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Abstract: The advancement of autonomous capabilities in maritime navigation has gained significant
attention, with a trajectory moving from decision support systems to full autonomy. This push
towards autonomy has led to extensive research focusing on collision avoidance, a critical aspect of
safe navigation. Among the various possible approaches, dynamic programming is a promising tool
for optimizing collision avoidance maneuvers. This paper presents a DP formulation for the collision
avoidance of autonomous vessels. We set up the problem framework, formulate it as a multi-stage
decision process, define cost functions and constraints focusing on the actual requirements a marine
maneuver must comply with, and propose a solution algorithm leveraging parallel computing.
Additionally, we present a greedy approximation to reduce algorithm complexity. We put the
proposed algorithms to the test in realistic navigation scenarios and also develop an extensive
test on a large set of randomly generated scenarios, comparing them with the RRT* algorithm
using performance metrics proposed in the literature. The results show the potential benefits of an
autonomous navigation or decision support framework.
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1. Introduction

The future of navigation points toward increasing the autonomous capabilities of
ships [1,2], from decision support systems to fully autonomous navigation. The framework
that will guide the future of the maritime world is hinged on the classification released
by the International Maritime Organization (IMO) [3], in which four incremental MASS
(Maritime Autonomous Surface Ship) autonomy levels are described for the classification of
autonomous ships, ranging from MASS Level 1, featuring automated systems for decision
support for the crew, to MASS Level 4, an uncrewed ship with full decisional autonomy.
The push toward the development of autonomous technologies in the maritime field has
created fertile ground for the research community, which has identified numerous scientific
gaps in various areas typical of autonomous navigation and marine robotics, such as
complex guidance and control algorithms [4–6], collaborative control [7–9], situational
awareness [10], path planning, and collision avoidance.

The challenge for maritime collision avoidance is to develop algorithms capable of
reacting to the presence of obstacles, fixed or moving in the surrounding environment,
and generating trajectories or maneuvers capable of avoiding collision, maintaining an
adequate safety distance, and, when applicable, complying with the COLREG [11,12],
which sets the “rules of the road” a ship must follow when interacting with other ships.
This requirement is essential in scenarios where autonomous systems interact with human-
controlled systems [13]. Collision avoidance falls under the broader problem of path
planning, i.e., the determination of an optimal path automatically based on information
about the surrounding environment. In the robotics field, path planning is commonly
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divided into two levels [14,15], the off-line or global level, in which the path is determined
based on a priori known information, such as information about fixed obstacles or weather
forecasts (weather routing), and the local or reactive level, in which subparts of the path
are re-planned online in reaction to changes in the environment detected by sensors, such
as moving or unexpected obstacles. The scientific literature has proposed various ap-
proaches to the reactive collision avoidance of marine vessels, including A* [16], Dijkstra’s
algorithm [17,18], visibility graphs [19], rapidly exploring random trees [20–22], Artificial
Potential Field methods [23,24], and various population-based heuristics [25–28].

Describing a ship’s route or maneuver through a sequence of waypoints is a common
approach in the literature, not only at the global planning level but also at the reactive
planning level. Such an approach features some relevant advantages for the application
to large human-crewed ships, both in a fully automatic collision avoidance system and
within a MASS Level 1 decision support framework, such as the one Figure 1 illustrates.
The representation of a maneuver by waypoints and legs is intelligible to seafarers, and the
decision support system can propose it to the officer on the watch, who can understand
it and decide whether to acknowledge it. Then, the new sequence of waypoints is taken
over by a motion control system, for example, one based on Line of Sight [29,30], which
determines, based on GNSS localization, the necessary propulsion and steering actions to
track the course according to the ship’s dynamics with a reasonably low track error.

Global route planning 
(weather routing/voyage optimization)

Reactive route planning
(collision avoidance)

Voyage 
data

Weather
forecasts

Ship traffic
sensor data

 situation awareness

Low-level control and actuation

Officer acknowledgement 
(in IMO MASS Level 1)

Departure

Arrival

Planned route: waypoints and speed

Proposed evasive maneuver: waypoints

Acknowledged evasive maneuver

Required steering and propulsive actions

Motion control

Nautical
charts

Globally planned route

Globally planned route

Planned evasive maneuver
Ship's trajectory

Ship's dynamics

Propulsion and steering actions

Figure 1. The layered architecture of an autonomous navigation or navigation support system. The
higher layer includes global route planning based on prior known environmental conditions and
weather forecasts; the route is represented as a set of waypoints in which the reactive planning layer
nests the collision avoidance maneuvers; the alternative maneuvers are actuated by a motion control
system, potentially after operator acknowledgment.

Dynamic programming (DP) is an effective approach for solving multi-stage opti-
mization problems. From its introduction by Bellman [31,32], DP has been successfully
generalized and formulated to describe path planning problems [33]. The requirements of
a collision avoidance system are the ability to effectively and efficiently represent obstacles
and the surrounding environment and the ability to determine in real time, with low
computational cost, evasive maneuvers that onboard control systems can actuate. These
requirements perfectly match the potential of DP, which, in this framework, offers the
possibility of a simple and effective problem description, implementation of constraints,
and efficient solution schemes capable of exploiting parallelism. Despite the inherent recur-
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sive formulation of DP, very efficient solution strategies based on function memoization
or tabulation [34] and leveraging parallel computation [35–37] have been proposed to
optimize the computation efficiency. DP-based algorithms are ideal for scenarios where
resources are limited and real-time computation is crucial, such as in autonomous ve-
hicles, robotics, and embedded systems, and have found application in a broad range
of industrial fields, including railway transportation [38], robotics [39,40], and maritime
transport. The maritime literature features various applications of DP, primarily in typical
maritime global planning problems such as weather routing [41–44], where the objective is
to determine the optimal trajectory across a space–time domain to reach the destination
by effectively navigating through forecasted dynamic weather conditions in compliance
with various constraints including ship motions, seasickness, and minimization of fuel
consumption or the ship’s motion-related loss function.

