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Abstract: Recently, community detection has emerged as a prominent research area in the analysis of
complex network structures. Community detection models based on non-negative matrix factoriza-
tion (NMF) are shallow and fail to fully discover the internal structure of complex networks. Thus,
this article introduces a novel constrained symmetric non-negative matrix factorization with deep
autoencoders (CSDNMF) as a solution to this issue. The model possesses the following advantages:
(1) By integrating a deep autoencoder to discern the latent attributes bridging the original network
and community assignments, it adeptly captures hierarchical information. (2) Introducing a graph
regularizer facilitates a thorough comprehension of the community structure inherent within the
target network. (3) By integrating a symmetry regularizer, the model’s capacity to learn undirected
networks is augmented, thereby facilitating the precise detection of symmetry within the target
network. The proposed CSDNMF model exhibits superior performance in community detection
when compared to state-of-the-art models, as demonstrated by eight experimental results conducted
on real-world networks.

Keywords: community detection; undirected network; non-negative matrix factorization; deep
learning; symmetry regularization

MSC: 68T30

1. Introduction

Networks are pervasive in the real world [1], and numerous intricate systems in nature
can be effectively represented by networks, such as ecological networks [2] and social
networks [3]. Consequently, network analysis has emerged as a paramount concern.The
inherent community structure represents a fundamental aspect of networks, playing a
pivotal role in network characterization. Community detection serves as the mechanism
for investigating and identifying this essential feature. Community detection has emerged
as a prominent research area in recent years [4]. It entails dividing networks into separate
communities, marked by densely interconnected nodes within each community and fewer
connections between different ones. The accurate detection of these communities can
enhance our understanding of complex network structures. For instance, in social platforms,
individuals with shared interests and close ties form cohesive communities, while those
with no overlap are segregated into separate ones. Community detection is a research topic
involving sociology, mathematics, physics, and other disciplines, with a wide range of
applications, such as finding similar user groups in social networks and finding protein
complexes in protein–protein interaction (PPI) networks.
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Recently, significant efforts have been devoted to the study of community detection,
leading to the establishment of a comprehensive model pyramid [5–7]. Numerous method-
ologies for community detection have been proposed and successfully applied to network
structures, encompassing spectral-clustering-based methods [8], label-propagation-based
methods [9], stochastic-block-model-based methods [10], and deep-learning-based meth-
ods [11]. It is important to note that non-negative matrix factorization (NMF) is widely
utilized in community detection due to its commendable interpretability and scalability.
The purpose of matrix decomposition is to decompose a given matrix into the product of
two or more dimensionally reducing factor matrices [12]. NMF decomposition extracts the
basic features of the network from the matrix, which is an effective way to identify hidden
data [13]. The NMF-based methods approximately factorize the adjacency matrix A of a
given network into two non-negative factor matrices, A ≈ UV (U ≥ 0, V ≥ 0). The matrix
V symbolizes the community membership, with matrix U acting as the projection matrix
between the original network and the community members’ space. The adjacency matrix
A is decomposed into a single factor in the SNMF model, A = VVT , which can effectively
improve the capture of symmetry information in undirected networks. The adjacency
matrix A is decomposed by three factors in the orthogonal three-factor non-negative matrix
decomposition model, A = VSVT , where S provides more degrees of freedom for the
decomposition. The CNMF model is often used in symbolic networks where the fundamen-
tal vectors are represented as convex combinations of data matrices, A± = A±UVT [14].
The existing networks can be classified into six categories: topology networks, signed
networks, attributed networks, multilayer networks, dynamic networks, and large-scale
networks [15]. Although NMF-based models have achieved good results in some cases,
most of the existing NMF-based models are shallow models, such as SNMF [16], GNMF [17],
and CNMF [14]. However, we cannot completely capture all of the internal structure of
the network through shallow models. Moreover, certain deep NMF models overlook sym-
metry, a fundamental characteristic of undirected networks. Deep NMF is a novel and
effective feature extraction method that has been used in recent years, which can obtain a
deeper representation by further recursive decomposition of the matrix results of the NMF
algorithm. Deep NMF can discover the underlying hierarchical characteristics of the data,
which prompts us to conduct further research on deep NMF [18]. The deep autoencoder,
an extensively employed unsupervised learning algorithm in the field of deep learning [19],
is capable of performing various tasks such as feature extraction, dimensionality reduction,
and data reconstruction. In addition, it can also bridge the gap between low-level to high-
level networks for optimal community detection [20]. The deep autoencoder consists of
two components: an encoder component and a decoder component [21]. By employing
layer-by-layer encoding, a high-dimensional dataset is transformed into a low-dimensional
encoding, which can then be reconstructed back to its original high-dimensional form using
layer-by-layer decoding.

This process of dimensionality reduction and reconstruction from high-dimensional
information can not only help us extract feature information but can also remove noise and
reconstruct clean data representation in the process, and feature extraction is more efficient
in low-dimensional information [22]. By integrating non-negative matrix factorization and
the deep autoencoder, we can effectively decompose the mapping matrix U to enhance the
learning of hidden information that represents the intricate network structure [23]. The in-
ternal structure of the target network is learned, and the learning capacity of the undirected
network is bolstered by integrating graph regularization and symmetric regularization.
Building upon the insights gained from the preceding discussion, we introduce a novel
methodology termed constrained symmetric non-negative matrix factorization with deep
autoencoders (CSDNMF) to tackle the community detection challenge. The structure of the
proposed model is shown in Figure 1. Our key contributions can be summarized concisely
as follows:

• The proposed model leverages a deep autoencoder to address the community detec-
tion challenge in undirected networks, proficiently capturing hierarchical information
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within the network. Additionally, it integrates graph regularization and symmetric reg-
ularization into the learning objective, thereby enhancing the model’s representation
learning capability.

