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Abstract: This paper explores the properties of multipliers associated with discrete analogues of
fractional integrals, revealing intriguing connections with Dirichlet characters, Euler’s identity, and
Dedekind zeta functions of quadratic imaginary fields. Employing Fourier transform techniques,
the Hardy–Littlewood circle method, and a discrete analogue of the Stein–Weiss inequality on
product space through implication methods, we establish ℓp → ℓq bounds for these operators.
Our results contribute to a deeper understanding of the intricate relationship between number
theory and harmonic analysis in discrete domains, offering insights into the convergence behavior of
these operators.
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1. Introduction

The study of discrete analogues in harmonic analysis indeed shares a companionable
relationship with the early history of singular integrals. Singular integrals, which arise
from the convolution of functions with singular or highly oscillatory kernels, have been a
central focus of harmonic analysis since its inception. For example, in 1928, M. Riesz [1]
proved the Hilbert transform,

H f (x) =
∫
Rk

f (x − y)
y

dy,

is bounded on Lp(Rn) for all 1 < p < ∞, and this implies its discrete analogue,

H f (n) = ∑
m∈Zk
m ̸=0

f (n − m)

m
,

is bounded on ℓp(Zk) for all 1 < p < ∞. Here, ℓp(Zk) is defined as

ℓp(Zk) =

{
f defined on Zk| ∑

m∈Zk

| f (m)|p < ∞

}
.

Moreover, || f ||ℓp(Zk) =
(
∑m∈Zk | f (m)|p

) 1
p .

Another classical family of operators in harmonic analysis are the fractional
integral operators,

Is f (x) =
∫
R

f (x − y)
|y|s dy, 0 < s < 1.
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It is well known that for 1 < p < q < ∞ with 1/q = 1/p − (1− s), Is is a bounded operator
from Lp(R) to Lq(R). The discrete analogue of this operator is defined by

Is f (n) = ∑
m∈Z
m ̸=0

f (n − m)

|m|s .

Similarly, the boundedness of Is implies the boundedness of Is. Consider a function f
defined on Z, where 0 < s < 1 and k ≥ 1 is an integer. The discrete fractional operator Is,k
is defined as follows:

Is,k f (m) =
∞

∑
n=1

f (m − nk)

ns , m ∈ Z (1)

acting on functions defined on Z. Stein and Wainger [2] initiated the study of the ℓp → ℓq

boundedness of Is,k, that is, there exists some constant C such that

||Is,k f ||ℓq ≤ C|| f ||ℓp .

On the other hand, for f defined on Z, its Fourier transform is defined by f̂ (x) =

∑n∈Z f (n)e−2πinx. Therefore,

Îs,k f (x) = ms,k(x) f̂ (x), ms,k(x) =
∞

∑
n=1

e−2πinkx

ns .

Here, ms,k(x) is called the Fourier multiplier.
They demonstrated that when 1/2 < s < 1, ms,2 belongs to weak-type L2/(1−s)[0, 1]

and ms,k belongs to weak-type Lk/(1−s)[0, 1] as long as s is sufficiently close to 1. The
main tool is the Hardy–Littlewood circle method; for a more detailed introduction on
circle methods, see [3]. Furthermore, if this holds for all 1/2 < s < 1, it would imply the
“Hypothesis K∗” of Hardy, Littlewood, and Hooley, which remains an open problem in
number theory.

Lillian Pierce’s thesis [4] extended this result to positive definite quadratic forms. For
instance, let Q(x) = 1

2 xt Ax be a positive definite quadratic form, where A is a real, positive
definite, 2 × 2 symmetric matrix with integer entries and even diagonal entries. Then, the
corresponding multiplier

ms,Q(x) = ∑
m∈Z2
m ̸=0

e−2πiQ(m)x

Q(m)s

is of weak-type L1/(1−s)[0, 1]. In this paper, we mainly consider the ’twisted’ multiplier. Let
an be a complex series, and define the corresponding multiplier by

ms,{an}(x) =
∞

∑
n=1

ane−2πinx

ns . (2)

It is worth noting that if we set an = 1 for n = mk ≥ 1 and an = 0 otherwise, then
ms,{an}(x) = msk,k(x). The series an can originate from various areas related to number theory.

