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Abstract: Music genre classification is significant to users and digital platforms. To enhance the
classification accuracy, this study proposes a hybrid model based on VMD-IWOA-XGBOOST for
music genre classification. First, the audio signals are transformed into numerical or symbolic
data, and the crucial features are selected using the maximal information coefficient (MIC) method.
Second, an improved whale optimization algorithm (IWOA) is proposed for parameter optimization.
Third, the inner patterns of these selected features are extracted by IWOA-optimized variational
mode decomposition (VMD). Lastly, all features are put into the IWOA-optimized extreme gradient
boosting (XGBOOST) classifier. To verify the effectiveness of the proposed model, two open music
datasets are used, i.e., GTZAN and Bangla. The experimental results illustrate that the proposed
hybrid model achieves better performance than the other models in terms of five evaluation criteria.

Keywords: music genre classification; feature extraction; decomposition; optimization
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1. Introduction

Mobile devices and streaming services have revolutionized music access, making it
more convenient for users. The abundance of digital music poses a significant challenge for
music information retrieval (MIR), particularly in swiftly locating preferred tracks within
vast libraries based on genres. Music genre classification (MGC) is a popular application
for MIR, and music genres are vital labels for organizing and retrieving music, which is
essential for solving classification challenges [1,2].

Most of the early music genre classification and labeling was performed manually,
which required worker expertise. Music streaming platforms often employ music specialists
to conduct music tagging, leading to high accuracy, albeit at a substantial expense. At times,
platforms permit non-professional users to contribute tags by making the tagging feature
accessible, and these user-generated tagging data are incorporated into the music tags.
While this approach reduces costs, it often results in numerous instances of mislabeling
within categories [3]. Therefore, it is necessary to achieve music genre classification by
computational methods. Currently, the mainstream classification of music genres is divided
into two classification methods: image classification, based on music spectrograms, and
symbolic description music classification, based on symbolic data types [4].

For the first classification method, most studies perform the short-time Fourier trans-
form (STFT) on the raw data, visualizing the raw data as spectrograms, or obtain Meier
spectrograms so as to acquire deeper acoustic features to improve the classification accuracy
of the subsequent model. With the breakthrough of computer vision (CV), researchers
have carried out a series of studies on music genre classification based on deep learning
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(DL) [5]. Since the spectrogram of audio is similar to that of red-green-blue (RGB) images,
most CV models can be applied in the field of MGC. In view of this, Oliveira et al. [6] trans-
formed audio signals into spectrograms and extracted features from images. Yang et al. [7]
proposed a novel method for music genre classification that can be applied to the spectro-
grams. By considering the possible differences between spectra, he proposed an attention
mechanism model based on the bidirectional recurrent neural network (BRNN) for music
genre classification, and experiments showed that the proposed model outperformed the
traditional model. Cheng et al. [8] combined the music genre classification with the YOLO
architecture. In their work, extracted visual Meier spectrograms were used as the input
features, and higher accuracy was achieved. Laiali et al. [9] transformed audio data into
spectrograms using STFT, the audio features were extracted using Mel-frequency cepstral
coefficients (MFCCs) for classification, and the experimental results showed that AlexNet
demonstrated the best performance among the group of convolutional neural network
(CNN) classifiers. Costa et al. [10] proposed a novel method to transform audio signals into
spectrograms and extract texture features from image time-frequency features; this method
surpassed the best results in the MIREX2010 competition in the LMD dataset. Gan [11]
found that the CNN-based method ignores the temporal characteristics of the audio itself;
therefore, he combined the convolutional structure with a bidirectional recurrent neural
network and proposed a convolutional recurrent neural network classification architecture.
Accurate results on the GTZAN dataset were obtained. Balachandra [12] improved the
moth algorithm IMOF and successfully applied it to the task of music genre classification.
He achieved good classification results by optimizing the weights of a deep belief network
(DBN) and performing classification. Wang et al. [13] used bidirectional long short-term
memory (BiLSTM) for feature extraction and VGG-16Net to achieve better results on the
MSD-I, GTZAN, and ISMIR2004 datasets. Rui [14] found that manual parameter setting
could not achieve good results in music emotion classification. Therefore, Rui proposed
the quantum particle swarm optimization (QPSO) algorithm to optimize the parameters
of the CNN-RF model. Li et al. [15] found that a traditional CNN attempts to classify the
input spectrograms with a softmax layer that lacks the ability to distinguish the deeper
features of the music. In response to inadequate discrimination caused by softmax loss, an
angular margin and cosine margin softmax loss (AMCM-Softmax) approach is proposed to
augment the discriminative efficacy of deep features.