In this article, we introduce a DP formulation for the problem presented by the
collision avoidance of autonomous vessels which can be applied in a reactive collision
avoidance context. In Section 2, we set up the framework to describe the ship collision
avoidance problem. In Section 3, we formulate the optimal path planning problem as a
multi-stage decision process with a recursive definition based on Bellman’s equation. In
Section 4, we describe the cost function and constraints based on the actual requirements of
a collision avoidance maneuver for marine application, taking into account maneuvering
limits and regulations to obtain smooth, collision-free, and COLREG-compliant maneuvers.
In Section 5, we propose a bottom-up solution scheme for the problem, leveraging parallel
computing, and we discuss some implementation-related strategies in Section 6. Next,
in Section 7, we further reduce the algorithm time complexity by proposing a greedy
approximation of the DP problem formulated previously. Eventually, in Section 8, we
assess the performances of the proposed approach. First, we discuss the results of the
proposed algorithms in some relevant navigation scenarios. Moreover, we analyze the
performance of the proposed algorithms depending on the algorithm parameters and the
required computation effort on a large set of randomly generated scenarios. Finally, we
compare the proposed algorithms with the RRT* in randomly generated scenarios using
performance metrics proposed in the literature.

2. Collision Avoidance Framework Definition

Despite the Earth’s curvature being relevant when planning long routes [41], the hori-
zon of a maneuver in a collision avoidance context is usually such that we can approximate
the ship’s state space X with a Euclidean plane. Figure 2 visually represents the definitions
and notations we will provide in the following.

ex

ey

x0

x1
x2

x3

xN

eE

eN

...

s1 = (x0, x1)

s2 = (x1, x2)

s3 = (x2, x3)
sN = (xN−1, xN)

Figure 2. A representation of the ship’s configuration space X, including a route R composed of
waypoints xi and route legs si.

At the beginning of the collision avoidance maneuver, the ship is located in xstart. We
introduce the orthogonal unit vectors ex and ey to represent the cardinal axes of X; the
unit vector ex is aligned with the ship’s course at the beginning of the collision avoidance
maneuver, while ey points towards the ship’s starboard (right) side so that ez = ex × ey
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points downwards, as per the standard convention for ship maneuverability. We will refer
to any generic position x ∈ X as a waypoint. We can represent a generic maneuver or route
R as a sequence of consecutive waypoints as follows:

R = (x0, x1, . . . , xN) = (xi)
N
i=0 (1)

A sequence of two consecutive waypoints, s = (x, y), is called a route leg. If
si = (xi−1, xi), and we denote with “⊕” the sequence concatenation operator such that
(x, y)⊕ (y, z) = (x, y, z), we can represent the route R as:

R = (x0, x1)⊕ (x1, x2)⊕ . . . ⊕ (xN−1, xN) = s1 ⊕ s2 ⊕ ... ⊕ sN (2)

We introduce the notation s⃗ = y − x to represent the vector connecting the start point
of the leg to the end point. We can obtain the course change between two consecutive legs
si ∈ Si, sj ∈ Sj, Si, Sj ⊆ {(x, y)|x, y ∈ X} using the function θ: Si × Sj → [0, π] defined as
follows:

θ(si, sj) = arccos

(
s⃗i · s⃗j

|⃗si||s⃗j|

)
(3)

Some considerations about the ship’s kinematics are also needed. Firstly, we assume
the ship is moving at a constant speed u. Such an assumption is reasonable since, in mar-
itime practice, course alterations are preferred to speed reductions due to the long transients
a speed alteration takes. In particular, it is common practice to avoid obstacles by altering
the ship’s course and trying to keep the speed or reducing the speed by a limited amount
in the first part of the maneuver, keeping it constant and slowly regaining the cruise speed
after the collision risk is mitigated. Leveraging the constant speed assumption, we can
easily map R to a sequence of time instants (ti)

N
i=0. The instant ti at which it engages the

waypoint xi is given by: ti = ti−1 +
|⃗si|
u

t0 = 0
(4)

Therefore, the instantaneous vessel position x(t) at time t = ti + ∆t is given by:

x(ti + ∆t) = xi + u
s⃗i
|⃗si|

∆t (5)

Moreover, since collision avoidance is about the interaction with obstacles, we need
to introduce a notation and some hypotheses to describe them. First, we assume there
are M obstacles in the scenario with known kinematics. We denote with am(t) ∈ X the
instantaneous position of the mth obstacle. For this study, we will approximate the motion
of the obstacles as a straight line with constant speed motion as follows:

am(t) = am(t0) + wmt (6)

where wm represents the speed vector of the mth obstacle. The proposed formulation could
be generalized to any known motion law.

3. Dynamic Programming Formulation

Concerning Figure 3a, let xstart ∈ X be the initial position of the ship, the unit vector ex
be aligned with the ship’s initial course, and ey be a unit vector orthogonal to ex such that
ez = ex × ey points downwards. Let δx and δy be the dimensions of the region in which the
ship can maneuver. We introduce a discretization of the domain by defining X0 = {xstart}
and Xi ⊂ X, i ∈ {1, ..., N} as follows:

Xi =

{
x ∈ X|x = xstart +

i
N

δxex +
j

D
δyey, j ∈ {−D, . . . D}

}
(7)
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where N, D ∈ N control the fineness of the discretization along ex and ey, respectively,
and i, j are the indices of the discretization. Figure 3b exemplifies a graphical representation.
A route R = (xi)

N
i=0 is such that xi ∈ Xi.

