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Abstract: Let n ≥ 2 be a fixed integer and A be a C∗-algebra. A permuting n-linear map G : An → A

is known to be symmetric generalized n-derivation if there exists a symmetric n-derivation D : An →
A such that G

(
ς1, ς2, . . . , ςiς

′
i, . . . , ςn

)
= G(ς1, ς2, . . . , ςi, . . . , ςn)ς′i + ςiD(ς1, ς2, . . . , ς′i, . . . , ςn) holds

∀ ςi, ς′i ∈ A. In this paper, we investigate the structure of C∗-algebras involving generalized linear
n-derivations. Moreover, we describe the forms of traces of linear n-derivations satisfying certain
functional identity.
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1. Introduction

A Banach algebra is a linear associate algebra which, as a vector space, is a Banach
space with norm ||.|| satisfying the multiplicative inequality; ||ςε|| ≤ ||ς||||ε|| ∀ ς and ε in
A. “An involution on an algebra A is a linear map ς 7→ ς∗ of A into itself such that the
following conditions hold: (i) (ςε)∗ = ε∗ς∗, (ii) (ς∗)∗ = ς, and (iii) (ς + λε)∗ = ς∗ + λ̄ε∗ ∀
ς, ε ∈ A and λ ∈ C, the field of complex numbers, where λ̄ is the conjugate of λ. An algebra
equipped with an involution ∗ is called a ∗-algebra or algebra with involution. A Banach
∗-algebra is a Banach algebra A together with an isometric involution ||ς∗|| = ||ς|| ∀ ς ∈ A.
A C∗-algebra A is a Banach ∗-algebra with the additional norm condition ||ς∗ς|| = ||ς||2 ∀
ς ∈ A.

Throughout this discussion, unless otherwise mentioned, A will denote C∗-algebra
with Z(A) as its center. However, A may or may not have unity. The symbols [ς, ε] and
ς ◦ ε denote the commutator ςε − ες and the anti-commutator ςε + ες, respectively, for any
ς, ε ∈ A. An algebra A is said to be prime if ςAε = {0} implies that either ς = 0 or ε = 0,
and semiprime if ςAς = {0} implies that ς = 0, where ς, ε ∈ A. An additive subgroup U
of A is said to be a Lie ideal of A if [u, r] ∈ U, ∀ u ∈ U, r ∈ A. U is called a square-closed
Lie ideal of A if U is a Lie ideal and u2 ∈ U ∀ u ∈ U. A linear operator D on a C∗-algebra
A is called a derivation if D(ςε) = D(ς)ε + ςD(ε) holds ∀ ς, ε ∈ A. Consider the inner
derivation δa implemented by an element a in A, which is defined as δa(ς) = ςa − aς for
every ς in A, as a typical example of a nonzero derivation in a noncommutative algebra.

In order to broaden the scope of derivation, Maksa [1] introduced the concept of
symmetric bi-derivations. A bi-linear map D : A ×A → A is said to be a bi-derivation if

D(ςς′, ε) = D(ς, ε)ς′ + ςD(ς′, ε)

D(ς, εε′) = D(ς, ε)ε′ + εD(ς, ε′)

holds for any ς, ς′, ε, ε′ ∈ A. The foregoing conditions are identical if D is also a symmetric
map, whereby if D(ς, ε) = D(ε, ς) for every ς, ε ∈ A. In this case, D is referred to as a
symmetric bi-derivation of A. Vukman [2] investigated symmetric bi-derivations in prime
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and semiprime rings. Argao and Yenigül ([3], Chapter 3) and Muthana [4] obtained the
similar type of results on Lie ideals of ring R.