For the second classification method, as these music features are rooted in musical
symbols, prevalent formats such as Music Digital Interface (MIDI), MusicXML, and MEI
are frequently utilized [16]. In order to capture more features when performing classifi-
cation, some scholars began to use symbolic data types. For example, as early as 2003,
Tzanetakis and Cook used a duration histogram (DH) to capture rhythmic information for
classification, and, at the same time, they established one of the most widely used publicly
available datasets, GTZAN [17]. Karydis captured the pitch information characteristics of
music to classify genres and achieved good performance [18]. In 2004, McKay and Fujinaga
extracted 109 high-level musical features from MIDI files, which are related to the strength,
instrumentation, pitch, melody, rhythm, and chords of music. The number of features was
expanded in the literature [19] to 160, which were used to automatically classify music
genres; good classification results were obtained. Jorge et al. [20] incorporated conventional
musical attributes, such as note histograms and statistical moments, alongside innovative
features extracted from MIDI files to classify genres using a traditional machine learning
classifier. Their findings indicate that regular-kNN surpasses other traditional machine
learning models in performance. Lee et al. [21] expanded their analysis by incorporating
additional musicological features, blending musical instrument data with raw audio and
MIDI phrases as input variables for classification. They employed traditional machine
learning algorithms, such as support vector machines (SVM), decision trees, and random
forest (RF), for their classification tasks. Qiu et al. [22] introduced an unsupervised latent
music representation learning method based on a deep 3D convolutional denoising au-
toencoder (3D-DCDAE) for music genre classification. This method aims to learn common
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representations from a large amount of unlabeled data to improve the performance of music
genre classification. This not only minimizes training time compared to partial models
but also achieves superior classification accuracy. Cheng et al. [23] used Librosa to classify
raw audio by measuring its key features such as the corresponding Mel-spectrum, which
greatly improved the convenience of feature extraction. Meanwhile, Sakinat O. et al. [24]
utilized publicly available Nigerian songs to extract audio features using Librosa. They in-
troduced the ORIN dataset, making it publicly accessible. In addition, kNN, SVM, extreme
gradient boosting (XGBOOST), and RF were employed. Experimental results revealed that
XGBOOST outperformed other methods, achieving superior classification accuracy.

Given the above analysis, the existing studies achieved competitive performance
in music genre classification. However, some issues still need to be addressed: (i) In
terms of feature extraction, various feature selection algorithms are used to capture the
powerful features, but the intrinsic pattern of original features can be further extracted.
(ii) Regarding parameter optimization, machine learning models rely on the parameter
setting in classification tasks, but traditional parameter optimization methods (such as
grid search, PSO algorithm, etc.) always obtain a local optimization solution, resulting in
limited performance.

In view of this, this paper introduces a hybrid model for music genre classification.
The original audio is transformed into numerical data first; then, the maximum information
coefficient (MIC) is used for feature selection. Subsequently, variational mode decompo-
sition (VMD) is employed to extract the inner pattern of the top-five features. To reduce
the complexity and capture effective information from original features, in this paper, we
adopt the decomposition-based approach for classification. The main contributions are
outlined as follows:

1. A hybrid model with VMD-IWOA-XGBOOST is proposed for music genre classifica-
tion. MIC is used to screen out high-correlation features, VMD is chosen to extract the
key information of features, an Improved Whale Optimization Algorithm (IWOA) is
proposed to improve the parameter setting, and XGBOOST is utilized as the classifica-
tion model.

2. An IWOA is proposed for parameter optimization. By refining the search process,
contracting encircling, and altering the spiral position, comparative analysis reveals
the superiority of the IWOA.

The remainder of the paper is organized as follows: Section 2 describes the method-
ology; Section 3 describes the experimental results and analytics; Section 4 summarizes
the conclusions.

2. Methodology
2.1. Feature Extraction

In this paper, we extract features from time and frequency domains for the GTZAN
dataset, and the following main musical features have a large difference in classification of
musical genres: zero-crossing rate (ZCR), spectral centroid, spectral roll-off, spectral band-
width, chroma frequency, root-mean-square energy (RMSE), delta, Mel-spectrogram, tempo,
and Mel-frequency cepstral coefficients (MFCCs) [25]. Below, we provide descriptions of
features extracted from the frequency domain:

(1) The zero-crossing rate is the rate of change of a signal symbol, i.e., the probability of
changing from a negative or opposite number to a positive number [26]. The over-zero
rate is an important feature in the field of speech recognition and music information
retrieval, and its defining formula is provided below:

zcr =
1

T − 1

T−1

∑
t=1

sign{stst−1 < 0} (1)

where s is the signal length T, and the sign function assigns a value of 1 when {} is
true, and 0 otherwise.
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(2) The spectral center of mass is a critical physical parameter elucidating the timbral
characteristics of a sound signal. It delineates the frequency-weighted average of
energy distribution within a specified frequency band, functioning as the locus of
gravity for its constituent frequencies. Consequently, it offers pivotal insights into
the frequency and energy distributions inherent to the sound signal. It represents
the brightness of the signal spectrum and is regarded as the cross-section of the STFT
amplitude spectrum. The following is its defining formula:

sc =

K
∑

k=1
kX(k)

K
∑

k=1
X(k)

(2)

where X(k) is the spectrum of the DFT (discrete Fourier transform) at moment k
of amplitude.

(3) Spectral roll-off generally means that the frame center frequency is below the default
threshold of the spectrum (typically 85%). This is another attribute used to estimate
the spectral pattern. Spectral roll-off points serve as discriminative indicators within
audio signals, facilitating the identification of distinct sounds, including the timbral
nuances exhibited by various instruments. These features, typically integrated with
other descriptors such as MFCCs, zero-crossing rate, and bandwidth measures, are
employed synergistically to enhance the efficacy of audio processing tasks. The
calculation formula is provided below:

Qt

∑
n=1

0.85 × X(k) (3)

(4) Spectral bandwidth refers to a fundamental parameter in signal processing and
spectroscopy, representing the range of frequencies encompassed by a signal or a
spectral distribution. It is calculated with the following formula:

fc =

K
∑

k=1
s(k) f (k)

K
∑

k=1
s(k)

(4)

(5) Chroma frequency is used to indicate the energy of each tone level between musical
signals, providing a metric characteristic in cases where there is a great similarity
between musical segments.