δy

δx

ex

ey

xstart

(a) Domain region

ex

ey

xstart

i = 1

i = 2

i = 3

i = 4 j = −2

j = −1

j = 0

j = 1

j = 2

X1

X3

X2

X4

(b) Discretized domain region

Figure 3. A representation of the domain of the collision avoidance problem (a) and an example
discretization of the domain with N = 4 and D = 2 (b).

We can imagine a route R = s1 ⊕ s2 ⊕ ...⊕ sN as the result of a sequence of transitions be-
tween consecutive route legs si = (xi−1, xi) ∈ Si, where Si = {s = (x, y)|x ∈ Xi−1, y ∈ Xi}.
In this framework, optimal route planning can be represented as finding an optimal pol-
icy in a multi-stage decision process in which the route legs represent the states. Let
J: ∏k

i=1 Si → R be a function expressing the cost of a route up to state sk, k ∈ {1, ..., N};
therefore, J(s1, s2, ..., sN) represents the cost of the whole route. Let us assume that J is
additively separable, i.e., there exists a function c: Si−1 × Si → R such that

J(s1, s2, ..., si) = J(s1, s2, ..., si−1) + c(si−1, si) (8)

Let us denote F(si): Si → R, the route’s cost up to the state si following an optimal
policy, i.e., a policy such that J(s1, s2, ..., si) is the minimum, as follows:

F(si) = min
s1,s2,...,si−1

J(s1, s2, ..., si) (9)

Since J is additively separable, we can leverage Bellman’s equation to define F recur-
sively [33]: F(si) = min

z∈Si−1|t(z,si)
c(z, si) + F(z)

F(s1) = c(s0, s1)
(10)

where s0 represents the state of the ship before the collision avoidance maneuver begins,
and t: Si−1 × Si → {True, False} is a function such that t(si−1, si) = True if the transition
from si−1 to si is feasible, False otherwise.

Similarly, we can define the optimal predecessor function p: Si → Si−1 returning the
optimal predecessor state in Si−1 for the state si ∈ Si:

p(si) = argmin
z∈Si−1|t(z,si)

c(z, si) + F(z) (11)
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Let the recursive function B: Si → {(xk)
i
k=0|xk ∈ Sk} have the following form:{

B(si) = B(p(si))⊕ si

B(s1) = s1
(12)

Once we know p(si) for all i ∈ {1, ..., N}, the optimal solution R can be obtained,
backtracking the optimal decisions as follows:

R = B(sN) (13)

where
sN = argmin

s∈SN

F(s) (14)

4. Constraints and Cost Function

The constraints are needed to formulate the function t: Si−1 × Si → {True, False}
to identify whether a transition is feasible. For the transition to be feasible, the next
leg must begin at the end of the previous. Moreover, each transition must be such that
the final resulting sequence, i.e., the route, is compatible with the ship’s maneuvering
capabilities, respects the COLREG, and is collision safe. Therefore, the function t takes the
following form:

t(si−1, si) = tlink(si−1, si) ∧ tθ(si−1, si) ∧ tCOLREG(si) ∧ tcollision(si) (15)

In particular, tlink ensures that the two route legs can be connected. The course change
constraint function tθ ensures the course changes along the path are compatible with ship
maneuvering capabilities and good seamanship, the COLREG constraint function tCOLREG
implements a set of rules to ensure the COLREG compliance of the own ship’s kinematics
relative the other vessels’, and the collision avoidance constraint function tcollision aims to
guarantee an appropriate distance from the obstacles to avoid collisions safely.

4.1. Route Leg Connection

The feasibility of the transition from si−1 ∈ Si−1 to si ∈ Si is expressed by the function
tlink: Si−1 × Si → {True, False}. The transition is possible if the end point of the first leg is
the start point of the second:

tlink(si−1 = (·, x), si = (y, ·)) = (x ?
= y) (16)

where the symbol “·” is a placeholder for any point in the proper domain, and the operator

“ ?
=”, returning values in {True, False}, is such that A ?

= B returns True if A = B, False
otherwise.

4.2. Course Change Constraint

We need to define a minimum and maximum threshold value for the ship’s course
changes, denoted as θmin and θmax, respectively. The introduction of θmax is motivated by
the ship’s maneuvering capabilities and the performance of the motion control system.
During a course change, the ship goes off the predefined track by a certain distance which
is related to the magnitude of the course change. A large course change will push the
ship too much off track, increasing the risk of collision. The reason for θmin can be found
in COLREG Rule 8(b), which requires that “Any alteration in course and/or speed to
avoid collision must, if the circumstances of the case permit, be large enough to be readily
apparent to another vessel observing visually or by radar; a succession of small alterations
in course and/or speed must be avoided”. We thus want to ensure that we either have
course changes large enough to be apparent to an observer but not so large that the control
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and steering system cannot actuate them or no course change between legs. Thus, we can
define tθ : Si−1 × Si → {True, False} as:

tθ(si−1, si) = (θmin ≤ θ(si−1, si) ≤ θmax) ∨
(

θ(si−1, si)
?
= 0

)
(17)

4.3. COLREG Compliance Constraint

The COLREG is an international convention regulating several aspects of navigation,
including visibility, navigation lights, and required behaviors in encounter situations to
avoid collisions. This last part is a set of “rules of the road” that each ship has to follow when
encountering other ships. COLREG-compliant behavior can be identified by analyzing
the kinematics of the ships engaging in the scenario and relying on a set of if-then-else
rules to assess which behavior each ship has to keep relative to the others. This action is
usually called COLREG classification. Various approaches and algorithms for COLREG
classification have been proposed in the literature [45,46].