• The convergence proof of the proposed CSDNMF model is provided. The mathemati-
cal convergence of the proposed model is proved by two steps: (a) The non-increasing
nature of the objective function is established under the update rule through the
utilization of an auxiliary function. (b) The update rule’s finite solution satisfies the
Karush–Kuhn–Tucker (KKT) optimality conditions.

• Extensive experiments are conducted to evaluate the efficacy of various NMF-based
community detection models. The results indicate that CSDNMF outperforms state-
of-the-art NMF-based community detection methods.
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Figure 1. The structure of the CSDNMF model is depicted, with the upper left representing the
encoder component, the upper right representing the decoder component, and the lower representing
the symmetric regularization term.

The paper is structured as follows: Section 2 provides an introduction to the funda-
mental concepts; Section 3 presents the proposed CSDNMF model; Section 4 conducts
an analysis of the designed algorithms; Section 5 showcases the experimental results;
and finally, in Section 6, a comprehensive summary of the entire text is presented.

2. Related Works

In this section, we present the requisite symbols and foundational knowledge, fol-
lowed by a concise overview of the community detection problem and the NMF model.
Finally, we elucidate the application of the NMF model in addressing the community
detection problem.

2.1. Notations

In this article, bold capital letters are employed to denote matrices. For a matrix
A, its i-th row vector, j-th column vector, (i,j)-th element, trace, and Frobenius norm
are, respectively, Ai, Aj, Aij, tr(A), ∥A∥2

F. The undirected and unweighted networks are
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denoted as G = (V, E), where V = {v1, v2, · · · vn} denotes a set of n nodes and E =
{e1, e2, · · · em} denotes a set of m edges. The topology of an unweighted undirected network
G is represented by the adjacency matrix A, where aij equals 1 if an edge between nodes vi
and vj exists; otherwise, it equals 0. In the case of an undirected network, the adjacency
matrix A exhibits symmetry, with all diagonal elements being 0. We concentrate on the
challenge of community detection within undirected networks.

2.2. Non-Negative Matrix Factorization (NMF)

The NMF algorithm is formally introduced by Lee and Seung in 1999 [24], providing a
robust mathematical framework for reducing data dimensionality and extracting essential
features. The goal of NMF is to represent a non-negative matrix A as the product of two
non-negative matrices U and V, symbolized as A ≈ UV. Here, matrix A embodies the
original dataset, whereas matrices U and V depict the basis matrix and constant matrix, re-
spectively. Through this decomposition, NMF facilitates the exploration of latent structures
and features within the data while effectively eliminating noise and redundant information,
thereby accomplishing dimensionality reduction and feature extraction. NMF finds exten-
sive applications across diverse areas, encompassing image processing [25], text mining [7],
speech processing [26], and so on. Through the application of NMF, we can uncover latent
patterns, themes, and features within our data, facilitating a deeper comprehension and
enhanced utilization of the data. The non-negative matrix factorization technique is a
potent tool that facilitates the simplification of intricate data and extraction of valuable
insights, thereby holding immense significance for data analysis and machine learning.

2.3. Community Detection with NMF

Community detection fundamentally resembles a clustering problem, with nodes in
the complex network serving as the objects to be clustered. NMF inherently possesses
clustering capabilities. By applying orthogonal constraints to the matrix V, the NMF model
can be seen as an alternative formulation of the K-means clustering model. Additionally,
if the non-negative matrix A demonstrates symmetry, it can be transformed into a sym-
metric decomposition form, A ≈ VVT , which aligns with the spectral clustering model.
Both K-means and spectral clustering have demonstrated their efficacy in node clustering,
thus making NMF a natural choice for community detection. In addition, a large part of
the reason why the NMF model is applied to the community detection problem is that the
generation ability of NMF can explain the community structure well. Usually, the adjacency
matrix A of the community network is decomposed, that is, A ≈ UV (U ≥ 0, V ≥ 0),
where U represents the community characteristic matrix, V represents the community
indicator matrix, and Vim represents the intensity of the i th node belonging to the m th
community. NMF-based community detection models typically involve four essential
stages [15]: feature matrix construction, NMF-based model construction, model solving,
and community detection. The initial step entails the construction of the feature matrix by
extracting features from network G and forming the corresponding matrix, denoted as A.
In the subsequent stages, A is the executed factorization used to generate the community
indicator matrix V. Finally, during the community extraction stage, regardless of whether
the communities overlap, the final result is obtained based on the community indicator
matrix V.