For instance, in Section 2, we delve into a primitive Dirichlet character χ modulo N,
defining the corresponding twisted multiplier as

ms,χ(x) =
∞

∑
n=1

χ(n)e−2πin2x

ns , (3)

which differs from ms,2(x) in several respects. For example, ms,χ(0) corresponds to the
Dirichlet L-function and is bounded when 0 < s < 1, whereas ms,2(x) tends to infinity as x
approaches 0. However, we will demonstrate the following Theorem.
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Theorem 1. For 1/2 < s < 1, let χ be a primitive Dirichlet character modulo N; then, ms,χ

belongs to weak-type L2/(1−s)[0, 1].

In Section 3, we investigate the scenario where an originates from Euler’s identity,
given by

∞

∏
n=1

(1 − xn) =
∞

∑
n=0

anxn.

We establish that ms,{an} belongs to weak-type L2/(1−2s)[0, 1] and provide an improved
result regarding the regularity of the corresponding discrete fractional integral operator.

In Section 4, we delve into imaginary quadratic fields and the associated Dedekind
zeta function. We demonstrate the close connection between the corresponding multipliers
and positive definite quadratic forms as investigated by Lillian Pierce.

In the final section, we tackle the discrete analogue of the Stein–Weiss inequality on
product space. Employing the "implication" method, we deduce the regularity property of
the discrete fractional operator.

Discrete analogues in harmonic analysis have garnered significant attention in re-
cent decades, with notable contributions from scholars such as Stein and Wainger [2,5],
Oberlin [6] and Lillian Pierce [4,7,8] (see also [9–12]). This paper introduces a novel perspec-
tive to the study of multipliers in harmonic analysis by incorporating primitive Dirichlet
characters. This addition not only enriches the theoretical framework but also presents
new challenges and complexities to be explored. As examples of the application of this
approach, this paper investigates multipliers associated with Euler’s identity and quadratic
imaginary fields.

Remark 1. Let r > 0 be a real number; we define a function f as belonging to weak-type Lr[0, 1] if

|{x ∈ [0, 1] : f (x) > α}| ≤ cα−r, for α > 0

where c is a constant independent of α and f .

2. Multipliers Twisted with Dirichlet Characters

Fix an integer N > 1. A Dirichlet character modulo N is a function χ : Z → S1 ∪ {0}
such that the following is true:

(i) χ(n) = 0 if and only if (n, N) > 1.
(ii) χ(n) = χ(m) if n ≡ m mod N.
(iii) χ(mn) = χ(m)χ(n) for m, n ∈ Z.

For simplicity, we consider a primitive Dirichlet character χ modulo N. Let χ̄(n) = χ(n)
and the Gauss sum τ(χ) be defined by the formula

τ(χ) = ∑
n mod N

χ(n)e2πi n
N .

It is well known that

χ(n) =
χ(−1)τ(χ)

N ∑
m mod N

χ(m)e2πi mn
N and |τ(χ)| = N

1
2 . (4)

Note that the right-hand side of (4) is defined when n is an arbitrary real number.
Let ms,χ(x) be defined in (3), since the function ms,χ(x) is in L2[0, 1]. Thus, the series is

Abel–Gauss summable almost everywhere; hence,

ms,χ(x) = lim
ϵ→0

∞

∑
n=1

χ(n)n−se−2πin2xe−πn2ϵ.
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Next, we consider the Θ−function

Sy(x) =
∞

∑
n=−∞

χ(n)e−πn2(y+2ix), (5)

Note that

ms,χ(x) = Cα

∫ 1

0
Sy(x)y−1+ s

2 dy + O(1). (6)

Now, in the definition of Sy(x), we can replace the n, which ranges overZ, with n = mq+ ℓ ,
where m ranges over Z and ℓ ranges over 1 ≤ ℓ ≤ q . Then, Sy(x) equals

q

∑
ℓ=1

e2πiℓ2 p
q

{
∑

m∈Z
χ(mq + ℓ)e−π(mq+ℓ)2y

}
. (7)

For the inner sum, we use the Poisson summation formula ∑m∈Z f (m) = ∑m∈Z f̂ (m),
with f (s) = χ(sq + ℓ)e−π(sq+ℓ)2y. Then,

f̂ (ξ) =
∫ ∞

−∞
χ(sq + ℓ)e−π(sq+ℓ)2

e−2πis·ξ ds

=
χ(−1)τ(χ)

qN ∑
k mod N

χ(k)
∫ ∞

−∞
χ(u)e−πu2

e−2πi
(

u−ℓ
q

)
·ξe2πi ku

N du

=
χ(−1)τ(χ)

qy
1
2 N

∑
k mod N

χ(k)e2πi ℓξ
q e−

π
y

(
ξ
q −

k
N

)2

.