(6) RMSE is a method of characterizing the energy of a signal. It is expressed in Equa-
tion (5), while its rooted calculation is shown in Equation (6).

N

∑
n=1

|x(n)|2 (5)

where x(n) denotes the discrete time node signal.√√√√√ N
∑

n=1
|x(n)|2

N
(6)

(7) In the case of Mel-frequency cepstral coefficients (MFCCs), the vast majority of its
parameters are related to the amplitude of the frequency. The MFCC is an important
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feature of audio signals and it is used for rapid speech recognition [27]. Its equation is
as follows:

mel( f ) = 1125 × ln
(

1 +
f

100

)
(7)

(8) The harmonic and percussive harmonic will reveal more horizontal or pitch-dependent
changes. The percussive harmonic will show more vertical or time-dependent changes.
These features are generally obtained using a fast Fourier transform (FFT).

(9) Tempo is a fundamental aspect of music theory and analysis, denoting the rate or speed
at which a musical piece progresses, typically measured in beats per minute (BPM).

2.2. The Maximal Information Coefficient

Reshef et al. proposed the maximum information coefficient, which can not only
measure the linear and nonlinear relationship between data variables but can also mine the
non-functional dependence between variables [28].

The calculation of MIC is very simple; if there exist two variables V1 = {v1(i) }, i = 1,
2, . . ., n and V2 = {v2(i) }, i = 1, 2, . . ., n, both of which are related in some way, and if
those variables v1(i) and v2(i), i = 1, 2, . . ., n, can be formed into a set D {v1(i), v2(i) },
then the calculation for determining the relationship between the two sides of the above is
as follows:

(1) Firstly, V1 and V2 are arranged in ascending order, and, subsequently, an xt × yt grid
Gt is defined as a sequence partition, where each sample point of V1 is partitioned
into xt parts, each sample point of V2 is partitioned into yt parts, and some cells are
allowed to be empty sets.

(2) The probability distribution function D|Gt
of all cells of the grid Gt species is derived;

at this time, the maximum mutual information value obtained is max I
(

D|Gt

)
, and

the value of its identity matrix is M(D)x,y, as shown in Equation (8):

M(D)x,y =
maxI

(
D|Gi

)
ln min(x,y) =

p(xt ,yt) ln p(xt ,yt)
p(xt)p(yt)

ln min(xt ,yt)
=

max

 x
∑

i=1

y
∑

j=1
ln

nij
N −

x
∑

i=1

y
∑

j=1
nij

N ln

y
∑

j=1
nij

N −
y
∑

i=1

x
∑

j=1
nij

N ln

x
∑

j=1
nij

N


ln min(xt ,yt)

(8)

where p(xt, yt) represents the joint probability density function of elements xt and yt
within grid Gt. p(xt) and p(yt) denotes the edge density distribution functions of xt
and yt, respectively. nij is the number of cell samples falling in the j th row and the i
th column of the grid G, and N is the total number of samples.

(3) Since different grids G lead to different probability distribution functions D|G, the
maximum mutual information coefficients MIC of the variables V1 and V2 are searched
for the optimal grid G by the exhaustive method for the feature matrix:

MIC(D) = max
xy<B(N)

{
M(D)x,y

}
= max

maxI(D|G)
ln min(x, y)

= M(D)x, y (9)

where I(D|G) represents the probability distribution function encompassing all ele-
ments within the grid Gt. B(N) is the maximum grid for an exhaustive search.

The final MIC obtained is assigned values between [0, 1]; the greater the correlation of
the variables, the greater the MIC value, and vice versa.

2.3. Variational Mode Decomposition

VMD is a non-recursive signal processing method which can decompose the original
signal f(t) into a series of intrinsic mode function (IMF) with finite bandwidth by iteratively
searching for the optimal solution of the variational modes. The method has good noise
immunity and can effectively overcome the mode aliasing problem of empirical mode
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decomposition (EMD) [29]. The essential idea of VMD is to computationally solve the
variational problem. The computational steps are as follows:

(1) The analytical signal of each mode is solved by the Hilbert transform, and the spectrum
is constructed at the same time. Finally, the analytical signal of each decomposed
mode component uk at time t is obtained:(

δ(t) +
j

πt

)
× uk(t) (10)

(2) The predicted center frequency is multiplied with the resolved signal of each IMF
component for frequency correction, and the spectrum of each decomposed IMF
component is shifted to the corresponding frequency band:[(

δ(t) +
j

πt

)
× uk(t)

]
e−jωkt (11)

where
(

δ(t) + j
πt

)
is the Hilbert transform functor and e−jωkt is the correction factor.

(3) The variational problem with constraints is constructed by using the above-demodulated
signal, calculating the bias, and then estimating the bandwidth from its squared
paradigm, as shown below:

min
{uk ωk}

{
K
∑

k=1

∣∣∣∂t

[(
δ(t) + j

πt

)
× uk(t)

]
e−jωkt

∣∣∣2
2

}
s.t.