For this study, we suppose that, to determine the COLREG-compliant behavior βi, the
own ship must keep relative to the ith dynamic obstacle in the scenario, and that βi ∈ CB,
where CB is the enumeration of all the possible behaviors:

CB = {SO, GW, HO, AA} (18)

In particular:

• SO (Stand On): COLREG requires the target ship to maneuver to avoid a collision, so
the own ship must keep its course and speed. In this case, we will neglect the presence
of the target ship;

• GW (Give Way): The own ship must maneuver to avoid collision with the target ship,
letting the latter pass ahead;

• HO (Head On): The own ship and the target ship are sailing on parallel and opposite
routes, and the own ship must avoid the collision by turning to starboard (right);

• AA (Any Action): The own ship must take any appropriate action to avoid collision;
this behavior is adopted in emergencies, such as when the target ship is expected to
maneuver to avoid the collision but does not seem to initiate the evasive maneuver.

These behaviors are ensured in the solution by imposing constraints on the leg in
which the own ship and the target ship cross each other’s route.

Let us assume that the ship and the target a cross in leg si = (xi−1, xi), i.e., for
t ∈ [ti−1, ti], and let us denote with xc the intersection point. If β = GW, COLREG requires
the target ship to engage xc before the own ship; thus, we need to impose that, if the Own
ship engages xc during leg si, it does so after the target:

tGW(si = (xi−1, xi))

= (xc ∈ {x(t) ∈ X|t ∈ [ti−1, ti]}) ∧
(
|xc − xi−1|

u
− |xc − a(ti−1)|

|w| > 0
) (19)

If β = HO, the correct behavior is ensured by ensuring that the computed path keeps
the target ship on the port side of the own ship. The latter is ensured by the constraint
below:

tHO(si) = ∀t ∈ [ti−1, ti] : (am(t)− x(t))× s⃗i · ez > 0 (20)

Eventually, the COLREG constraint function takes the following form:

tCOLREG(si) =∀m ∈ {1, ..., M} : (βm
?
= GW ∧ tGW(si))

∨ (βm
?
= HO ∧ tHO(si))

∨ (βm ∈ {AA, SO})

(21)
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4.4. Collision Avoidance Constraint

The obstacle avoidance constraint aims to guarantee that the evasive maneuver is
collision safe. To this end, let us introduce the concepts of safety distance dsa f ety and
the Closest Point of Approach CPA. The dsa f ety is the distance that the own ship must
maintain from all obstacles during an evasive maneuver. It provides a safety margin
that accounts for ship dimensions and uncertainties related to the environment, control,
and measurement systems, ensuring the ship’s safety during the avoidance maneuver.
The CPA is the minimum distance between the center points of the own ship x(t) and an
obstacle, whose position over time is denoted by am(t), for t ∈ [t0, tN ]. In particular, we
define the CPAm(si): Si → R as follows:

CPAm(si) = min
t∈[ti−1,ti ]

|am(t)− x(t)| (22)

The ship and obstacles may have different sizes, speeds, and relative positions. In ad-
dition, previous results have shown that some encounter scenarios are more critical than
others in their dynamic evolution [13]. For the sake of generality, it may thus be appropriate
to determine a specific safety distance dsa f ety,m for each obstacle belonging to the scenario.
Thus, if there are M ∈ N obstacles, the function tcollision: Si → {True, False} checks whether
a transition is collision safe:

tcollision(si) = ∀m ∈ {1, . . . , M} | βm ̸= SO : CPAm(si) ≥ dsa f ety,m (23)

4.5. Cost Function

The definition of the cost function plays an essential role since it directly influences
the characteristics of the optimal path. Various approaches can be used, depending on
the application. At the global route planning level, cost functions related to travel time or
distance are often used to determine the shortest or fastest route. More elaborate approaches
feature models of ship response to the environment, including ship motions, to determine
a safer or more comfortable route, and ship propulsion, to determine the most fuel-efficient
route [41,42,47,48]. Such approaches require more or less accurate modeling of the ship’s
response to weather conditions and the availability of weather forecast data. Conversely,
local planning aims to alter short route segments in reaction to an encounter situation with
other ships to ensure a safe distance and avoid collisions. Fuel consumption and comfort
relative to ship motions have a minor relevance in executing an evasive maneuver where
the time horizon is short and the priority is collision avoidance. While the constraints
described in the previous sections are crucial for this purpose, the role of the cost function
is to describe the characteristics of a “desirable” route so that the algorithm can choose
it. Although the same approaches described for high-level planning are possible, such
calculations come at the price of a potentially increased computational effort due to the
complexity of the ship response model.

Within the proposed framework, a maneuver, i.e., a series of waypoints, should be
simple for an operator or autopilot to execute, with limited course alterations to limit
overshoots and prevent the ship from going off track. To this end, we propose a cost
function inspired by the concept of minimum control energy. In the context of this paper,
control energy is related to the amplitude of the maneuvers needed to follow a path. In other
words, a path with high control energy requires the ship to perform large course changes
over time. According to this principle, we can define the transition cost c as follows:

c(si−1, si) = θ2(si−1, si) (24)

The choice of a minimum path length cost function would lead to equal ease of
evaluation with potentially larger angle variations and, in general, a smaller margin on
safety distance, but the guarantee of a shorter and more direct solution.
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5. Solution Scheme

This section presents a bottom-up solution scheme for the problem posed in Section 3
based on a tabulation approach. We can divide the algorithm into two phases: the tabulation
phase and the backtracking phase.