Therefore, we have

Sy(x) =
χ(−1)τ(χ)

q(y + 2iδ)
1
2 N

∑
k mod N

χ(k)
∞

∑
m=−∞

S
(

p
q

,
m
q

)
e−

π
y+2iδ

(
m
q −

k
N

)2

, (8)

where

S
(

p
q

,
m
q

)
=

q

∑
ℓ=1

e2πi
(

p
q ℓ

2+ m
q ℓ
)

, x =
p
q
+ δ.

It suffices to consider Ty(x) defined as

Ty(x) =
1

q(y + 2iδ)
1
2

∞

∑
m=−∞

S
(

p
q

,
m
q

)
e−

π
y+2iδ

(
m
q −

1
N

)2

. (9)

Now, write ∫ 1

0
Ty(x)y−1+ s

2 dy =
∞

∑
j=0

∫ 2−j

2−j−1
Ty(x)y−1+ s

2 dy. (10)

and estimate Ty(x) when y is of a fixed order of magnitude and x is “sufficiently close”
to an appropriate rational p

q , with (p, q) = 1, 0 < p
q ≤ 1. Actually, we have the

following Lemma.

Lemma 1. If x = p
q + δ , with q ≲ y−

1
2 and q|δ| ≲ y

1
2 , then

Ty(x) = S
(

p
q , 1

N

)
1

q(y+2iδ)
1
2
+ O(y−

1
4 ), if N|q,

Ty(x) = O(y−
1
4 ) if N ∤ q.

(11)
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Proof. It suffices to prove that

O

 1

q(y + 2iδ)
1
2

∑
m ̸= q

N

S
(

p
q

,
m
q

)
e−

π
y+2iδ

(
m
q −

1
N

)2
 = O(y−

1
4 ).

Note that S
(

p
q , m

q

)
= O(q

1
2 ); we can write

O

 1

q(y + 2iδ)
1
2

∑
m ̸= q

N

S
(

p
q

,
m
q

)
e−

π
y+2iδ

(
m
q −

1
N

)2
 = O

q−
1
2 (y2 + 4δ2)−

1
4 ∑

m ̸= q
N

e
− πy

y2+4δ2

(
m
q −

1
N

)2


= O

(
q−

1
2 (y2 + 4δ2)−

1
4

∞

∑
m=1

e
− πy

y2+4δ2
m2

q2

)
.

However, by our assumptions we have 1 ≲ y
q2(y2+4δ2)

. Moreover,

∞

∑
m=1

e−Cm2u ≲ e−C̄u ≲ u− 1
4 , 1 ≲ u.

So, the error term is

O
(

q−
1
2 (y2 + 4δ2)−

1
4 · y−

1
4 q

1
2 · (y2 + 4δ2)

1
4

)
= O(y−

1
4 ),

and (11) is proved. □

Proof of Theorem 1. Let us turn to (10), and we make the same decomposition of the
x-interval as in [2] . For y of the order 2−j, we make a Farey dissection of the x-interval

[0, 1]. Now, we choose all fractions p/q, (p, q) = 1, with q ≤ 2
j
2 , and let I j

p/q be the

corresponding interval for p/q. Then, I j
p/q ⊂ {x : |x − p/q| ≤ 1/q(2j/2)}. Then, we can

define the major arcs and minor arcs as follows:

I j
p/q is a major arc if q ≤ 1

10
2j/2,

I j
p/q is a minor arc if

1
10

2j/2 ≤ q ≤ 2j/2.

Additionally, we define Ĩp/q, indepedent of j, as

Ĩp/q = {x : |x − p/q| ≤ 1/10q2}.

The key property of Ĩp/q is that if q ≤ q′ ≤ 2q, the intervals Ĩp′/q′ and Ĩp/q are disjointed
(or identical) (see [2]).