K
∑

k=1
uk(t) = f (t)

(12)

where {uk} is the set of IMF components for each decomposition, {wk} denotes the
set of center frequencies for each mode component, ∂t denotes the bias operation on
the variable t, δ(t) denotes the unit-pulse signal function, * denotes the convolution
operation, f (t) denotes the original signal, and | |22 denotes the L2 paradigm.

(4) In order to transform the constrained variational problem into an α variational prob-
lem without constraints, the original problem can be converted into a problem of
solving the Lagrange function maximum by introducing the Lagrange multiplier a
with the quadratic penalty factor λ, which has the following expression:

L({µk}, {ωk}, α) = α
K

∑
k=1

∣∣∣∣∣∂t

[(
δ(t) +

j
πt

)
× uk(t)

]
e−jωkt

∣∣∣∣2
2
+

∣∣∣∣∣ f (t)−
K

∑
k=1

uk(t)

∣∣∣∣∣
2

2

+ < α(t), f (t)−
K

∑
k=1

uk(t) > (13)

where α denotes the Lagrange multiplier, λ denotes the quadratic penalty factor, and
< , > denotes the dot product operation.

(5) The optimal solution of the constrained variational model is solved by updating uk,
wk, and α in the frequency domain using the alternating direction multiplier method,
and the updated equation is shown below:

µ̂n+1
k (ω) =

f̂ (ω)− ∑
i ̸=k

µ̂i(ω) +
α̂(ω)

2

1 + 2λ(ω − ωk)
2 (14)

ωn+1
k =

∫ ∞
0 ω

∣∣∣ µ̂n+1
k (ω)

∣∣∣ 2

2
dω∫ ∞

0

∣∣∣∣ µ̂n+1
k (ω)

∣∣∣2
2
dω

(15)

αn+1(ω) = αn(ω) + Θ

[
f̂ (ω)−

K

∑
k=1

µ̂n+1
k (ω)

]
(16)
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K

∑
k=1

∥µ̂n+1
k (ω)− µ̂n

k (ω)∥2
2

∥µ̂n+1
k (ω)∥2

2

< ε (17)

where n is the number of iterations; µ̂i(ω), f̂ (ω), and α̂(ω) are the Fourier transforms
of µ(t), f (t), and α(t), respectively; |µ̂k(ω)| is the Wiener filtering of each component
of IMF after Fourier transform; Θ is the noise tolerance limit; ωk

n+1 is the center
frequency of the k th mode component at the n + 1 th iteration; and ε is the set
threshold of convergence accuracy. Using Equations (12)–(14), µk

n+1, ωk
n+1, and αn+1

are continuously updated until the termination condition of Equation (17) is satisfied;
then, the iteration is terminated.

2.4. Improved Whale Optimization Algorithm

The WOA algorithm is a bionic intelligent optimization algorithm that has been devel-
oped to simulate the unique foraging style of whales. It assumes that the current individual
is the prey, and all other individuals in the group approach the optimal individual. The
WOA is divided into three main phases: searching for foraging, contraction of encirclement,
and helical updating of the position [30]. The underlying WOA formula can be found in
the literature [30]. This study proposes an improved whale optimization algorithm, as
described below.

(1) Adaptive weighting

First, we choose the number of iterations t to constitute the adaptive inertia weights,
as shown in Equation (18), based on the variation of the number of update iterations in the
whale optimization algorithm:

w(t) = 0.2 × cos
(

π

2
×

(
1 − t

tmax

))
(18)

The improved whale optimization algorithm position is updated as follows:

→
X(t + 1) =

w(t)
→
X
∗
(t)−

→
A ·

→
D , i f p < 0.5

w(t)
→
X∗ +

→
D′ × ebl × cos(2πl) , i f p ≥ 0.5

(19)

(2) Variable helix position

The parameter b is designated as a variable that changes with the number of iterations
to dynamically adjust the shape of the spiral during whale searching, and after combining
the adaptive weights, the new spiral position is updated as follows:

→
X(t + 1) =

→
D′ × ebl × cos(2πl) +

→
X∗ (20)

b = e5×cos (π×(1− t
tmax )) (21)

(3) Differential variance scale factor

We found that the algorithm will generate new feasible solutions around the optimal
solution when it is close to the optimal solution, which will cause premature convergence as
the number of iterations increases. To solve this problem, we borrowed the idea of variance
perturbation factor for use in the differential evolutionary algorithm and introduced this
variance perturbation factor in the process of shrinking the surroundings to form the
optimal solution, which can make the algorithm jump out of the local optimum and
improve the optimization accuracy of the local optimum [31]. The variance perturbation
factor is shown in Equation (22):

γ = F
(→

X
∗
(t)−

→
X(t)

)
(22)
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where F is the variance perturbation factor.

2.5. XGBOOST

Extreme gradient boosting tree (GBDT) is an optimization of the boosting algorithm,
which combines multiple regression tree classifiers into a single powerful classifier with
the advantages of fast training speed with high generalization ability [32]. It generates
new trees to fit the residuals of the previous tree by iterating continuously, and its accuracy
improves as the number of iterations increases. The simplified form of its objective function
after Taylor expansion is shown in (23):

Oobj = −1
2

T

∑
j=1

G2
j

Hj + λ
+γT (23)

where Oobj is the objective function, T is the number of leaves in the regression tree, Gj is the
first order derivative, Hj is the second order derivative, λ is the regularization parameter,
and γ is the learning rate.