In this paper, we briefly discuss the various extensions of the notion of derivations
on C∗-algebras. The most general and important one among them is the notion of sym-
metric linear generalized n-derivations on C∗-algebras. Suppose n is a fixed positive
integer and An = A ×A × · · · ×A. A map D : An → A is said to be symmetric
(permuting) if the relation D(ς1, ς2, . . . , ςn) = D(ςπ(1), ςπ(2), . . . , ςπ(n)) holds ∀ ςi ∈ A,
1 ≤ i ≤ n and for every permutation {π(1), π(2), . . . , π(n)}. The concept of deriva-
tion and symmetric bi-derivation was generalized by Park [5] as follows: a n-linear map
D : An → A is said to be a symmetric (permuting) linear n-derivation if D is per-
muting and D(ς1, ς2, . . . , ςiς

′
i, . . . , ςn) = D(ς1, ς2, . . . , ςn)ς′i + ςiD(ς′1, ς2, . . . , ςn) hold ∀

ςi, ς′i ∈ A, i = 1, 2, . . . , n. A map d : A → A defined by d(ς) = D(ς, ς, . . . , ς) is called
the trace of D. If D : An → A is permuting and n-linear, then the trace d of D satisfies
the relation

d(ς + ε) = d(ς) + d(ε) +
n−1

∑
l=1

nCl hl(ς; ε)

∀ ς, ε ∈ A, where nCl = (n
l ) and

hl(ς; ε) = D( ς, . . . , ς︸ ︷︷ ︸
(n−l)-times

, ε, . . . , ε︸ ︷︷ ︸
l-times

).

Ashraf et al. [6] introduced the notion of symmetric generalized n-derivations in a
ring, building upon the concept of generalized derivation. Let n ≥ 1 be a fixed positive
integer. A symmetric n-linear map G : An → A is known to be symmetric linear gener-
alized n-derivation if there exists a symmetric linear n-derivation D : An → A such that
G
(
ς1, ς2, . . . , ςiς

′
i, . . . , ςn

)
= G(ς1, ς2, . . . , ςi, . . . , ςn)ς′i + ςiD(ς1, ς2, . . . , ς′i, . . . , ςn) holds ∀

ςi, ς′i ∈ A”.

Example 1. Let

A =

{[
a a
0 0

]
| a ∈ C

}
,

where C is a complex field. Next, define an involution ∗ to be the identity map. It is clear that A is a

C∗-algebra under norm defined by ||A|| = |a| for all A ∈ A. Denote Ai =

[
ai ai
0 0

]
∈ A, ai ∈ C,

1 ≤ i ≤ n, and let us define G = D : An → A by D(A1, A2, . . . , An) =

[
0 a1a2 · · · an
0 0

]
with trace g = d : A → A define by g

([
a a
0 0

])
=

[
0 an

0 0

]
. Then it is easy to see that G is a

symmetric linear generalized n-derivation on A.

There has been notable scholarly focus on the structure of linear derivations and linear
bi-derivations within the context of C∗-algebras. Various authors have provided diverse
expositions of derivations on C∗-algebras, showcasing a spectrum of perspectives and
methodologies. For instance, Kadison’s work in 1966 [7] demonstrated that every linear
derivation acting on a C∗-algebra annihilates its center. In 1989, Mathieu [8] built upon
Posner’s first theorem [9] regarding C∗-algebras, extending its implications. Basically, he
proved that “if the product of two linear derivations d and d′ on a C∗-algebra is a linear
derivation then dd′ = 0”. Very recently, Ekrami and Mirzavaziri [10] showed that "if A
is a C∗-algebra admitting two linear derivations d and d′ on A, then there exists a linear
derivation D on A such that dd′ + d′d = D2 if and only if d and d′ are linearly dependent".
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In [11], Ali and Khan proved that if A is a C∗-algebra admitting a symmetric bilin-
ear generalized ∗-biderivation H : A ×A → A with an associated symmetric bilinear
∗-biderivation B : A ×A → A, then H maps A ×A into Z(A). In [12], Rehman and
Ansari provided a characterization of the trace of symmetric bi-derivations, and they
proved more general results by examining different conditions on a subset of the ring
R, specifically the Lie ideal of R. Basically, they proved that “let R be a prime ring with
charR ̸= 2 and U be a square closed Lie ideal of R. Suppose that B : R × R → R is a sym-
metric bi-derivation and f , the trace of B. If [ f (x), x] = 0 ∀ x ∈ U, then either U ⊆ Z(R) or
f = 0” (see also [13–19] for recent results).