Now, we apply (11). If x belongs to a major arc, this implies

Ty(x) = S
(

p
q , 1

N

)
1

q(y+2iδ)
1
2
+ O(2

j
4 ), if N|q,

Ty(x) = O(2
j
4 ) if N ∤ q.

(12)

If x belongs to a minor arc, then

Ty(x) = O(2
j
4 ). (13)
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This is because
1
q

S
(

p
q

,
1
N

)
= O(q−

1
2 ) = O(2−j/4),

and
|y + 2iδ|−

1
2 ≤ y−

1
2 = O(2

j
2 ).

The contribution from all the minor arcs is therefore

O

(
∞

∑
j=0

∫ 2−j

2−j−1
2

j
4 y−1+ s

2 dy

)
= O

(
∞

∑
j=0

2
j
4 2−j(−1+ s

2 )2−j

)
= O(1). since s >

1
2

.

Next, we sum over the major arcs. Fix p
q ; then,

1
q

∣∣∣S( p
q , 1

N

)∣∣∣∑∞
j=0
∫ 2−j

2−j−1

∣∣∣y + 2i(x − p
q )
∣∣∣− 1

2 y−1+ s
2 dy · χ

I j
p
q

(x)

≤ C
1
q

∣∣∣∣S( p
q

,
1
N

)∣∣∣∣∣∣∣∣x − p
q

∣∣∣∣− 1
2+

s
2
· χ Ĩ p

q
(x), 0 < s < 1.

Therefore, the total contribution of the major arcs is majorized by

∑
p
q , N|q

q−
1
2

∣∣∣∣x − p
q

∣∣∣∣− 1
2+

s
2
· χ Ĩ p

q
(x). (14)

Rewrite sum (14) as
∞

∑
t=0

∑
p/q, N|q

2t≤q<2t+1

q−
1
2

∣∣∣∣x − p
q

∣∣∣∣− 1
2+

s
2
· χ Ĩ p

q
(x). (15)

Note that there are at most O(N−122t) disjointed intervals for 2s ≤ q < 2t+1 . Moreover,
|x − p/q|−1/2+s/2 is uniformly of weak-type L

2
1−s . Thus, applying Lemma one in [2] , then

∑
p/q, N|q

2t≤q<2t+1

q−
1
2

∣∣∣∣x − p
q

∣∣∣∣− 1
2+

s
2
· χ Ĩ p

q
(x).

has a weak-type L
2

1−s norm bounded by

q−
1
2 (N−122t)

1−s
2 = O(2−

t
2 N− 1−s

2 2t(1−s)) = O(N− 1−s
2 2t( 1

2−s)),

and the sum in (15) converges if s > 1
2 . This means that mαis of weak-type L

2
1−s [0, 1]. The

proof is complete. □

3. Multiplier Related to Euler’s Identity

Let H be the Poincaré upper half plane consisting of z = x + iy where x, y ∈ R and
y > 0. Suppose f is defined on H and has a Fourier expansion

f (z) =
∞

∑
n=0

ane2πinz.

We consider the multiplier

ms, f (x) =
∞

∑
n=1

ane−2πinx

ns . (16)



Mathematics 2024, 12, 1545 7 of 15

For s > 0, applying the well-known formula∫ ∞

0
e−2πnyys dy

y
=

Γ(s)
(2πn)s ,

we have

ms, f (x) = cs

∫ 1

0
f (−x + iy)ys dy

y
+ O(1), (17)

where cs > 0 is a constant that only depends on s.
Now, let us consider the case

f (z) =
∞

∏
n=1

(1 − e2πinz) =
∞

∑
n=0

ane2πinz, z ∈ H,

and recall Euler’s identity:

f (z) =
∞

∏
n=1

(1 − e2πinz) =
∞

∑
n=−∞

(−1)ne2πi 3n2+n
2 z

Hence, we can write f (z) = f1(z) + f2(z), where

f1(z) = ∑
n∈Z

e2πi(6n2+n)z, f2(z) = − ∑
n∈Z

e2πi(6n2+7n+2)z.

Our analysis will then proceed by setting

∫ 1

0
f (−x + iy)ys dy

y
=

∞

∑
j=0

∫ 2−j

2−j−1
f (−x + iy)ys dy

y
, (18)

and estimating f (−x + iy) when y is of a fixed order of magnitude and x is “sufficiently
close” to an appropriate rational p/q, with (p, q) = 1, 0 < p/q ≤ 1.