2.6. The Proposed VMD-IWOA-XGBOOST Model

In this section, we describe the framework of the VMD-IWOA-XGBOOST model. The
modeling framework is shown in Figure 1. The details are elaborated as follows:
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Step1: the original GTZAN audio dataset is processed through Librosa (version of
Librosa is 0.9.1).

Step2: critical features are selected through MIC, the highest features are obtained first,
and decomposition techniques are used to reduce the complexity of selected features.

Step3: we optimize the parameters of VMD and XGBOOST using the IWOA.
Step4: we carry out feature decomposition using the IWOA-optimized VMD method.
Step5: the decomposed modes are divided into a training set and a test set with 80%

in the training set and 20% in the test set.
Step6: IWOA-optimized XGBOOST is used to classify.
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3. Experiment
3.1. Data Set

We used two open datasets (GTZAN and Bangla) for the experiment. GTZAN is
a classical dataset that includes a collection of 10 Western music genres, including but
not limited to hip-hop, country, metal, blues, jazz, rock, disco, etc. Each of these genres
contains 100 pieces of music, and each piece of music (a total of 1000 songs) is in a 30-s WAV
audio format with 16-bit audio files in 22,050 HZ mono [24]. Considering the richness and
diversity of Bangla music, we selected a Bangla music dataset for music genre classification,
following the work of Mamun [26] et al., by selecting six classic Bangla music genres, each
with approximately 250–300 songs of music. We named this the Bangla Music Dataset and
made it available.

3.2. Evaluation Criteria

In order to verify the generalization of our proposed model, we employ the GTZAN
and Bangla datasets. We adopted macro − precision, macro − recall, macro − F1 − score,
Accuracy, and MCC to evaluate experimental results. Firstly, we introduced the basic
precision, recall, F1 − score, Accuracy and MCC. Equation (24) is the precision formula, TP
is the true example, and FP is the false positive example. Precision can be interpreted as the
ability of the classifier to predict only true samples as positive and actually correct. Equation
(25) is the recall formula, FN is the false negative example, and recall can be understood
as the percentage of the number of test samples that are true positive examples that are
actually classified as positive. Equation (26) is the formula for F1− score calculation, and F1
is the harmonic mean coefficient between precision and recall; if the precision and recall are
higher, then the value of F1 will be higher. Equation (27) is the formula for Accuracy, TN is
the true counterexample, and the purpose of calculating Accuracy is to find the ratio of the
number of correct judgments to all judgments. In order to achieve a fairer experimental
result, we will use precision, recall, and F1 − score to find their respective average values.
The calculation formula is shown in Equations (28)–(30).

precision =
TP

TP + FP
(24)

recall =
TP

TP + FN
(25)

F1 − score =
2 × (precision × recall)

precision + recall
(26)

Accuracy =
TP + TN

TP + FN + FP + FN
(27)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(28)

macro − precision =
1
n

n

∑
i=1

precision (29)

macro − recall =
1
n

n

∑
i=1

recalli (30)

macro − F1 =
2 × (macro − precision × macro − recall)

macro − precision + macro − recall
(31)

3.3. Parameter Settings

This experiment was conducted using the Windows 11 operating system, an 11th
Gen Intel (R) Core (TM) i5-11300H @ 3.10 GHz 3.11 GHz processor, and a 16 GB RAM
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computer based on the Python version 3.9.18 runtime environment. This environment
provides sufficient arithmetic power, as well as experimental stability.

In the model training, the two classifiers were used (BP and long short-term memory
(LSTM)) and, using the Adam optimizer, iterations were set to 10,000, and batch size was
set to 512. For XGBOOST, adaptive boosting (AdaBoost), RF, and GBDT, which are not
optimized by IWOA, their n_estimators were set to 100, and their learning_rate was set to
0.01. The specific experimental parameters are shown in Table 1.

Table 1. Model parameters.

Model Parameters Values

BP epoch, batch_size 10,000, 512

LSTM epoch, batch_size 10,000, 512

AdaBoost n_estimators, learning_rate 100, 0.01

GBDT n_estimators, learning_rate,
max_depth 100, 0.01, 5

XGBOOST gamma, n_estimators, learning_rate,
max_depth 0, 100, 0.01, 5

RF n_estimators, max_depth,
min_samples_leaf 100, 5, 2

WOA-XGBOOST gamma, n_estimators, learning_rate,
max_depth

[0~10]
[50~5000]
[0.01~0.5]

[1~20]

VMD-IWOA-XGBOOST K, alpha, gamma, n_estimators,
learning_rate, max_depth

[3~100]
[100~25,000]

[0~10]
[50~5000]
[0.01~0.5]

[1~20]

3.4. Experiment Results
3.4.1. Feature Selection Results

In this section, we describe the feature selection that was conducted with the MIC
method. The resultant graphs are shown in Figure 2, and the values of each weight are
shown in Table 2.

Table 2. Feature selection.