3. Methods and Theories
3.1. Deep Non-Negative Matrix Factorization

The NMF model represents the adjacency matrix of a complex original network
as the product of two matrices and employs a mapping matrix solely to capture the
underlying information within the intricate network. The information capacity of a matrix
is evidently limited, whereas the intricate nature of a complex network poses challenges
in its representation through a single layer of mapping. Consequently, NMF can solely
capture simplistic information within the network. If the basis matrix U can be further
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decomposed, the basis matrix U is decomposed into the characteristic matrix of p levels;
each layer of abstraction can effectively capture inter-node similarities at various levels of
granularity, thereby enabling more comprehensive information extraction from the network
and enhancing the model’s representation learning capability. The adjacency matrix A is
specifically decomposed into p + 1 non-negative factor matrices in the following manner:

A ≈ U1U2 · · ·UpVp, (1)

where VP ∈ Rk×n
+ , Ui ∈ Rri−1×ri

+ (1 < i < p), and we set n = r0 ≥ r1 ≥ · · · rp−1 ≥ rp = k.
The formula presented in Equation (1) enables a hierarchical organization of abstract

comprehension within the p-layer, which can be given by the following factorizations:

Vp−1 ≈ UpVp,

· · · · · ·
V2 ≈ U3 · · ·UPVP,

V1 ≈ U2 · · ·UPVP. (2)

This intricate architecture yields more precise community detection outcomes. Ac-
cording to Equation (2), we deduce the following objective function:

min
Ui ,Vp
LD =

∥∥A−U1U2 · · ·UpVp
∥∥2

F, (3)

s.t. Vp ≥ 0, Ui ≥ 0, ∀i = 1, 2 . . . , p.

3.2. Constrained Symmetric NMF with Deep Autoencoders (CSDNMF)

The deep autoencoder represents a prototypical unsupervised learning algorithm,
wherein the fundamental concept involves multiplying the input data by a matrix to achieve
dimensionality reduction. Subsequently, the resulting data is multiplied by the transpose
of the preceding weight matrix to restore an approximate representation of the original
data. If the dimensionality reduction–reconstruction process is represented by multi-layer
matrices, then the dimensions of these matrices must be reduced layer by layer, and we
can regard the dimensionality reduction–reconstruction process as a process of encoding
and decoding. The high-dimensional data set is transformed into a lower-dimensional
representation using layer-by-layer encoding and subsequently restored to its original
high-dimensional form through layer-by-layer decoding. The closer the similarity between
the pre-encoding and post-decoding data, the higher the quality of model training and the
more meaningful the outcome of dimensionality reduction. The deep autoencoder consists
of both an encoder and a decoder component, with Equation (3) specifically representing
the decoder. To bolster the autoencoder’s capacity for representation learning, we combine
the encoder component into Equation (3), thereby constructing an NMF model rooted in
the autoencoder paradigm [27]. The encoder is the inverse process of the decoder, encoding
the multilayer mapping into the initial matrix A. The objective function for the encoder is
deduced as follows:

min
Ui ,Vp
LE =

∥∥∥Vp −UT
p · · ·UT

2 UT
1 A

∥∥∥2

F
, (4)

s.t. Vp ≥ 0, Ui ≥ 0, ∀i = 1, 2 · · · , p.

In order to refine the precision of comprehending the internal geometry of the network,
we incorporate a graph regularizer. Here, λ denotes the regularization parameter, tr(·)
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computes the trace of the enclosed matrix, L denotes the graph Laplacian, and we define
L = D− A (where D is a diagonal matrix comprising the row sums of A).

λ min
Ui ,Vp
Lreg = λ tr

(
VpLVT

p

)
. (5)

The adjacency matrix of an undirected network G is inherently a symmetric square
matrix. To effectively capture and characterize the symmetry inherent in the target network,
we introduce a symmetric regularization term, which improves the representation learning
ability of the model for undirected networks by establishing symmetric constraints between
the lower-dimensional representation of the original matrix and its transpose. The sym-
metric regularization term limits the process of encoding and decoding to the category of
undirected networks, denoted as:

1
2

µLsym =
∥∥∥U1U2 · · ·UpVp −

(
U1U2 · · ·UpVp

)T
∥∥∥2

F
.

By integrating an encoder, decoder, graph regularization term, and symmetric regular-
ization term, the learning objective of CSDNMF can be formulated as follows:

min
Ui ,Vp
L = LD + LE + λLreg +

1
2

µLsym

=
∥∥A−U1U2 · · ·UpVp

∥∥2
F +

∥∥∥Vp −UT
p · · ·UT

2 UT
1 A

∥∥∥2

F

+ λ tr
(

VpLVT
p

)
+

1
2

µ
∥∥∥U1U2 · · ·UpVp −

(
U1U2 · · ·UpVp

)T
∥∥∥2

F
. (6)

4. Optimization

In order to expedite the approximation of the factor matrix in the proposed model, we
employ a pre-training approach to acquire the initial estimation of factor matrices Ui and
Vi. Utilizing pre-training techniques proves highly effective for gradually revealing low-
dimensional nonlinear structures within high-dimensional data. This process significantly
diminishes the training duration of the proposed model, thus enhancing its efficiency and
scalability. Following the pre-training phase, global fine-tuning further refines the model.
The efficacy of pre-training has been previously evidenced, particularly in the domain of
deep autoencoder networks. Detailed explanations of the update rules for the model will
be presented in this section.