Lemma 2. Let x ∈ [0, 1]. If

x = p/q + δ, q ≲ y−
1
2 , q|δ| ≲ y

1
2 ,

then
f1(−x + iy) =

1√
12q(y + iδ)1/2

e
π(y+iδ)

12 S(p/q) + O(y−1/4), (19)

where

S(p/q) =
q

∑
ℓ=1

e−2πi p
q (6ℓ

2+ℓ).

Proof. First, consider f1(− p
q + iy). Write ∑n∈Z = ∑

q
ℓ=1 ∑m∈Z and n = mq + ℓ. Then,

f1(− p
q + iy) equals

q

∑
ℓ=1

e−2πi p
q (6ℓ

2+ℓ)

{
∑

m∈Z
e−2πy[6(mq+ℓ)2+mq+ℓ]

}
(20)
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For the inner sum, set h(x) = e−2πy[6(xq+ℓ)2+xq+ℓ]. Then, its Fourier transform is

ĥ(ξ) =
∫ ∞

−∞
e−2πy[6(xq+ℓ)2+xq+ℓ]e−2πix·ξ dx

=
1
q

∫ ∞

−∞
e−2πy(6u2+u)e−2πi

(
u−ℓ

q

)
ξdu

=
1√

12qy1/2
e

πy
12 e2πi

(
ℓξ
q + ξ

12q

)
e
− πξ2

12q2y .

Now, using the Poisson summation formula, we have

f1(−
p
q
+ iy) =

1√
12qy1/2

e
πy
12 ∑

m∈Z
S(p/q, m/q)e2πi m

12q e
− πm2

12q2y ,

Therefore, let y → y + iδ , which yields

f1(−x + iy) =
1√

12q(y + iδ)1/2
e

π(y+iδ)
12 ∑

m∈Z
S(p/q, m/q)e2πi m

12q e
− πm2

12q2(y+iδ) . (21)

Now, set S(p/q) = S(p/q, 0). From (21), we see, upon isolating the term m = 0,

f1(−x + iy) =
1√

12q(y + iδ)1/2
e

π(y+iδ)
12 S(p/q)

+O(q−1(y2 + δ2)−1/4 · q
1
2 ·

∞

∑
m=1

e−πm2y/(12q2(y2+δ2))).

Hence, similar to the proof of Lemma 1, (19) is proved. □

Theorem 2. When 1/4 < s < 1/2, ms, f belongs to weak-type L2/(1−2s)[0, 1].

Proof. It suffices to prove that ms, f1 ∈ L2/(1−2s),∞[0, 1]. Let us turn to (17), and we make
the same decomposition of the x-interval as in [2] .

Now, we apply (19). If x belongs to a major arc, this implies that

f1(−x + iy) = 1√
12q(y+iδ)1/2 e

π(y+iδ)
12 S(p/q) + O(2j/4), (22)

If x belongs a minor arc, then

f1(−x + iy) = O(2j/4), (23)

This is because
1
q

S
(

p
q

)
= O(q−

1
2 ) = O(2−j/4),

and
|y + iδ|−

1
2 ≤ y−

1
2 = O(2

j
2 ).

The contribution from all the minor arcs is therefore

O

(
∞

∑
j=0

∫ 2−j

2−j−1
2

j
4 ys dy

y

)
= O

(
∞

∑
j=0

2
j
4 2−j(s−1)2−j

)
= O(1), since s >

1
4

.
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Next, we sum over the major arcs. Fix p
q . Then,

1
q

∣∣∣S( p
q

)∣∣∣∑∞
j=0
∫ 2−j

2−j−1

∣∣∣y + i(x − p
q )
∣∣∣− 1

2 ys dy
y · χ

I j
p
q

(x)

≤ C
1
q

∣∣∣∣S( p
q

)∣∣∣∣∣∣∣∣x − p
q

∣∣∣∣s− 1
2
· χ Ĩ p

q
(x),

because ∫ 1

0
|y + iδ|−

1
2 ys dy

y
≤
∫ ∞

0
|y + iδ|−

1
2 ys dy

y
= C|δ|s−1/2,

as long as 0 < s < 1/2.
Therefore, the total contribution of the major arcs is majorized by

∑
p/q

q−
1
2

∣∣∣∣x − p
q

∣∣∣∣s−1/2
· χ Ĩ p

q
(x). (24)

Rewrite sum (24) as
∞

∑
t=0

∑
p/q,

2t≤q<2t+1

q−
1
2

∣∣∣∣x − p
q

∣∣∣∣s−1/2
· χ Ĩ p

q
(x).