The motivation behind this research stems from the seminal works of Ali and Khan [11],
as well as Rehman and Ansari [12], who explored the intricate connections between bilinear
biderivations and algebraic structures within C∗-algebras and prime rings, respectively.
In this study, we extend the above mentioned inquiry to the realm of linear generalized
n-derivations in C∗-algebras. Focusing specifically on Lie ideals within these algebras, we
aim to uncover broader outcomes and novel insights into the intricate relationships between
linear generalized n-derivations and algebraic structure of C∗-algebras. By scrutinizing
the behavior of linear generalized n-derivations within Lie ideals, our research seeks to
elucidate their role in the algebraic landscape, contributing to a deeper understanding of the
underlying principles governing linear generalized n-derivations in C∗-algebras. Precisely,
we prove that if A is a C∗-algebra, U is a square closed Lie ideal of A admitting a nonzero
symmetric linear generalized n-derivation G : An → A with trace g : A → A associated
with symmetric linear n-derivation D : An → A with trace d : A → A satisfying the
condition (g(ςε)− g(ες))± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U, then U ⊆ Z(A).

2. The Results

To initiate the substantiation of our primary theorems, we first articulate a result that
we frequently invoke in the demonstration of our principal outcomes.

Lemma 1 ([20], Corollary 2.1). “Let R be a 2-torsion free semiprime ring, U a Lie ideal of R such
that U ⊈ Z(R) and a, b ∈ U.

1. If aUa = {0}, then a = 0.
2. If aU = {0} (Ua = {0}), then a = 0.
3. If U is a square closed Lie ideal and aUb = {0}, then ab = 0 and ba = 0.

Lemma 2 ([21], Lemma 1). Let R be a semiprime, 2 torsion-free ring and let U be a Lie ideal of R.
Suppose that [U, U] ⊆ Z(R), then U ⊆ Z(R).

Lemma 3 ([22]). Let n be a fixed positive integer and R a n!-torsion free ring. Suppose that
ε1, ε2, . . . , εn ∈ R satisfy λε1 + λ2ε2 + · · · + λnεn = 0 for λ = 1, 2, . . . , n. Then εi = 0 for
i = 1, 2, . . . , n”.

Daif and Bell [23] proved that if a semiprime ring admits a derivation d such that
either ςε − d(ςε) = ες − d(ες) or ςε + d(ςε) = ες + d(ες) holds ∀ ς, ε ∈ R, then R is
commutative. In this section, apart from proving other results, we expand the previous
result by demonstrating the following theorem for the traces of generalized linear n-
derivation on well behaved subsets of A.

Theorem 1. For any fixed integer n ≥ 2, let A be a C∗-algebra, U be a square closed Lie ideal
of A. If A admits a nonzero symmetric linear generalized n-derivation G : An → A with trace
g : A → A associated with symmetric linear n-derivation D : An → A with trace d : A → A

satisfying the condition of (g(ςε)− g(ες))± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U, then U ⊆ Z(A).
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Proof. It is given that

(g(ςε)− g(ες))± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U.

Replacing ε by ς + mε, where 1 ≤ m ≤ n − 1 in the given condition, we obtain

g(ς(ς + mε))− g((ς + mε)ς)± [ς, ς + mε] ∈ Z(A) ∀ ς, ε ∈ U

which on solving, we have

g(ςmε)− g(mες) +
n−1

∑
l=1

nClG( ς2, . . . , ς2︸ ︷︷ ︸
(n−l)−times

, ςmε, . . . , ςmε︸ ︷︷ ︸
l−times

)−
n−1

∑
l=1

nClG( ς2, . . . , ς2︸ ︷︷ ︸
(n−l)−times

, mες, . . . , mες︸ ︷︷ ︸
l−times

)

± [ς, mε] ∈ Z(A) ∀ ς, ε ∈ U. (1)