Data Features Weight

GTZAN

spectral_bandwidth_mean 0.2556
rolloff_mean 0.2473
mfcc2_mean 0.2201

spectral_centroid_mean 0.2165
mfcc1_mean 0.2150
mfcc9_mean 0.1650
Mfcc7_mean 0.1512

spectral_centroid_var 0.1403
rolloff_var 0.1318

Mfcc4_mean 0.1275
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Table 2. Cont.

Data Features Weight

Mfcc8_mean 0.1244
chroma_stft_mean 0.1183

Mfcc6_var 0.1172
Mfcc4_var 0.1125

Mfcc5_mean 0.1123
Mfcc6_mean 0.1066
Mfcc3_mean 0.1012
Mfcc12_mean 0.1006

Mfcc7_var 0.0984
Mfcc13_mean 0.0973
Mfcc11_mean 0.0938

spectral_bandwidth_var 0.0929
Mfcc8_var 0.0876
Mfcc5_var 0.0823

Mfcc19_mean 0.0755
Mfcc15_mean 0.0754
Mfcc10_var 0.0747
Mfcc9_var 0.0714

Mfcc17_mean 0.0709
Mfcc10_mean 0.0688
Mfcc14_mean 0.0672
Mfcc13_var 0.0636
Mfcc12_var 0.0624
Mfcc3_var 0.0598

Mfcc16_mean 0.0539
tempo 0.0519

Mfcc2_var 0.0518
Mfcc1_var 0.0475

Mfcc20_mean 0.0456
Rms_mean 0.0450
Mfcc20_var 0.0401
Mfcc15_var 0.0387
Mfcc11_var 0.0377
Mfcc19_var 0.0352
Mfcc16_var 0.0313
Mfcc18_var 0.0294
Mfcc14_var 0.0290

Mfcc18_mean 0.0270
length 0.0256

Mfcc17_var 0.0241
zero_crossing_rate_mean 0.0184

chroma_stft_var 0
Rms_var 0

zero_crossing_rate_var 0
harmony_mean 0
harmony_var 0

perceptr_mean 0

Bangla

spectral_1width 0.3569
chroma_frequency 0.2854

spectral_rolloff 0.2682
mfcc1 0.2579
mfcc2 0.2421

spectral_centroid 0.2141
Mfcc7 0.2038
Mfcc5 0.1764
Mfcc9 0.1603
Mfcc0 0.1586



Mathematics 2024, 12, 1549 12 of 23

Table 2. Cont.

Data Features Weight

Mfcc4 0.1456
Mfcc11 0.1437
Mfcc13 0.1204
Mfcc10 0.1099
Mfcc3 0.0965

zero_crossing 0.0923
Mfcc12 0.0771
Mfcc17 0.0710
Mfcc19 0.0697
Mfcc15 0.0664
Mfcc14 0.0564
Mfcc6 0.0555
Mfcc8 0.0528

Mfcc16 0.0483
tempo 0.0434

melspectogram 0.0415
Mfcc18 0.0396
rmse 0.0370
delta 0

perceptr_var 0
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Figure 2a shows the MIC feature selection results for the GTZAN dataset, and Figure 2b
shows the feature selection results for the Bangla dataset.

3.4.2. Decomposition Results

In this subsection, we selected the five features with the highest weight values for
decomposition to reduce the accuracy impact of the high complexity and non-linearity of
the data. Since the number of decompositions and the penalty factor alpha have a more
obvious effect on the decomposition, the parameters of VMD needed to be optimized. We
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first optimized the K value and alpha of the VMD through IWOA to ensure the best decom-
position effect and then set the population of IWOA to 10 and the number of iterations to
30. The optimization process is shown in Figures 3 and 4, and the decomposition process
of the VMD is shown in Figures 5 and 6.
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Figure 5 illustrates the VMD decomposition process, showcasing the decomposition
of features with the highest weight from GTZAN selected by MIC. From Figure 5a–e, the
IMF components depict a progressive reduction in data volatility, indicating a continuous
decrease in signal complexity throughout the process.

Figure 6 displays the VMD decomposition process of Bangla’s corresponding features.
As depicted in Figure 6a–e, the complexity of the data continues to diminish, indicating a
clear reduction in complexity throughout the decomposition process.

3.4.3. Analysis of Classification Results

In order to verify the performance and generalization of the VMD-IWOA-XGBOOST
model, in this section, we set up a comparison test using different classifiers for comparison.
The classification results of the various models are presented in the form of confusion
matrices. As illustrated in Figures 7 and 8, the summation of matrix elements yields the
aggregate count of songs within the test set. In the confusion matrix representation, the
x-axis denotes the sequential indexing of predicted music genres, while the y-axis signifies
the sequential indexing of actual music genres. The diagonal elements represent the count
of accurately classified genres.
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Figure 7. Confusion matrix of the GTZAN experiments.
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Figure 7a shows the confusion matrix using the AdaBoost classifier experiment weights
on the GTZAN test set, where the accuracy value is 0.335, the macro-precision is 0.276, the
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macro-recall is 0.319, and the macro-F1-score value is 0.271. Figure 8a shows the confusion
matrix using the AdaBoost classifier experiment weights on the Bangla test set, where
the accuracy value is 0.438, the macro-precision is 0.427, the macro-recall is 0.447, and the
macro-F1-score value is 0.405. The classification outcomes derived from the AdaBoost
classifier exhibit a notable deficiency in performance, failing to produce satisfactory results.