4.1. Optimization of Update Rules for Ui (1 ≤ i ≤ p)

The update rules of Ui in fine-tuning are derived by considering Ui as the object.
Meanwhile, the objective function of CSDNMF is rewritten while keeping Ui unchanged:

min
Ui
L(Ui) =

∥∥A−ωi−1Uiωi+1Vp
∥∥2

F +
∥∥∥Vp −ωT

i+1UT
i ωT

i−1 A
∥∥∥2

F

+
1
2

µ∥ωi−1Uiωi+1Vp −
(
ωi−1Uiωi+1Vp

)T∥2
F, (7)

s.t. Ui ≥ 0,

where ωi−1 = U1U2 · · ·Ui−1, ωi+1 = Ui+1 · · ·Up−1Up. When Ui = U1, ωi−1 = 0. When
Ui = Up, ωi+1 = 0.

The Lagrangian multiplier matrix Θi is introduced to enforce non-negative constraints
on Ui, thereby enabling the solution of this equation. The significance of the Lagrange
multiplier matrix is to effectively incorporate non-negative constraints into the optimization
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process, so as to ensure that the elements in the factor matrix in the whole process are
non-negative. The resulting function can be expressed as follows:

min
Ui ,Θi
L(Ui, Θi) =

∥∥A−ωi−1Uiωi+1Vp
∥∥2

F +
∥∥∥Vp −ωT

i+1UT
i ωT

i−1 A
∥∥∥2

F

+
1
2

µ∥ωi−1Uiωi+1Vp −
(
ωi−1Uiωi+1Vp

)T∥2
F − tr

(
ΘiUT

i

)
. (8)

Based on the universally accepted properties ∥X∥2
F = tr

(
XXT) and tr(AB) = tr(BA),

we can derive the following result:

min
Ui
L(Ui, Θi) = tr(AAT + VpVT

p − 4AVT
p ωT

i+1UT
i ωT

i−1 + ωi−1Uiωi+1Vp VT
p ωT

i+1UT
i ωT

i−1

+ µωi−1Uiωi+1Vp VT
p ωT

i+1UT
i ωT

i−1 + ωT
i+1UT

i ωT
i−1 AATωi−1Uiωi+1

− µωi−1Uiωi+1Vpωi−1Uiωi+1Vp −ΘiUT
i ). (9)

According to Lagrange’s theorem, in order to determine the minimum value of this
expression, it is necessary for the partial derivative of L(Ui, Θi) with respect to Ui to be
equal to 0. Consequently, we can deduce the subsequent expression.

Θi = 2ωT
i−1ωi−1Uiωi+1VpVT

p ωT
i+1 − 4ωT

i−1 AVT
p ωT

i+1 + 2µωT
i−1ωi−1Uiωi+1Vp VT

p ωT
i+1

+ 2ωT
i−1 AATωi−1Uiωi+1ωT

i+1 − 2µωT
i−1VT

p ωT
i+1UT

i ωT
i−1VT

p ωT
i+1 = 0. (10)

Then, in conjunction with the complementary relaxation condition of the KKT con-
dition, the equation is constrained in the iterative process to ensure the satisfaction of the
KKT condition throughout; particularly by ensuring that the KKT multiplier is 0 at the
extreme value, we can deduce the subsequent equation.

Θi ⊙Ui = (−4ωT
i−1 AVT

p ωT
i+1 + 2Mi − 2µωT

i−1VT
p ωT

i+1UT
i ωT

i−1VT
p ωT

i+1)⊙Ui = 0, (11)

whereMi = ωT
i−1ωi−1Uiωi+1Vp VT

p ωT
i+1 + µωi−1Uiωi+1VpVT

p ωT
i+1 + ωT

i−1 AATωi−1Uiωi+1ωT
i+1.

The update rule for Ui can be derived by transforming Equation (11).

Ui ← Ui ⊙
2ωT

i−1 AVT
p ωT

i+1 + µωT
i−1VT

p ωT
i+1UT

i ωT
i−1VT

p ωT
i+1

Mi
. (12)

4.2. Optimization of Update Rules for Vi (1 ≤ i ≤ p)

While maintaining the constancy of Vi, the objective function of CSDNMF is reformu-
lated as:

min
Vi
L(Vi) = ∥A−ωiVi∥2

F +
∥∥∥Vi −ωT

i A
∥∥∥2

F
+

1
2

µ
∥∥∥ωiVi − (ωiVi)

T
∥∥∥2

F
, (13)

where ωi = U1 · · ·Ui.
By introducing the Lagrangian multiplier matrix Θi to enforce non-negative constraints

on Vi, we derive the following function:

min
Vi ,Θi
L(Vi, Θi) = ∥A−ωiVi∥2

F +
∥∥∥Vi −ωT

i A
∥∥∥2

F
+

1
2

µ
∥∥∥ωiVi − (ωiVi)

T
∥∥∥2

F
− tr

(
ΘiVT

i

)
. (14)

The expression of Optimization problem (14) can be further refined as follows:

min
Vi
L(Vi, Θi) = tr(AAT + ViVT

i − 4A VT
i ωT

i + ωiViVT
i ωT

i + ωT
i AATωi + µωiViVT

i ωT
i

− .µωiViωiVi −Θi VT
i ) = 0. (15)
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According to Lagrange’s extremum theorem and the Karush–Kuhn–Tucker (KKT)
condition, we derive the following equation:

Θi ⊙Vi = (2Vi + 2ωT
i ωiVi + 2µωT

i ωiVi − 2µωT
i VT

i ωT
i − 4ωT

i A))⊙Vi = 0. (16)

The update rule of Vi is derived by transforming Equation (16).