By using hypothesis, we obtain

n−1

∑
l=1

nClG( ς2, . . . , ς2︸ ︷︷ ︸
(n−l)−times

, ςmε, . . . , ςmε︸ ︷︷ ︸
l−times

)−
n−1

∑
l=1

nClG( ς2, . . . , ς2︸ ︷︷ ︸
(n−l)−times

, mες, . . . , mες︸ ︷︷ ︸
l−times

)± [ς, mε] ∈ Z(A)

∀ ς, ε ∈ U. Making use of Lemma 3, we see that

G(ς2, . . . , ς2, ςε)−G(ς2, . . . , ς2, ες) ∈ Z(A) ∀ ς, ε ∈ U. (2)

For 1 ≤ m ≤ n, (1) can also be written as

mng(ςε)− mng(ες) +
n−1

∑
l=1

nClG( ς2, . . . , ς2︸ ︷︷ ︸
(n−l)−times

, ςmε, . . . , ςmε︸ ︷︷ ︸
l−times

)−
n−1

∑
l=1

nClG( ς2, . . . , ς2︸ ︷︷ ︸
(n−l)−times

, mες, . . . , mες︸ ︷︷ ︸
l−times

)

± [ς, mε] ∈ Z(A) ∀ ς, ε ∈ U.

Again making use of Lemma 3, we have

n{G(ς2, . . . , ς2, ςε)−G(ς2, . . . , ς2, ες)} ± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U. (3)

From (2) and (3), we obtain [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U. As every C∗-algebra is a semiprime
ring, using Lemma 2, we obtain U ⊆ Z(A).

Theorem 2. For any fixed integer n ≥ 2, let A be a C∗-algebra and U be a square closed Lie ideal
of A. If A admits a nonzero symmetric linear generalized n-derivation G : An → A with trace
g : A → A associated with symmetric linear n-derivation D : An → A with trace d : A → A

satisfying the condition of (g(ς)± g(ε))± ς ◦ ε ∈ Z(A) ∀ ς, ε ∈ U, then U ⊆ Z(A).

Proof. Suppose on the contrary that U ⊈ Z(A). We have given that

(g(ς)− g(ε))± ς ◦ ε ∈ Z(A) ∀ ς, ε ∈ U.

Replacing ε by ς + mε, where z ∈ U and 1 ≤ m ≤ n − 1 in the given condition, we obtain

g(ς)± g(ς + mε)± (ς ◦ ς + mε) ∈ Z(A) ∀ ς, ε, z ∈ U

which on solving, we have

g(ς)± g(ς)g(mε)±
n−1

∑
l=1

nClG( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

, mε, . . . , mε︸ ︷︷ ︸
l−times

)± ς ◦ ς ± ς ◦ mε ∈ Z(A) ∀ ς, ε, z ∈ U. (4)
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Using the given condition, we obtain

g(ς)± ς2 ±
n−1

∑
l=1

nClG( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

, mε, . . . , mε︸ ︷︷ ︸
l−times

) ∈ Z(A) ∀ ς, ε, z ∈ U.

Multiply the above equation by m which implies that

mA1(ς, ε) + m2 A2(ς, ε) + · · ·+ mn−1 An−1(ς, ε) ∈ Z(A)

∀ ς, ε, z ∈ U where Al(ς, ε) represents the term in which z appears l-times.

Making use of Lemma 3, we see that

G(ς, . . . , ς, ε) ∈ Z(A) ∀ ς, ε ∈ U.

Replace ε by ς, we obtain
g(ς) ∈ Z(A) ∀ ς, ε ∈ U.

From hypothesis, we have ς ◦ ε ∈ Z(A) ∀ ς, ε ∈ U. Again replace ς by ες, we have
ε(ς ◦ ε) ∈ Z(A) which imply [ε(ς ◦ ε), z] ∈ Z(A). On solving, we obtain [ε, z](ς ◦ ε) = 0
∀ ς, ε, z ∈ U. Again replace ς by ςz, we have [ε, z]ς[z, ε] = 0 ∀ ς, ε, z ∈ U. By Lemma 1,
we have [z, ε] = 0 ∀ ε, z ∈ U. Again using Lemma 2, we obtain U ⊆ Z(A), which is a
contradiction.