Algorithm 1 illustrates the tabulation phase. We sequentially generate the feasible
states at each stage by leveraging Equation (7), while keeping track of the partial optimum
F values and the backward link to the optimal predecessor p, into proper data structures.

Concerning Algorithm 1, we can estimate the number of stages in each state as
(2D + 1)2, i.e., the total number of transitions to be evaluated at each stage is (2D + 1)4.
Since the only transitions to be evaluated are those whose initial state ends in the starting
point of the final state, a proper implementation allows them to be accessed directly in
constant time; thus, the number of evaluated transitions can be reduced to (2D + 1)3 in
constant time, leading to a time complexity of O(ND3) for the overall process if the cost
and constraints have constant time complexity. It is worth noting that the inner for-loop at
line 10 of Algorithm 1 can be run in parallel since the loop does not mutate shared data.
Once the tabulation phase is completed, the backtracking phase, described in Algorithm 2,
reconstructs the optimal solution based on the previously tabulated back-links returned by
the best predecessor function p.

Algorithm 1: Bottom-up solution scheme.

1 S1 = ∅
2 for j ∈ [−D, ..., D] :
3 sj = (xstart, xstart +

1
N δxex +

j
D δyey)

4 S1 = S1 ∪ {sj}
5 F(sj) = c((xstart − ex, xstart), sj)

6 p(sj) = None
7

8 for i ∈ [2, . . . , N] :
9 Si = ∅

10 parallel for j ∈ [−D, . . . , D] :
11 xj = xstart +

i
N δxex +

j
D δyey

12 for k ∈ [−D, . . . , D] :
13 xk = xstart +

i−1
N δxex +

k
D δyey

14 sj = (xk, xj)

15 T = {z ∈ Si−1|t(z, sj)}
16 if T ̸= ∅ :
17 Si = Si ∪ {sj}
18 F(sj) = minz∈T c(z, sj) + F(z)
19 p(sj) = argminz∈T c(z, sj) + F(z)

Algorithm 2: Backtracking of the optimal solution.

1 R = ( )
2 s = argminz∈SN

F(z)
3 while s ̸= None :
4 R = s ⊕ R
5 s = p(s)
6 return R
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6. Implementation

By leveraging a graph structure, we can implement the approach described in
Algorithms 1 and 2. We can think of each node of the graph as a data structure ni,j, which
stores the following for each stage i and for each state j:

• The current state sj ∈ Si, which we will refer to with the shorthand notation si,j;
• The optimal cost of the current state F(si,j);
• A back-link to the optimal predecessor p(si,j), implemented as a pointer to the prede-

cessor node.

Algorithm 1 allows us to create all the nodes of the graph starting from the initial stage
(lines 2–6) and generating the nodes at stage i + 1 from stage i by initializing each node’s
state (lines 11, 13, 14) and then assessing the node’s optimal cost and predecessor by solving
a simple optimization problem to choose the best predecessor node (lines 15 to 19). Figure 4
shows a section of an example graph structure generated based on Algorithm 1. Each node
contains the state sj ∈ Si, denoted in shorthand as si,j, the optimal cost F(si,j), and the
optimal predecessor p(si,j), i.e., a back-link to the optimal predecessor node represented
with an arrow.

When the graph has been completed, we can select the node with the minimum cost
(i.e., minimum value of F) at the last stage and then backtrack the optimal solution by
following the chain of back-links, concatenating each state si,j to the front of a sequence
according to Algorithm 2 until we reach the starting point.

si−1,3
F(si−1,3) = ...
p(si−1,3) = ...

si,2
F(si,2) = F(si−1,2) + c(si−1,2, si,2)
p(si,2) = &ni−1,2

si,1
F(si,1) = F(si−1,1) + c(si−1,1, si,1)
p(si,1) = &ni−1,1

i−1 i i+1

si−1,1
F(si−1,1) = ...  
p(si−1,1) = ...

si−1,2
F(si−1,2) = ...
p(si−1,2) = ...

p(si,1)

p(si,2)

p(si,3)

p(s
i+

1,1
)

p(s
i+

1,2
)

p(si+1,3)

si,3
F(si,3) = F(si−1,3) + c(si−1,3, si,3)
p(si,3) = &ni−1,3

ni−1,1

ni−1,2

ni−1,3

ni,1

ni,2

si+1,1
F(si+1,1) = F(si,2) + c(si,2, si+1,1)
p(si+1,1) = &ni,2

si+1,2
F(si+1,2) = F(si,3) + c(si,3, si+1,2)
p(si+1,2) = &ni,3

si+1,3
F(si+1,3) = F(si,3) + c(si,3, si+1,3)
p(si+1,3) = &ni,3

ni,3

ni+1,1

ni+1,2

ni+1,3

Figure 4. Tabular representation of part of the graph structure, including stages i − 1, i, and i + 1.
For each stage i and for each state j, each node ni,j stores the state sj ∈ Si, denoted with the shorthand
notation si,j, the optimal cost F, and a back-link p to its optimal predecessor, represented with
an arrow.