Vi ← Vi ⊙
2ωT

i A + µωT
i VT

i ωT
i

Vi + ωT
i ωiVi + µωT

i ωiVi
. (17)

4.3. Optimization of Update Rules for Vp

While maintaining the constancy of Vp, the objective function of CSDNMF is reformu-
lated as:

min
Vp

(
Vp

)
=

∥∥A−ωpVp
∥∥2

F +
∥∥∥Vp −ωT

p A
∥∥∥2

F
+ λ tr

(
VpLVT

p

)
+

1
2

µ
∥∥∥ωpVp −

(
ωpVp

)T
∥∥∥2

F
, (18)

s.t. Vp ≥ 0,

where ωp = U1U2 · · ·Up.
By introducing the Lagrangian multiplier matrix Θi to enforce non-negative constraints

on Vp, we derive the following function:

min
Vp ,Θp

L
(
Vp, Θp

)
=

∥∥A−ωpVp
∥∥2

F +
∥∥∥Vp −ωT

p A
∥∥∥2

F
+ λ tr

(
VpLVT

p

)
+

1
2

µ∥ωpVp −
(
ωpVp

)T∥2
F − tr

(
ΘpVT

p

)
. (19)

According to the deduction process of updating rules for Ui and Vi, Optimization
problem (19) can be reformulated as follows:

min
Vp ,Θp

L(Vp, Θp) = tr(AAT + VpVT
p − 4AVT

p ωT
p + ωpVpVT

p ωT
p + ωT

p AATωp

+ µωpVpVT
p ωT

p − µVT
p ωT

p VT
p ωT

p + λVpLVT
p −ΘpVT

p ). (20)

Moreover, the subsequent equation can be derived as follows:

Θp ⊙Vp = (2Vp + 2ωT
p ωpVp + 2µωT

p ωpVp + 2λVpL− 2µωT
p VT

p ωT
p − 4ωT

p A)⊙Vi = 0. (21)

Substitute L = D− A into Equation (21):

Θp ⊙Vp = (2Vp + 2ωT
p ωpVp + 2µωT

p ωpVp + 2λVpD

− 2λVp A− 2µωT
p VT

p ωT
p − 4ωT

p A)⊙Vi = 0. (22)

The update rule of Vp, as transformed by Equation (22), is as follows:

Vp ← Vp ⊙
2ωT

p A + µωT
p VT

p ωT
p + λVp A

Vp + ωT
p ωpVp + µωT

p ωpVp + λVpD
. (23)

4.4. Convergence Analysis

In this section, we establish the convergence of the proposed CSDNMF model using
the update rules provided in Update rule (12) and Update rule (23). Since the update of Vi
does not impact the objective function outlined in Optimization problem (6), we only need
to consider the influence of Ui and Vp. Given the non-negative constraint, the objective
function’s lower limit in Optimization problem (6) is 0. Hence, the convergence analysis of
the model can be simplified to proving the following two points: (a) The objective function
in Optimization problem (6) demonstrates non-increasing behavior under the update rules
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outlined in (12) and (23). (b) The finite solutions yielded by the update rules in (12) and (23)
adhere to the KKT optimality condition.

(a) The objective function in Equation (6) demonstrates non-increasing behavior under
the update rules outlined in (12) and (23).

The non-incrementality of the objective function under the update rule will be demon-
strated by employing the auxiliary function method, which is defined as follows:

Definition 1. The function M(u, u′) is considered as an auxiliary function of F(u) when the
following conditions are met.

M
(
u, u′

)
≥ F(u) and M(u, u) = F(u).

Lemma 1. Depending on the following update rule for the auxiliary function M(u, u′), F(u) is
non-increasing:

ut+1 = argmin M(u, ut) (24)

The detailed proof of Lemma 1can be found in reference [28]; thus, we only need to
appropriately define the auxiliary function to ensure that our update formula satisifies
Equation (24).

Firstly, we establish the non-increasing property of the objective function in Optimiza-
tion problem (6) under the update rule of Ui. The Ui-related component of the objective
function is denoted by F(ujk):

F
(

ujk

)
=

∥∥A−ωi−1Uiωi+1Vp
∥∥2

F +
∥∥∥Vp −ωT

i+1UT
i ωT

i−1 A
∥∥∥2

F

+
1
2

µ∥ωi−1Uiωi+1Vp −
(
ωi−1Uiωi+1Vp

)T∥2
F. (25)

Firstly, we judiciously select the auxiliary function of F
(

ujk

)
in the following manner:

M(ujk, ut
jk) = F(ut

jk) + F′(ut
jk)(ujk − ut

jk)+

((1 + µ)ωT
i−1ωi−1Uiωi+1VpVT

p ωT
i+1 + ωT

i−1 AATωi−1Uiωi+1ωT
i+1)

2ut
jk

× (ujk − ut
jk)

2. (26)

Proof. M(u, u) = F(u) is evidently apparent, so we need to demonstrate M(u, u′) ≥
F(u).

We expand the function F
(

ujk

)
at point ujk by employing a second-order Taylor series

expansion:

F(ujk) = F(ut
jk) + F′(ut

jk)(ujk − ut
jk) +

1
2
((1 + µ)ωT

i−1ωi−1ωi+1VpVT
p ωT

i+1.