Theorem 3. Let A be a C∗-algebra and U be a square closed Lie ideal of A. If A admits a nonzero
symmetric linear generalized n-derivation G : An → A with trace g : A → A associated with
symmetric linear n-derivation D : An → A with trace d : A → A satisfying g(ς2)± ς2 = 0 ∀
ς ∈ U, then U ⊆ Z(A).

Proof. Suppose on the contrary that U ⊈ Z(A). We have given that G : An → A be
symmetric linear generalized n-derivations associated with D : An → A of a C∗-algebra
A such that g(ς2)± ς2 = 0 ∀ ς ∈ U. Therefore, A is semiprime as A is a C∗-algebra. Now
replacing ς by ς + mε, ε ∈ U for 1 ≤ m ≤ n − 1 in the given condition, we obtain

g(ς + mε)2 ± (ς + mε)2 = 0 ∀ ς, ε ∈ U.

Further solving, we have

g(ς2) + g(m(ςε + ες)) +
n−1

∑
l=1

nClG( ς2, . . . , ς2︸ ︷︷ ︸
(n−l)−times

, m(ςε + ες), . . . , m(ςε + ες)︸ ︷︷ ︸
l−times

)+

g((mε)2) +
n−1

∑
l=1

nClG(ς2 + m(ςε + ες), . . . , ς2 + m(ςε + ες)︸ ︷︷ ︸
(n−l)−times

, (mε)2, . . . , (mε)2︸ ︷︷ ︸
l−times

)

± ς2 ± (mε)2 ± m(ςε + ες) = 0 ∀ ς, ε ∈ U.

In accordance of the given condition and Lemma 3, we obtain

nG(ς2, . . . , ς2, ςε + ες)± (ςε + ες) = 0 ∀ ς, ε ∈ U.

Replacing ε by ς, we find that
2ng(ς2)± 2ς2 = 0,

or
ς2 = 0.
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This implies that ςε + ες = 0 ∀ ς, ε ∈ U. Replacing ε by εz, where z ∈ U, we obtain
[ς, ε]z = 0. Again replacing z by z[ς, ε], we obtain [ς, ε]z[ς, ε] = 0 ∀ ς, ε, z ∈ U. Using
the Lemma 1, we obtain [ς, ε] = 0 ∀ ς, ε ∈ U. By Lemma 2, we obtain U ⊆ Z(A), a
contradiction.

Corollary 1. For any fixed integer n ≥ 2, let A be a C∗-algebra and U be a square closed Lie ideal
of A. If A admits a nonzero symmetric linear generalized n-derivation G : An → A with trace
g : A → A associated with symmetric linear n-derivation D : An → A with trace d : A → A

satisfying g(ς ◦ ε)± ς ◦ ε = 0 ∀ ς, ε ∈ U, then U ⊆ Z(A).

Theorem 4. For any fixed integer n ≥ 2, let A be a C∗-algebra and U be a square closed Lie ideal
of A. Let A admit a nonzero symmetric linear generalized n-derivation G : An → A with trace
g : A → A associated with symmetric linear n-derivation D : An → A with trace d : A → A

satisfying one of the following conditions:

(i) [g(ς), g(ε)]− [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U
(ii) [g(ς), g(ε)]− [ε, ς] ∈ Z(A) ∀ ς, ε ∈ U.

Then, U ⊆ Z(A).

Proof. (i) Given that
[g(ς), g(ε)]− [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U. (5)

Consider a positive integer m; 1 ≤ m ≤ n − 1. Replacing ε by ε + mz, where z ∈ U in (5),
we obtain

[g(ς), g(ε + mz)]− [ς, ε + mz] ∈ Z(A) ∀ ς, ε, z ∈ U.

On further solving, we obtain

[g(ς), g(ε)] + [g(ς), g(mz)] + [g(ς),
n−1

∑
l=1

nClG( ε, . . . , ε︸ ︷︷ ︸
(n−l)−times

, mz, . . . , mz︸ ︷︷ ︸
l−times

)]−

[ς, ε]− [ς, mz] ∈ Z(A) ∀ ς, ε, z ∈ U.

