

∫ ∞
t q(s)(P(τ−1(σ(s))))βds = ∞ for β > 0. Thus, it is not difficult to

verify that all conditions of Theorem 1 are satisfied. Therefore, Equation (55) is oscillatory.
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Example 2. Consider the following second-order neutral differential equation

(t−2|z′(t)|α−1z′(t))′ + q0t−3|x( t
8
)|β−1x(

t
8
) = 0, (56)

where z(t) = x(t) + 8x( t
2 ), a(t) = t−2, p(t) = 8, α > 0, β > 0, τ(t) = t

2 , σ(t) = t
8 ,

τ−1(σ(t)) = t
4 , q(t) = q0t−3, q0 > 0, and l = 1

2 . Note that Equation (56) satisfies the canoni-
cal case.

M(t) =
q0

2

(
1

16

)β

t−2,

A(t) =
1
4

Qϑϕ
2
ϑ (t).

For α > β, ϕ
2
ϑ (t) = t

2
ϑ , and ϑ = β, we obtain

lim inf
t→∞

1
M(t)

∫ ∞

t
A(s)[M(s)]

β+1
β ds

= lim inf
t→∞

2
q0

16βt2
∫ ∞

t

1
4

Qβs
2
β

(
q0

2
(

1
16

)βs−2
) β+1

β

ds

= lim inf
t→∞

(
q0

32
)

1
β

Qβ

4
t = ∞.

For α ≤ β, ϕ
2
ϑ (t) = ( t

4 )
2
ϑ , and ϑ = α, we obtain

lim inf
t→∞

1
M(t)

∫ ∞

t
A(s)[M(s)]

α+1
α ds

= lim inf
t→∞

2
q0

16βt2
∫ ∞

t

1
4

Qα(
1
4
)

2
α s

2
α

(
q0

2
(

1
16

)βs−2
) α+1

α

ds

= lim inf
t→∞

(
q0

2
)

1
α (

1
16

)
β+1

α
Qα

4
t = ∞.

It is clear that all conditions of Theorem 2 are satisfied if q0 > 0. Therefore, Equation (56) is
oscillatory.

Remark 2. When α ̸= β ̸= 1, the oscillation criteria of [13,18,19,22,23,26] cannot be applied to
Equation (56) because they are different equations, and the oscillation criteria of [21,27–29] cannot
be applied to Equation (56) because p(t) > 1.

When α = β = 1, Equation (56) becomes the following special case

(t−2z′(t))′ + q0t−3x(t/8) = 0 (57)

where z(t) = x(t) + 8x(t/2), α = 1, and β = 1. According to Example 2, we know that
Equation (57) satisfies the canonical case and is oscillatory if q0 > 0 by Theorem 2.

Using Corollary 4 of [13] or Theorem 2.8 of [22] or Theorem 2.2 of [26] (letting φ(t) = t2), it
is not difficult to verify that Equation (57) is oscillatory if q0 > 0. However, the additional condition
σ ◦ τ = τ ◦ σ is necessary in these results. In [23], Li et al. considered Equation (57) under the
condition β > 1. Thus, the oscillation criteria of [23] cannot be applied to Equation (57). The oscillation
criteria of [18,19] cannot be applied to Equation (57) because they considered the non-canonical case.

Example 3. Consider the following second-order neutral differential equation

(t8|z′(t)|3z′(t))′ + q0t5|x( t
8
)|x( t

8
) = 0, (58)

where z(t) = x(t) + 8x( t
2 ), a(t) = t8, p(t) = 8, α = 4, β = 2, τ(t) = t

2 , σ(t) = t
8 ,

τ−1(σ(t)) = t
4 , q(t) = q0t5, q0 > 0.
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According to Equation (58), we know that Equation (58) satisfies the non-canonical case. Thus,
letting δ(t) = 1 and l = 1

2 , we obtain

lim
t→∞

∫ t

T

[
q0(

1
16

)2
]

s5ds = ∞,

which implies that (35) holds. Letting N > 0, we have

lim
t→∞

∫ t

T

[
κθ(s)q(s)

(
κ(τ−1(τ−1(σ(s))))

κ(σ(s))
P∗(τ−1(σ(s)))

)β

− ϵ

κ(s)a1/α(s)

]
ds

= lim
t→∞

∫ t

T

[
q072

1282 s − 49

55N4 s−2
]

ds = ∞,

which implies that (36) holds. Thus, all conditions of Theorem 3 are satisfied. Therefore, Equation (58)
is oscillatory.

If α = 4, β = 5, q(t) = q0t6, and other parameters remain unchanged, it is not difficult to
verify that conditions (35) and (36) are satisfied. Thus, Equation (58) is oscillatory.

By view of α = 4 and β = 2, the oscillation criteria of [10,13,18,19,22,23,26] cannot be applied
to Equation (56) because they are different equations, and the oscillation criteria of [21,27–29] cannot
be applied to Equation (56) because p(t) > 1.

4. Conclusions

In this paper, by using the Riccati transformation and integral inequality technique,
we establish several oscillation criteria for second-order Emden–Fowler neutral delay differ-
ential equations under the canonical case and non-canonical case, respectively. Compared
with some recent results reported in the literature, we extend the range of the neutral
coefficient. Therefore, our results generalize to some of the recent results reported in the
literature. Furthermore, we provide some examples to verify our criteria. For researchers in-
terested in this field, and as part of our future research, we would like to further investigate
the oscillatory properties of the following even-order Emden–Fowler differential equation:

(a(t)|z(n−1)(t)|α−1z(n−1)(t))′ + q(t)|x(σ(t))|β−1x(σ(t)) = 0

under conditions (2) and (3), respectively, where n is even.
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