Figure 7b shows the confusion matrix using the BP neural network classifier exper-
iment weights on the GTZAN test set. The classification outcomes are summarized as
follows: the accuracy value is 0.625, the macro-precision is 0.648, the macro-recall is 0.639,
and the macro-F1-score value is 0.639. Figure 8b shows the confusion matrix using the BP
neural network classifier experiment weights on the Bangla test set, and the accuracy value
is 0.647, the macro-precision is 0.637, the macro-recall is 0.638, and the macro-F1-score value
is 0.636. From this result, we can conclude that the performance of our proposed model
surpasses that of the AdaBoost model. Moreover, Figure 9 depicts the accuracy versus loss
function curve of the BP neural network.
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Figure 7c shows the confusion matrix using the LSTM neural network classifier ex-
periment weights on the GTZAN test set. The results can be summarized as follows: the
accuracy value is 0.645, the macro-precision is 0.661, the macro-recall is 0.653, and the
macro-F1-score value is 0.647. Figure 8c shows the confusion matrix using the LSTM neural
network classifier experiment weights on the Bangla test set; the accuracy value is 0.679, the
macro-precision is 0.645, the macro-recall is 0.669, and the macro-F1-score value is 0.667. In
comparison, based on the experimental results, LSTM demonstrates superior performance
over the BP neural network, attributed to its heightened ability in feature extraction across
variables, which enhances classification accuracy. Moreover, Figure 10 depicts the accuracy
versus loss function curve of the LSTM neural network.
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Figure 7d shows the confusion matrix using the GBDT classifier experiment weights on
the GTZAN test set. The classification outcomes can be summarized as follows: the accuracy
value is 0.64, the macro-precision value is 0.649, the macro-recall is 0.661, and the macro-
F1-score value is 0.642. Figure 8d shows the confusion matrix using the GBDT classifier
experiment weights on the Bangla test set. The classification outcomes are summarized
as follows: the accuracy value is 0.679, the macro-precision is 0.676, the macro-recall is
0.676, and the macro-F1 score value is 0.673. In contrast, according to the experimental
findings, GBDT exhibits similar classification performance to LSTM while offering quicker
training speeds.

Figure 7e shows the confusion matrix using the RF classifier experiment weights on
the GTZAN test set. The classification results are summarized as follows: the accuracy
value of the RF classifier is 0.655, the macro-precision value is 0.687, the macro-recall is
0.673, and the macro-F1-score is 0.659. Figure 8e shows the confusion matrix using the
GBDT classifier experiment weights on the Bangla test set, and the accuracy value is 0.653,
the macro-precision is 0.653, the macro-recall is 0.659, and the macro-F1-score value is 0.659.
Based on these findings, RF not only outperforms LSTM and GBDT in classification but
also provides quicker training speeds, making it a good choice for classification modeling.

Figure 7f shows the confusion matrix using the XGBOOST classifier experiment
weights on the GTZAN test set. The classification outcomes can be summarized as fol-
lows: the accuracy value of the XGBOOST classifier is 0.665, the macro-precision is 0.678,
the macro-recall is 0.686, and the macro-F1-score is 0.665. Figure 8f shows the confusion
matrix using the XGBOOST classifier experiment weights on the Bangla test set, where
the accuracy value is 0.689, the macro-precision is 0.674, the macro-recall is 0.675, and
the macro-F1 score value is 0.672. These results exceed those of all previously mentioned
models, establishing it as our benchmark model for optimization.

We enhanced XGBOOST to achieve higher classification accuracy, leveraging its ex-
ceptional performance among numerous classification models as a guiding factor. Using
the WOA algorithm, we optimized the parameters of XGBOOST, including the number of
estimators, maximum depth, learning rate, and gamma, aiming to enhance its classification
performance. The optimized results surpassed those of XGBOOST without WOA optimiza-
tion. Figure 7g shows the confusion matrix using the WOA-XGBOOST classifier experiment
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weights on the GTZAN test set, where the accuracy was 0.765, the macro-precision was
0.767, the macro-recall was 0.776, and the macro-F1-score was 0.767. Figure 8g shows
the confusion matrix using the XGBOOST classifier experiment weights on the Bangla
test set. The classification results are summarized as follows: the accuracy is 0.767, the
macro-precision is 0.759, the macro-recall is 0.759, and the macro-F1-score value is 0.759.
The results above demonstrate that the optimized XGBOOST exhibits enhanced proficiency
in genre classification.

Recognizing the intricate and volatile nature of numerical music features, we employed
decomposition techniques to alleviate the complexity of features, thereby improving clas-
sification accuracy. Initially, we identified the five most heavily weighted features using
MIC. Following that, we utilized VMD to optimize the decomposition parameters, such
as the decomposition number “K” and penalty factor “alpha”, employing the IWOA to
attain optimal decomposition performance. After decomposition, the dataset was split into
training and test sets with a 0.8:0.2 ratio. Subsequently, XGBOOST was optimized using
the IWOA for final classification. Figure 7h shows the confusion matrix using the VMD-
IWOA-XGBOOST classifier experiment weights on the GTZAN test set. The following is
a summary of the classification outcomes: the accuracy value of VMD-IWOA-XGBOOST
is 0.855, the macro-precision is 0.854, the macro-recall is 0.866, and the macro-F1-score
value is 0.855. Figure 8h shows the confusion matrix using the VMD-IWOA-XGBOOST
classifier experiment weights on the Bangla test set. In summary, the accuracy is 0.785,
the macro-precision is 0.782, the macro-recall is 0.782, and the macro-F1-score value is
0.780. These results illustrate the significantly enhanced performance of the decomposed
and reclassified model compared to other comparative models, highlighting its superior
generalization ability, and providing a novel reference framework for tackling music classi-
fication challenges.