On taking account of hypothesis, we see that

mA1(ς, ε, z) + m2 A2(ς, ε, z) + · · ·+ mn−1 An−1(ς, ε, z) ∈ Z(A)

where Al(ς, ε, z) represents the term in which z appears l-times.
Using Lemma 3, we have

[g(ς),G(ε, . . . , ε, z)] ∈ Z(A) ∀ ς, ε, z ∈ U.

In particular, for z = ε, we obtain

[g(ς), g(ε)] ∈ Z(A) ∀ ς, ε ∈ U.

Now using the given condition, we find that

[ς, ε] ∈ Z(A) ∀ ς, ε ∈ U.

From Lemma 2, U ⊆ Z(A).
(ii) Follows from the first implication with a slight modification.

Corollary 2. For any fixed integer n ≥ 2, let A be a C∗-algebra and U be a square closed Lie ideal
of A. Let A admit a nonzero symmetric linear generalized n-derivation G : An → A with trace
g : A → A associated with symmetric linear n-derivation D : An → A with trace d : A → A

satisfying one of the following conditions:
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(i) g(ς)g(ε)± ςε ∈ Z(A) ∀ ς, ε ∈ U
(ii) g(ς)g(ε)± ες ∈ Z(A) ∀ ς, ε ∈ U.

Then, U ⊆ Z(A).

Corollary 3. For any fixed integer n ≥ 2, let A be a C∗-algebra and U be a square closed Lie ideal
of A. Let A admit a nonzero symmetric linear generalized n-derivation G : An → A with trace
g : A → A associated with symmetric linear n-derivation D : An → A with trace d : A → A

satisfying one of the following conditions:

(i) [g(ς), g(ε)] = [ς, ε] ∀ ς, ε ∈ U
(ii) [g(ς), g(ε)] = [ε, ς] ∀ ς, ε ∈ U.

Then, U ⊆ Z(A).

Theorem 5. For any fixed integer n ≥ 2, let A be a C∗-algebra and U be a square closed Lie ideal
of A. If A admits a nonzero symmetric linear generalized n-derivation G : An → A with trace
g : A → A associated with symmetric linear n-derivation D : An → A with trace d : A → A

satisfying the condition g(ς ◦ ε)± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U, then U ⊆ Z(A).

Proof. Replacing ε by ε + mz for 1 ≤ m ≤ n − 1, z ∈ U in the given condition, we obtain

g(ς ◦ (ε + mz))± [ς, ε + mz] ∈ Z(A) ∀ ς, ε, z ∈ U.

On further solving and using the specified condition, we obtain

n−1

∑
l=1

nClG(ς ◦ ε, . . . , ς ◦ ε︸ ︷︷ ︸
(n−l)−times

, ς ◦ mz , . . . , ς ◦ mz︸ ︷︷ ︸
l−times

) ∈ Z(A) ∀ ς, ε, z ∈ U

which implies that

mA1(ς, ε, z) + m2 A2(ς, ε, z) + · · ·+ mn−1 An−1(ς, ε, z) ∈ Z(A)

∀ ς, ε, z ∈ U where Al(ς, ε, z) represents the term in which z appears l-times. Using
Lemma 3, we obtain

G(ς ◦ ε, . . . , ς ◦ ε, ς ◦ z) ∈ Z(A) ∀ ς, ε, z ∈ U. (6)

For z = ε, we obtain g(ς ◦ ε) ∈ Z(A) then our hypothesis reduces to [ς, ε] ∈ Z(A). Using
the Lemma 2, we obtain U ⊆ Z(A).

Corollary 4. For any fixed integer n ≥ 2, let A be a C∗-algebra and U be a square closed Lie ideal
of A. If A admits a nonzero symmetric linear generalized n-derivation G : An → A with trace
g : A → A associated with symmetric linear n-derivation D : An → A with trace d : A → A

satisfying the condition d(ς ◦ ε)± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U, then U ⊆ Z(A).