7. Greedy Approximation

From Equation (15), we can note that only part of the conditions for the feasibility of
the transition from stage i − 1 to stage i depends on the state si−1, as the transition cost c
defined in Equation (24) does. In this section, we propose a greedy approximate dynamic
programming (GADP) scheme that makes greedy decisions to reduce the number of
evaluated transitions. The proposed scheme loses the capacity to find the globally optimal
policy, yet it allows for the time complexity of the algorithm to be reduced. The basic
idea is to reformulate the route R = (x0, x1, ..., xN) as a sequence of transitions between
consecutive states xi ∈ Xi, i ∈ {0, 1, ..., N}. In other words, we use the waypoints to
represent the ship’s state rather than representing it with a leg connecting two consecutive
waypoints. The greedy minimum cost at stage i is expressed by the function Fg: Xi → R,
while the greedy optimal predecessor is represented by the function pg: Xi → Xi−1:

Fg(xi) = min
z∈Xi−1|tg(z,xi)

cg(z, xi) + Fg(z) (25)
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pg(xi) = argmin
z∈Xi−1|tg(z,xi)

cg(z, xi) + Fg(z) (26)

where tg: Xi−i × Xi → {True, False} and cg: Xi−i × Xi → R greedily compute the result
based on pg: Xi → Xi−1:

tg(x, y) = t((pg(x), x), (x, y)) (27)

cg(x, y) = c((pg(x), x), (x, y)) (28)

Algorithm 3 shows the proposed approach. Since a whole cycle over [−D, ...D] disap-
pears in the solution scheme, we now evaluate only the (2D + 1)2 transition at each stage,
and the time complexity required to run the algorithm drops from O(ND3) to O(ND2).

Algorithm 3: Approximate dynamic programming bottom-up solution scheme.

1 S0 = {xstart}
2 F(xstart) = 0
3 p(xstart) = None
4 for i ∈ [1, . . . , N] :
5 Si = ∅
6 parallel for j ∈ [−D, . . . , D] :
7 xj = xstart +

i
N δxex +

j
D δyey

8 T = {z ∈ Si−1|tg(z, xj)}
9 if T ̸= ∅ :

10 Si = Si ∪ {xj}
11 Fg(xi) = minz∈T cg(z, xi) + Fg(z)
12 pg(xi) = argminz∈T cg(z, xi) + Fg(z)

The backtracking phase works similarly to in the previous case.

8. Results

This section aims to evaluate the performance and capabilities of the proposed al-
gorithms to understand their potential contribution if applied within an autonomous
navigation and decision support context. In particular, this section is divided into three
parts: In Section 8.1, we present results for three example scenarios which include moving
and fixed obstacles. This analysis aims to show, qualitatively and quantitatively, the differ-
ences between the proposed algorithms in simple scenarios inspired by practical navigation
conditions. The second and third subsections involve extensive tests of the presented
algorithms against randomly generated scenarios, including those with fixed and moving
obstacles with randomly assigned positions, direction, and speed. We solve one thou-
sand randomly generated scenarios to statistically evaluate the algorithms’ performance.
In particular, Section 8.2 analyzes the influence of domain discretization on the optimality
of the solution, the computation time, and the algorithm failure rate, while Section 8.3
compares DP and GADP with the RRT* algorithm according to performance metrics from
the literature. All scenarios take place in a square domain of D = [0, 10]× [0, 10] nautical
miles, in which the own ship starts from point (0, 0) with heading 0◦ to reach the opposite
side of the domain, i.e., any point (10, y) ∈ D. An implementation of the two proposed
algorithms has been developed for testing and comparison purposes. The algorithms
are implemented in Rust language, relying on the Rayon library for parallelization. We
perform the computations on an AMD Ryzen 9 5900HS CPU (8 × 3.3 Hz − 4.6 Hz boost),
32 GB DDR.

8.1. Example Navigation Scenarios

In this subsection, we apply the proposed algorithms to three navigation scenarios.
The first features two sets of fixed obstacles extended transversely to the navigation direc-
tion, mimicking two docks; the second is a COLREG encounter scenario with sailboats; the
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third is a head-on scenario within a channel. More details on the analyzed scenarios are
given below.

• Scenario 1, shown in Figure 5a, has two barriers placed at x = 5 and x = 9 nautical
miles, respectively, ranging in [−2.5, 5] and [−5, 2.5]. These obstacles force the own
ship to perform a zig-zag maneuver between the barriers;

• Scenario 2, shown in Figure 5b, features two sailboat vessels, the first starting in
(8.0, 4.5) with a speed of 5.0 knots and a heading of 270◦, the second positioned at
(4,−2) with a speed of 6 knots and a heading of 90◦. The COLREG imposes on the
own ship a “give-way” behavior against both the target vessels;

• Scenario 3, shown in Figure 5c, features a double “head-on” with two target vessels
starting from (9, 1) and (10, 0) with a heading of 180◦ and speeds of 9 and 8 knots,
respectively. In addition, two fixed side barriers form a channel parallel to the x-axis
that is 8 nautical miles wide.

To comply with the COLREG, the own ship must make only visible heading alterations,
with a minimum angle of 15◦, while a maximum of 60◦ turn is accepted. The algorithms
perform the path optimization on a discrete computation grid defined as per Equation (7),
where N = 10 and D = 20.

Figure 6 shows the solutions found by the two algorithms in the three proposed test
scenarios. In scenarios 1 and 2 (Figure 6a,b), DP and GADP propose different maneuvers;
in particular, the GADP solution features more delayed direction changes. In scenario
number 3 (Figure 6c), on the contrary, the solution computed by the two approaches is the
same, i.e., the greedy optimum computed by GADP corresponds to the global optimum of
the DP. Eventually, Figure 7a,b present the value of the cost function and the computation
time required to determine the solution, respectively. We can note that, at the price of a
higher cost function value, the solutions determined by the GADP algorithm require less
computation time.