+ ωT
i−1 AATωi−1ωi+1ωT

i+1 − µωT
i−1VT

p ωT
i+1ωT

i−1VT
p ωT

i+1)(ujk − ut
jk)

2. (27)

The comparison of Equation (26) with Equation (27) reveals that the condition
M(u, u′) ≥ F(u) can be expressed equivalently as follows:

((1 + µ)ωT
i−1ωi−1Uiωi+1VpVT

p ωT
i+1 + ωT

i−1 AATωi−1Uiωi+1ωT
i+1)

ut
jk

≥ ((1 + µ)ωT
i−1ωi−1ωi+1VpVT

p ωT
i+1 + ωT

i−1 AATωi−1ωi+1ωT
i+1 − µωT

i−1VT
p ωT

i+1ωT
i−1VT

p ωT
i+1). (28)

Given that ut
ij > 0, Inequality (28) can be equivalently expressed as the following

equation:
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((1 + µ)ωT
i−1ωi−1Uiωi+1VpVT

p ωT
i+1 + ωT

i−1 AATωi−1Uiωi+1ωT
i+1)

≥ ((1 + µ)ωT
i−1ωi−1ωi+1VpVT

p ωT
i+1 + ωT

i−1 AATωi−1ωi+1ωT
i+1 − µωT

i−1VT
p ωT

i+1ωT
i−1VT

p ωT
i+1)u

t
jk. (29)

The following formula can be readily derived:

ωT
i−1ωi−1Uiωi+1VpVT

p ωT
i+1 = ∑

j,k
ωT

i−1ωi−1ωi+1VpVT
p ωT

i+1ut
jk > ωT

i−1ωi−1ωi+1VpVT
p ωT

i+1ut
jk. (30)

Similarly, the following formula can be obtained:

ωT
i−1 AATωi−1Uiωi+1ωT

i+1 > ωT
i−1 AATωi−1ωi+1ωT

i+1ut
jk. (31)

The condition of M(u, u′) ≥ F(u) is proven by combining Inequality (30) and Inequal-
ity (31), thereby establishing M(ujk, ut

jk) as an auxiliary function of F(ujk). The subsequent
step involves demonstrating the essential equivalence between the updates presented in
Update rule (12) and Update rule (23), and those outlined in Equation (24).

The auxiliary function in Equation (26) is substituted into Equation (24).

ut+1
jk = argmin M(ujk, ut

jk)

⇒ M′(ujk, ut
jk) = F′(ut

jk)

+
((1 + µ)ωT

i−1ωi−1Uiωi+1VpVT
p ωT

i+1 + ωT
i−1 AATωi−1Uiωi+1ωT

i+1)

ut
jk

× (ujk − ut
jk) = 0

⇒ ujk = ut
jk − ut

jk ×
F′(ut

jk)

((1 + µ)ωT
i−1ωi−1Uiωi+1VpVT

p ωT
i+1 + ωT

i−1 AATωi−1Uiωi+1ωT
i+1)

⇒ ut+1
jk = ut

jk ×
2ωT

i−1 AVT
p ωT

i+1 + µωT
i−1VT

p ωT
i+1UT

i ωT
i−1VT

p ωT
i+1

((1 + µ)ωT
i−1ωi−1Uiωi+1VpVT

p ωT
i+1 + ωT

i−1 AATωi−1Uiωi+1ωT
i+1)

. (32)

The update rule depicted in Equation (32) mirrors that of Update rule (12), thereby
guaranteeing the non-increasing characteristic of the objective function according to the update
rule outlined in (12). Similarly, we can affirm the non-increasing property of the objective
function under the update rule delineated in (23) through a comparable methodology.

(b) The finite solutions yielded by the update rules in (12) and (23) adhere to the KKT
optimality condition.

The convergence condition enables us to obtain U∞
i = Ut+1

i = Ut
i = Ui, where t

represents the t-th iteration. The expansion of the update rule in Equation (12) can be
derived as follows:

(2Mi − 4ωT
i−1 AVT

p ωT
i+1 − 2µωT

i−1VT
p ωT

i+1UT
i ωT

i−1VT
p ωT

i+1)⊙Ui = 0. (33)

The equivalence between Equations (11) and (33) is evident, thereby satisfying the
complementary slackness condition of KKT optimality. The update rule for Vp can be
demonstrated using the same methodology. The convergence of the objective function
under the update rule in (12) and (23) is guaranteed, as evidenced by the content presented
in this section.

4.5. Algorithm Analysis

The proposed CSDNMF model in this paper comprises two components:

• Pre-training process: The pre-training process involves layer-by-layer training, com-
mencing from the first layer and advancing up to the p-th layer, in alignment with
the objective function. This ensures that each layer’s loss function is trained to mini-
mize to the fullest extent possible. The time complexity of the pre-training process is
O
(

ptp
(
n2r + nr2)). Here, p denotes the number of layers in the layer configuration,

tp represents the number of pre-training iterations, and r denotes the maximum value
within the layer configuration.
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• Fine-tuning process: The update rules mandate the iterative optimization of Ui, Vi,
and Vp for each layer until the model converges. The time complexity of the fine-tuning
process is O

(
pt f

(
n2r + nr2)), where t f represents the number of fine-tuning iterations.

The time complexity of the CSDNMF model can be summarized as

O
(

p
(

t f + tp

)(
n2r + nr2

))
.

The procedure of the CSDNMF model is illustrated in Algorithm 1.