Theorem 6. For any fixed integer n ≥ 2, let A be a C∗-algebra and U be a square closed Lie ideal
of A. Let A admit a nonzero symmetric linear generalized n-derivation G : An → A with trace
g : A → A associated with symmetric linear n-derivation D : An → A with trace d : A → A

satisfying one of the following conditions:

(i) g([ς, ε])± g(ς)± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U
(ii) g([ς, ε])± g(ε)± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U.

Then, U ⊆ Z(A).

Proof. (i) Given that

g([ς, ε])± g(ς)± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U.
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Replacing ς by ς + mz, where z ∈ U and 1 ≤ m ≤ n − 1 in the given condition, we obtain

g([ς + mz, ε])± g(ς + mz)± [ς + mz, ε] ∈ Z(A) ∀ ς, ε ∈ U

which on solving and using hypothesis, we obtain

n−1

∑
l=1

nClG([ς, ε], . . . , [ς, ε]︸ ︷︷ ︸
(n−l)−times

, [mz, ε], . . . , [mz, ε]︸ ︷︷ ︸
l−times

)

±
n−1

∑
l=1

nClG( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

, mz, . . . , mz︸ ︷︷ ︸
l−times

) ∈ Z(A) ∀ ς, ε, z ∈ U

which implies that

mA1(ς, ε, z) + m2 A2(ς, ε, z) + · · ·+ mn−1 An−1(ς, ε, z) ∈ Z(A)

∀ ς, ε, z ∈ U where Al(ς, ε, z) represents the term in which z appears l-times.

Making use of Lemma 3 and torsion restriction, we see that

G([ς, ε], . . . , [ς, ε], [z, ε])±G(ς, . . . , ς, z) ∈ Z(A) ∀ ς, ε, z ∈ U.

Replace z by ς to obtain

g([ς, ε])± g(ς) ∈ Z(A) ∀ ς, ε, z ∈ U.

Hence, by using the given condition, we find that [ς, ε] ∈ Z(A). On taking account of
Lemma 2, we obtain U ⊆ Z(A).
(ii) Given that

g([ς, ε])± g(ς)± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U.

Replacing ε by ε + mz, where z ∈ U and 1 ≤ m ≤ n − 1 in the given condition, we obtain

g([ς, ε + mz])± g(ε + mz)± [ς, ε + mz] ∈ Z(A) ∀ ς, ε ∈ U

which on solving and using hypothesis, we obtain

n−1

∑
l=1

nClG([ς, ε], . . . , [ς, ε]︸ ︷︷ ︸
(n−l)−times

, [ς, mz], . . . , [ς, mz]︸ ︷︷ ︸
l−times

)

±
n−1

∑
l=1

nClG( ε, . . . , ε︸ ︷︷ ︸
(n−l)−times

, mz, . . . , mz︸ ︷︷ ︸
l−times

) ∈ Z(A) ∀ ς, ε, z ∈ U

which implies that

mA1(ς, ε, z) + m2 A2(ς, ε, z) + · · ·+ mn−1 An−1(ς, ε, z) ∈ Z(A)

∀ ς, ε, z ∈ U where Al(ς, ε, z) represents the term in which z appears l-times.

Making use of Lemma 3 and torsion restriction, we see that

G([ς, ε], . . . , [ς, ε], [ς, z])±G(ε, . . . , ε, z) ∈ Z(A) ∀ ς, ε, z ∈ U.
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Replace z by ε to obtain

g([ς, ε])± g(ε) ∈ Z(A) ∀ ς, ε, z ∈ U.

Hence, by using the given condition, we find that [ς, ε] ∈ Z(A). On taking account of
Lemma 2, we obtain U ⊆ Z(A).
(iii) Follows from the first implication with a slight modification.

Corollary 5. For any fixed integer n ≥ 2, let A be a C∗-algebra and U be a square closed Lie ideal
of A. Let A admit a nonzero symmetric linear n-derivation D : An → A with trace d : A → A

satisfying one of the following conditions:

(i) d([ς, ε])± d(ς)± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U
(ii) d([ς, ε])± d(ε)± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U

Then, U ⊆ Z(A).