5.0 2.5 0.0 2.5
0

2

4

6

8

10

(a) Scenario 1

0 5
0

2

4

6

8

10

(b) Scenario 2

2.5 0.0 2.5
0

2

4

6

8

10

(c) Scenario 3

Figure 5. Application case scenarios. Scenario 1 (a) includes fixed obstacles only; scenario 2 (b)
features two sailboats (in red), both requiring “give-way” behavior from the own ship (blue); scenario
3 (c) features two head-on ships (magenta) in a narrow channel.
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Figure 6. Application case scenarios solved using DP (blue) and GADP (orange).
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Figure 7. Cost function value (a) and computation time (b) comparison of the two proposed algo-
rithms relative to the solutions presented in Figure 6.

8.2. Effect of the Grid Fineness Parameters

The proposed algorithms determine the best maneuver by selecting a sequence of
waypoints on a discrete grid controlled by the parameters N and D. Section 5 discusses how
the computational effort depends strictly on these two parameters; however, a too-sparse
grid could compromise the optimum quality. To estimate how much the fineness of the
grid affects the minimum cost function and computational time, we perform a series of
experiments based on the random generation of 1000 scenarios. Each scenario includes up
to 10 fixed and 10 moving obstacles, each with a randomly assigned position, direction,
and speed. The scenarios thus generated are solved with the DP and GADP algorithms
with N = 5 and N = 10 and D doubling from 5 to 80.

The results are presented in Figure 8 using violin plots [49]. We can observe how,
while the grid fineness increases, the cost function reduces to stabilize when we reach a
sufficiently fine grid (Figure 8a). Conversely, Figure 8b shows that the computation time
increases as expected. We can also note how GADP requires less time than DP and how
the greedy optimum tends to approach the exact optimum as the grid becomes dense.
Eventually, Figure 8c shows the trend in the percentage of failed random scenarios as
the fineness of the grid changes. With a sufficiently high D, the percentage stabilizes to
a fraction of the “unsolvable” scenarios, which decreases as N increases. We can also
note that the greedy approximated algorithm can solve fewer scenarios. In other words,
although a solution exists, the GADP cannot find it due to the consequences of the greedy
assumptions made in Section 7 on the transition feasibility.
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Figure 8. Cost function value (a), computation time (b), and failure rate (c) as a function of the grid
size, estimated in solving a thousand randomly generated scenarios. The distribution of the cost and
time values in the dataset is represented using violin plots.

8.3. Performance Assessment and Comparison with RRT*

This subsection compares the proposed algorithms against a set of randomly generated
scenarios according to a set of performance metrics to better highlight the advantages and
disadvantages of the proposed algorithms, which we partially discuss in Section 8.1. The
scenarios used to perform the test are randomly generated using the same technique as
described in Section 8.2, i.e., by arranging in the domain a random number from 1 to
10 of fixed obstacles and moving obstacles with randomly assigned positions, direction,
and speed. For completeness, the comparison includes a state-of-the-art algorithm with
comparable features and applicability, the RRT* algorithm. The RRT* is a random sampling
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algorithm designed to explore domains using tree structures and determine collision-free
maneuvers quickly. RRTs [50] iteratively generate tree-like structures, initiating from a
root node and terminating when a node is close enough to the desired goal. The “*” (star)
variant, or Optimal RRT [51], includes local optimizations of the tree topology within
the neighborhood of each newly generated node, leveraging a cost function to generate
heuristically optimal trajectories. The implementation of the RRT* for comparison includes
assumptions similar to those described for the dynamic programming algorithms described
in this paper. In addition, our implementation can account for fixed and moving obstacles
with constant speed and direction, similar to the DP-based schemes proposed here [21].

The RRT* produces heuristically better solutions the more iterations it runs. However,
a large number of iterations leads to a high computation time since the complexity of the
RRT* algorithm, if the cost function runs in constant time, is O(K log(K)), where K is the
number of iterations [51]. As a stopping criterion, we assume that the algorithm ends when
it is possible to reach the target side of the domain from a node closer than the distance used
to select the near nodes in the tree optimization. If more than one maneuver is possible,
the one with the lowest cost is chosen. Setting a minimum number of nodes in the tree
ensures enough iterations to obtain sufficiently optimized paths. Since the computation
time depends on the number of iterations, i.e., roughly on the number of newly created
nodes, this parameter significantly affects the trade-off between computation time and
optimality of the solution. On the other hand, to avoid infinite iteration in dead-end
scenarios, a maximum number of nodes after which the algorithm stops is usually set. To
diversify the comparison, we consider two values for the minimum number of nodes of the
RRT*: 500 nodes (RRT*-500n) and 2000 nodes (RRT*-2000n). In both cases, the algorithm
stops if the number of nodes is ten times the minimum.