Algorithm 1 The optimization procedure of the CSDNMF model

Require: The adjacency matrix A
layer configuration L
number of communities k
graph regular parameters λ
symmetric regular parameters µ

Ensure: mapping matrix Ui
feature matrix Vi
community membership matrix Vp
/*Pre-training*/
U1,V1 = Pro-training(A,l1)
for i = 2 : m do

Ui,Vi= Pro-training(A,li−1)
end for
/*Fine-tuning*/
while not converged do
for i = 2 : m do

update Ui according to Update rule (12)
update Vi according to Update rule (17)
update Vp according to Update rule (23)

end for
endwhile
return Ui, Vi, Vp

5. Experiments
5.1. Evaluation Metric

In order to obtain precise experimental results, we utilize four evaluation metrics that
have been empirically validated and extensively utilized as the assessment methodologies
for our experimental outcomes. The four evaluation metrics are Normalized Mutual
Information (NMI), Adjusted Rand Index (ARI), Accuracy (ACC), and F-score.

5.2. Dataset

In our experiment, seven data sets obtained in practical applications are used to
evaluate the performance of each model, and the data sets used are all public and widely
adopted data sets. In order to verify the performance of each model under different data
sets, we select data sets with large spans in the number of nodes. The smallest dataset
is Email, which has 1005 nodes, and the largest is Facebook, which has 22,470 nodes.
The selection of data sets in this way can verify, in the experimental results, whether the
proposed model has universal significance in data sets of different sizes. The particulars of
each dataset are delineated in Table 1.
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Table 1. Dataset and layer configuration.

Dataset Node Communities Layer Configuration

Email 1005 42 1005-256-128-42
Wiki 2405 19 2405-256-128-19
Core 2708 7 2708-256-64-7

Citeseer 3312 6 3312-256-64-6
Facebook 22,470 4 22,470-512-64-4

Lastfm 7624 18 7625-256-128-18
Pubmed 19,717 3 19,717-512-64-3

5.3. Comparison Models

To showcase the superiority of the proposed CSDNMF model, we have chosen seven
prominent NMF-based community detection models for comparative analysis:

• NMF: The NMF model, based on non-negative matrix factorization, serves as a funda-
mental approach for community detection [15].

• SNMF: The SNMF algorithm employs a distinctive factor matrix to characterize the
symmetry of undirected networks [16].

• ONMF: The ONMF imposes an orthogonal constraint on the mapping matrix U [29].
• MNMF: MNMF introduces a novel approach called Modularized NMF, which inte-

grates the community structure into network embedding [30].
• GNMF: The GNMF model, which integrates NMF with graph regularization, is pro-

posed for addressing community detection problems [17].
• DNMF: The DNMF model, a deep non-negative matrix factorization approach, exclu-

sively incorporates the decoder component [27].
• DANMF: The DANMF model is a deep autoencoder NMF, comprising an encoder

and a decoder [27].

5.4. Experiments Results

The results of four evaluation metrics across various datasets and models are presented
in Tables 2–8. The optimal outcomes are emphasized in the color blue. Repetitively execute
ten iterations on each dataset and compute the average outcome. The table clearly demon-
strates that the CSDNMF model proposed in this paper outperforms other models in the
majority of cases. The CSDNMF model only ranks second in the F-score metric in the Wiki
dataset, the ARI metric in the Citeser dataset, and the ACC metric in the Lastfm dataset.
The results demonstrate that the integration of a deep autoencoder with the model out-
performs the shallow model, and further, incorporating symmetric regularization into the
deep model surpasses other deep models in terms of performance on undirected networks.

Table 2. Performance evaluation of each model on the Email dataset.

Email

NMI ARI F-Score ACC

NMF 0.6694 0.4298 0.4953 0.6597
SNMF 0.6880 0.4223 0.5358 0.6897
ONMF 0.6964 0.4918 0.5611 0.6896
MNMF 0.2366 0.0126 0.0295 0.1352
GNMF 0.6631 0.4362 0.5055 0.6152
DNMF 0.6744 0.4713 0.5609 0.6612

DANMF 0.6863 0.4919 0.5797 0.6736
CSDNMF 0.7014 0.5146 0.5937 0.6973

The optimal outcomes are emphasized in the color blue.
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Table 3. Performance evaluation of each model on the Wiki dataset.

Wiki

NMI ARI F-Score ACC

NMF 0.2651 0.1294 0.2041 0.4252
SNMF 0.2912 0.1223 0.2045 0.4397
ONMF 0.2812 0.1273 0.2056 0.4478
MNMF 0.0462 0.0215 0.0261 0.1063
GNMF 0.2722 0.1183 0.2152 0.4135
DNMF 0.2863 0.1121 0.1904 0.4083

DANMF 0.3136 0.1352 0.2285 0.4525
CSDNMF 0.3224 0.1394 0.2231 0.4567

The optimal outcomes are emphasized in the color blue.

Table 4. Performance evaluation of each model on the Core dataset.

Core

NMI ARI F-Score ACC

NMF 0.3142 0.1873 0.3411 0.5298
SNMF 0.3309 0.2305 0.3823 0.5462
ONMF 0.2046 0.1410 0.2877 0.4494
MNMF 0.0016 0.0012 0.0147 0.2044
GNMF 0.3362 0.1937 0.3655 0.5389
DNMF 0.3403 0.2466 0.3854 0.5016

DANMF 0.3484 0.2381 0.3931 0.5374
CSDNMF 0.3746 0.2538 0.4039 0.5545

The optimal outcomes are emphasized in the color blue.