Theorem 7. For any fixed integer n ≥ 2, let A be a C∗-algebra and U be a square closed Lie ideal
of A. Let A admit a nonzero symmetric linear generalized n-derivation G : An → A with trace
g : A → A associated with symmetric linear n-derivation D : An → A with trace d : A → A

satisfying one of the following conditions:

(i) g(ς) ◦ g(ε)± ς ◦ ε ∈ Z(A) ∀ ς, ε ∈ U
(ii) g(ς) ◦ g(ε)± [ς, ε] ∈ Z(A) ∀ ς, ε ∈ U

Then, U ⊆ Z(A).

Proof. (i) Suppose on the contrary that U ⊈ Z(A). It is given that

g(ς) ◦ g(ε)± ς ◦ ε ∈ Z(A) ∀ ς, ε ∈ U.

Replacing ε by ε + mz, where z ∈ U and 1 ≤ m ≤ n − 1 in the given condition, we obtain

g(ς) ◦ g(ε + mz)± ς ◦ (ε + mz) ∈ Z(A) ∀ ς, ε, z ∈ U

which on solving, we have

g(ς) ◦ g(ε) + g(ς) ◦ g(mz) + g(ς) ◦
n−1

∑
l=1

nClG( ε, . . . , ε︸ ︷︷ ︸
(n−l)−times

, mz, . . . , mz︸ ︷︷ ︸
l−times

)

± ς ◦ ε ± ς ◦ mz ∈ Z(A) ∀ ς, ε, z ∈ U.

By using hypothesis, we obtain

g(ς) ◦
n−1

∑
l=1

nClD( ε, . . . , ε︸ ︷︷ ︸
(n−l)−times

, mz, . . . , mz︸ ︷︷ ︸
l−times

) ∈ Z(A) ∀ ς, ε, z ∈ U

which implies that

mA1(ς, ε, z) + m2 A2(ς, ε, z) + · · ·+ mn−1 An−1(ς, ε, z) ∈ Z(A)

∀ ς, ε, z ∈ U where Al(ς, ε, z) represents the term in which z appears l-times.

Making use of Lemma 3, we see that

g(ς) ◦G(ε, . . . , ε, z) ∈ Z(A) ∀ ς, ε, z ∈ U.
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In particular, z = ε, we obtain

g(ς) ◦ g(ε) ∈ Z(A) ∀ ς, ε ∈ U.

Hence, by using the given condition, we find that ς ◦ ε ∈ Z(A) ∀ ς, ε ∈ U. Replacing ς by
ες, we obtain ε(ς ◦ ε) ∈ Z(A) ∀ ς, ε ∈ U. We can also write it as

[ε(ς ◦ ε), z] ∀ ς, ε, z ∈ U

which on solving, we obtain [ε, z]ς ◦ ε = 0 ∀ ς, ε, z ∈ U. Again replace ς by ςz and using the
same equation, we obtain [ε, z]ς[z, ε] = 0 ∀ ς, ε, z ∈ U. Using Lemma 1, we have [z, ε] = 0 ∀
z, ε ∈ U. By Lemma 2, we have U ⊆ Z(A) which is a contradiction.
(ii) Proceeding in the same way as in (i), we conclude.

Corollary 6. For any fixed integer n ≥ 2, let A be a C∗-algebra and U be a square closed Lie ideal
of A. Let A admit a nonzero symmetric linear n-derivation D : An → A with trace d : A → A

satisfying one of the following conditions:

(i) d(ς) ◦ d(ε)± ς ◦ ε = 0 ∀ ς, ε ∈ U
(ii) d(ς) ◦ d(ε)± [ς, ε] = 0 ∀ ς, ε ∈ U.

Then, U ⊆ Z(A).

3. Conclusions

In this study, we have explored the structural properties of C∗-algebras through the
lens of generalized linear n-derivations. In fact, our investigation delves into the structure of
C∗-algebras, focusing particularly on the intricate interplay between symmetric generalized
n-derivations A and Lie ideals of A. By elucidating the functional identity governing the
behavior of linear generalized n-derivations, we provided insights into their forms of traces,
thus shedding light on their intrinsic properties and behaviors.
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