The four algorithms, DP, GADP, and RRT* with two different minimum tree nodes,
are tested against one thousand randomly generated scenarios, three of which are shown
in Figure 9 for example purposes. The comparison includes the cost function defined in
Equation (24), the computation time, and the percentage of failed scenarios. Moreover,
for each scenario, some further algorithm evaluation metrics proposed in the literature
have been included [15]. In summary, we consider the following metrics:

• The cost of the solution, which we can generally recall as:

J(R) =
N−1

∑
i=1

c((xi−1, xi), (xi, xi+1)) (29)

• The computation time;
• The path smoothness σ: ∏N

i=1 Si → R:

σ(R) =
1

N − 2

(
N−1

∑
i=1

θ2(si, si+1)

) 1
2

(30)

• The minimum CPA during the maneuver CPAmin: ∏N
i=1 Si → R:

CPAmin(R) = min
i∈{1,N}

(
min

m∈{1,...,M}
CPAm(si)

)
(31)

• The path elongation L: ∏N
i=1 Si → R:

L(R) =
N

∑
i=1

|⃗si| (32)

• The percentage of failed scenarios.
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Each of the considered metrics is analyzed both in absolute value and in normalized
form. If we denote with µ(k, a) a generic metric measuring the performance of algorithm
a over the testing scenario k, the normalized metric µn(k) over a set A of algorithms is
defined as follows:

µn(k) =
µ(a, k)− mina∈A µ(k, a)

maxa∈A µ(k, a)− mina∈A µ(k, a)
(33)

While absolute metrics allow us to appreciate the absolute values of certain quantities
of interest, which, in some cases, are significant (e.g., computation time), normalized metrics
allow us to understand how often one algorithm is better than another on a per-scenario
basis. We present the results in graphical format using violin plots in Figures 10–14.
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Figure 9. Subfigures (a–c) show three examples of the thousand randomly generated scenarios
solved by the four algorithms. The black dots indicate randomly positioned obstacles, while the red
arrows indicate randomly moving obstacles with randomly assigned positions, headings, and speeds,
represented by the arrow direction and magnitude.

Figure 10 shows the distribution of control energy, i.e., the cost function. DP and
GADP have lower values than RRT*. We also note that the optimality of the RRT* result
increases if we impose a higher minimum number of nodes, as expected. The normalized
values highlight that DP and GADP score the best results in most cases. In particular,
the average value obtained by DP is the lowest of the four, followed by that of the GADP.
Figure 11 shows the other side of the trade-off, which is computation time. In this case,
we can see that GADP and RRT* with 500 nodes score the best performance, the former
showing less variance than the latter. RRT* with 2000 nodes averages an order of magnitude
above the others in absolute terms and is almost always the slowest on a per-scenario basis.
Cross-comparison with Figure 10 allows us to appreciate the good trade-off of the proposed
algorithms in the analyzed scenarios. Figure 12 shows the smoothness of the trajectories.
Since DP and GADP provide a fixed number of waypoints, evaluating control energy and
smoothness is roughly equivalent. This is not the case for RRT*, which provides solutions
with varying numbers of waypoints. In comparison with Figure 10, we can observe that this
difference favors the DP-based algorithms. Figure 13 presents the minimum CPAs obtained
by the four algorithms. We can observe that they all meet the required safety distance
constraint of 1 nmi with comparable performance. Such behavior is reasonable since the
distance to obstacles does not intervene in ranking the solutions but only as a constraint.
Figure 14 shows the results in terms of path length. Considering the absolute values,
we might note that the four algorithms provide similar results; however, the normalized
values highlight that the DP-based algorithms generally provide shorter paths than the
RRT*-based algorithms on a per-scenario basis. Eventually, Figure 15 shows the percentage
of failed scenarios, i.e., scenarios in which the algorithm fails to find the solution. We can
again see how the greedy approximation has a greater tendency to fail scenarios even
where a solution exists since DP can compute it. We note that RRT* algorithms have a lower
failure rate due to the greater flexibility that a non-grid-based algorithm allows.
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Figure 10. Per-algorithm distribution of the cost function (control energy) values found solving
1000 randomly generated scenarios.
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Figure 11. Per-algorithm distribution of the computation time required to solve 1000 randomly
generated scenarios.
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Figure 12. Per-algorithm smoothness distribution of the solutions of the 1000 randomly generated scenarios.
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Figure 13. Per-algorithm distribution of the minimum CPA over 1000 randomly generated scenarios.
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Figure 14. Per-algorithm path length distribution of the solutions found solving 1000 randomly
generated scenarios.
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Figure 15. Per-algorithm scenario failure rate over 1000 randomly generated scenarios.
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9. Conclusions

In this paper, we proposed a dynamic programming approach for the collision avoidance
of autonomous ships. We showed how the collision-free route calculation for a ship can be for-
mulated as a multi-stage optimal decision problem by leveraging Bellman’s equation, and we
described appropriate constraints for obtaining a collision-safe route with features compatible
with the maneuvering capabilities of a ship and compliant with collision regulations.

We proposed and discussed a tabulation-based solution scheme to compute the so-
lution. Moreover, we proposed a greedy approximate dynamic programming (GADP)
scheme that allows, using a greedy approach, the number of transitions to be evaluated for
each step to be reduced, consequently reducing the algorithm’s time complexity.

We evaluated the performance of the proposed algorithms. Firstly, we tested the algo-
rithms in some navigation scenarios. Secondly, we tested the proposed algorithms against
randomly generated scenarios to evaluate the influence of grid parameters on solution
optimality, computation time, and failure rate, highlighting the trade-off between DP and
GADP. Finally, we compared the proposed algorithms with a known planning algorithm,
the RRT*, using performance metrics proposed in the literature. Dynamic programming
confirmed its role as a powerful and flexible tool for solving practical problems efficiently
with low computational burden.

This work has laid a solid theoretical foundation, paving the way for integrated
applications. The result showed that the proposed algorithms could be used in real-time
applications, such as in an automatic navigation or decision support system, to play a first-
class role in the transition towards autonomous shipping. As a future development of this
research, we foresee the possibility of testing the developed algorithms in an autonomous
navigation architecture both in simulation and model-scale experiments. Moreover, we
envision human-in-the-loop decision support tests using the simulator from the perspective
of full-scale testing.
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