From Figure 9a,b, it can be observed that when the training loss decreases but remains
unchanged, while the test loss continues to rise, overfitting may be occurring. This in-
dicates that the model performs admirably on the training set, yet demonstrates subpar
performance on the test data, signifying a lack of generalizability to novel datasets.

Figure 10a indicates that after a decrease in training loss, the testing loss continues to
rise, indicating a certain degree of overfitting, resulting in poor classification and general-
ization performance of the model on the testing dataset. In Figure 10b, the test loss initially
rises, then declines and tends to stabilize, while the training loss remains unchanged. This
indicates a bottleneck in the learning process, with suboptimal performance on the test set,
resulting in weaker performance in music genre classification.

The comparative results are shown in Table 3. It can be shown that the proposed
model is superior to the other benchmark models in terms of four evaluation metrics on
two datasets.

To underscore the superiority of the model proposed in this paper, we conducted a
t-test to assess its significance. Utilizing 10-fold cross-validation, we obtained experimental
results for each model, followed by t-test analysis to ascertain their significance. Addi-
tionally, we measured the running time of each model for comparative reference. Table 4
presents the significant results of the t-test.

As depicted in Table 4, the 10-fold cross-validation results of the model proposed in
this paper exhibit significant superiority compared to other models, as indicated by the
t-test. While the difference may not be pronounced when compared to WOA-XGBOOST,
the model’s running speed significantly outpaces that of WOA-XGBOOST.
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Table 3. Comparison between the results using the proposed method and the results using other meth-
ods.

Data Model Accuracy MCC Macro-Precision Macro-Recall Macro-F1-Score

GTZAN

AdaBoost 0.335 0.265 0.276 0.319 0.271
BP 0.625 0.588 0.648 0.639 0.641

LSTM 0.645 0.660 0.661 0.653 0.647
GBDT 0.640 0.601 0.649 0.661 0.642

RF 0.655 0.620 0.687 0.673 0.659
XGBOOST 0.665 0.630 0.678 0.686 0.665

WOA-XGBOOST 0.785 0.760 0.787 0.796 0.790
VMD-IWOA-XGBOOST 0.855 0.844 0.854 0.866 0.855

Bangla

AdaBoost 0.438 0.339 0.427 0.447 0.405
BP 0.647 0.583 0.637 0.638 0.636

LSTM 0.679 0.643 0.645 0.669 0.667
GBDT 0.679 0.616 0.677 0.676 0.673

RF 0.653 0.585 0.652 0.652 0.648
XGBOOST 0.689 0.618 0.674 0.675 0.672

WOA-XGBOOST 0.767 0.720 0.759 0.759 0.759
VMD-IWOA-XGBOOST 0.785 0.742 0.782 0.782 0.780

Table 4. Model t-test experiment and runtime analysis.

Data Model Running Time (s) p-Values

GTZAN

AdaBoost 6.675 0.000
BP 329.710 0.027

LSTM 1422.501 0.010
GBDT 90.445 0.003

RF 4.588 0.003
XGBOOST 4.742 0.011

WOA-XGBOOST 2382.100 0.350
VMD-IWOA-XGBOOST 1017.203 /

Bangla

AdaBoost 6.125 0.000
BP 448.431 0.556

LSTM 2104.9 0.041
GBDT 55.12 0.044

RF 4.322 0.001
XGBOOST 5.235 0.037

WOA-XGBOOST 2879 0.376
VMD-IWOA-XGBOOST 1854.5 /

4. Conclusions

In this paper, we propose a hybrid model which uses signal decomposition, the opti-
mization algorithm, and the machine learning model for music genre classification. Librosa
is used to transform the original audio into numerical or symbolic features, MIC is used
for feature selection, VMD is employed to reduce the complexity of the original features,
IWOA is proposed to optimize the parameters of VMD and XGBOOST, and XGBOOST is
used for prediction. In this experimental study, two datasets, GTZAN and Bangla, are used
as sample data, and eight different models are selected for comparative experiments. The
experimental results for our proposed hybrid model were significantly better than those
achieved with other models. The contributions of this paper are summarized as follows:

1. A hybrid model with VMD-IWOA-XGBOOST is proposed for music genre classifica-
tion. MIC is used to screen out five high-correlation features, the signal decomposition
technique VMD is chosen to extract the key information of features, IWOA is proposed
to improve parameter optimization, and XGBOOST is utilized as the classification
model.

2. An IWOA is developed by refining the search process, contracting encircling, and
altering the spiral position. We propose using an IWOA for parameter optimization.
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Comparative analysis reveals that the IWOA outperforms the WOA algorithm in
terms of four evaluation metrics.
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