Table 5. Performance evaluation of each model on the Citesser dataset.

Citesser

NMI ARI F-Score ACC

NMF 0.1172 0.0446 0.1436 0.3322
SNMF 0.1156 0.0656 0.1329 0.3491
ONMF 0.1085 0.0833 0.1337 0.3551
MNMF 0.0021 0.0013 0.0069 0.1065
GNMF 0.1362 0.1006 0.1497 0.3521
DNMF 0.1325 0.0962 0.1566 0.3427

DANMF 0.1269 0.1124 0.1437 0.3516
CSDNMF 0.1524 0.0956 0.1652 0.3626

The optimal outcomes are emphasized in the color blue.

Table 6. Performance evaluation of each model on the Lastfm dataset.

Lastfm

NMI ARI F-Score ACC

NMF 0.5043 0.3781 0.4345 0.7176
SNMF 0.5144 0.4183 0.4977 0.7263
ONMF 0.5297 0.4016 0.4861 0.7056
MNMF 0.1296 0.0643 0.1016 0.3642
GNMF 0.5291 0.4291 0.4762 0.7651
DNMF 0.5811 0.4771 0.5783 0.7162

DANMF 0.5874 0.4962 0.6129 0.7439
CSDNMF 0.6078 0.5816 0.6469 0.7555

The optimal outcomes are emphasized in the color blue.
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Table 7. Performance evaluation of each model on the Pumbed dataset.

Pumbed

NMI ARI F-Score ACC

NMF 0.1494 0.0939 0.5767 0.4314
SNMF 0.1647 0.1055 0.5437 0.4837
ONMF 0.1566 0.1647 0.5147 0.5171
MNMF 0.0006 0.0015 0.0167 0.2644
GNMF 0.1637 0.1129 0.6065 0.4933
DNMF 0.1752 0.1327 0.5261 0.5579

DANMF 0.2173 0.2331 0.6267 0.5916
CSDNMF 0.2464 0.2473 0.6684 0.6077

The optimal outcomes are emphasized in the color blue.

Table 8. Performance evaluation of each model on the Facebook dataset.

Facebook

NMI ARI F-Score ACC

NMF 0.0601 0.0280 0.3363 0.3919
SNMF 0.0682 0.0411 0.3677 0.4006
ONMF 0.0657 0.0395 0.3535 0.4155
MNMF 0.0014 0.0009 0.1065 0.1273
GNMF 0.0711 0.0306 0.3587 0.4236
DNMF 0.0944 0.0674 0.4421 0.4697

DANMF 0.1065 0.0811 0.4758 0.4966
CSDNMF 0.1263 0.0984 0.5271 0.5563

The optimal outcomes are emphasized in the color blue.

5.5. Parameter Sensitivity

The parameters λ and µ are used to adjust the contribution of graph regulariza-
tion and symmetric regularization, respectively, and the range of both parameters is{

10−3, 10−2, 10−1, 100, 101}. We conducted experiments to assess the sensitivity of pa-
rameter values on the Email and Lastfm datasets, respectively. When conducting parameter
testing, the other parameter should be set to a value of 1. The experimental results are
presented in Figures 2–5. The results demonstrate the stability of CSDNMF across various
values of λ and µ while emphasizing that appropriate parameter selection can enhance
model performance and robustness. In this experiment, both λ and µ were set to 1.
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Figure 2. The influence of graph regularization λ on the Email dataset.
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Figure 3. The influence of symmetric regularization µ on the Email dataset.
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Figure 4. The influence of graph regularization λ on the Lastfm dataset.
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Figure 5. The influence of symmetric regularization µ on the Lastfm dataset.

5.6. Wilcoxon Signed Rank Test

To rigorously compare the performance of the proposed CSDNMF model in this paper
with other state-of-the-art models, we conduct a widely recognized verification experiment
known as the Wilcoxon Signed Rank Test [31]. The results from the Wilcoxon Signed
Rank Test experiments, conducted at a specified significance level, are outlined in Table 9.
The p-value stands as the key indicator denoting the significance level. Analyzing the data
from Table 9, we confidently affirm that the CSDNMF model demonstrates significantly
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greater accuracy in community detection compared to other models, with a confidence
level of 95.

Table 9. Wilcoxon Signed Rank Test.

Proposed Model Comparison Model p-Value

CSDNMF NMF 6.25 × 10−6

CSDNMF SNMF 2.02 × 10−7

CSDNMF ONMF 1.31 × 10−6

CSDNMF GNMF 4.12 × 10−7

CSDNMF MNMF 7.35 × 10−7

CSDNMF DNMF 2.80 × 10−4

CSDNMF DANMF 1.63 × 10−4

6. Conclusions

The utilization of NMF-based models in community detection problems is driven by
their advantageous traits. However, the linearity of NMF poses limitations, particularly
when dealing with nonlinear complex networks. To overcome this constraint, we propose
the novel CSDNMF model, which integrates deep learning techniques to outperform
shallow models. Our proposed CSDNMF model leverages the deep learning capabilities
of deep autoencoders, the effective learning abilities of graph regularization for capturing
network internal structures, and the representation power of undirected networks through
symmetric regularization. Through extensive experiments conducted on seven datasets
and employing four evaluation metrics, we demonstrate the model’s superiority over other
NMF-based models. Additionally, we showcase its robustness to regularization parameters.
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