Note that there are at most O(22t) disjointed intervals for 2t ≤ q < 2t+1. Moreover,
|x − p/q|s−1/2 is uniformly of weak-type L

2
1−2s [0, 1]. Thus, applying Lemma one in [2], then

∑
p/q,

2t≤q<2t+1

q−
1
2

∣∣∣∣x − p
q

∣∣∣∣s−1/2
· χ Ĩ p

q
(x).

has a weak L
2

1−2s norm bounded by

q−
1
2 22t(1/2−s) = O(2−

t
2 2t(1−2s)) = O(2t(1/2−2s)),

and the sum in (24) converges if s > 1/4. This means that ms, f1 ∈ L2/(1−2s),∞[0, 1]. There-
fore, ms, f belongs to weak-type L2/(1−2s)[0, 1]. □

The Corresponding Discrete Fractional Integral

Let g be a function of Z. The twisting discrete fractional operator Is, f is defined as

Is, f g(m) =
∞

∑
n=1

an

ns g(m − n), m ∈ Z1

and has acting functions defined on Z1. If g(n) = 1, n ∈ Z, then Is, f 1 = ∑∞
n=1 ann−s is

usually called the L− function of f . On the other hand, if an ≡ 1, n = 1, 2, . . . , then we
can write

Isg(m) =
∞

∑
n=1

g(m − n)
ns , m ∈ Z1,

Stein and Wainger [2] proved the following theorem.

Theorem 3. For 0 < s < 1, then

||Is f ||ℓq(Z) ≤ C|| f ||ℓp(Z),
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if
1
q
≤ 1

p
− 1 + s, 1 < p < q < ∞.

Then it is easy to see that an = ±1, 0 for all n ∈ N. Then, if 1/q ≤ 1/p − 1 + s, 1 <
p < q < ∞,

||Is, f g||ℓq(Z) ≤ C||g||ℓp(Z).

However, if we take the cancellation property of an into consideration we have a better
result in the range of 1/4 < s < 1/2.

Theorem 4. For 1/4 < s < 1/2, then

||Is, f g||ℓq(Z) ≤ C||g||ℓp(Z),

if
1
q
≤ 1

p
− 1

2
+ s, 1 < p ≤ 2 ≤ q < ∞.

In order to obtain the the desired ℓp → ℓq inequalities, we need a “folk” Lemma due
to Stein and Wainger [2] concerning a convolution operator I with multiplier m, viz.,

Î f (x) = m(x) f̂ (x).

Lemma 3. Assume m(x) is of weak-type Lr[0, 1]. Then, I is bounded from ℓp(Z1) to ℓq(Z1) if

1
p
− 1

q
=

1
r

, 1 < p ≤ 2 ≤ q < ∞.

Proof. First, assume that q = 2, so that 1
p = 1

2 + 1
r . Then, for f ∈ ℓp(Z1), using Paley’s

version of the Hausdorff–Young inequality, f̂ ∈ Lp′ ,p[0, 1], where 1
p + 1

p′ = 1. Therefore, by
the multiplicative property of Lorentz spaces,

Î f (x) = m(x) f̂ (x) ∈ Lr,∞ · Lp′ ,p ⊂ Lp0,q0 ,

where 1
p0

= 1
p′ +

1
2 = 1

2 , 1
q0

= 1
p + 1

∞ = 1
p . Therefore, Î f ∈ L2,p ⊂ L2,2 = L2 since p ≤ 2

by assumption. Hence, I f ∈ ℓ2(Z1) and so I maps ℓp(Z1) to ℓ2(Z1) . The case when
p = 2 and 1

2 − 1
r = 1

q follows by considering the adjoint operator of I , and the Lemma
then follows by interpolation between the two resulting bounds for I . □

Now, Theorem 4 is just an immediate corollary of Lemma 3 and Theorem 2 and note
that ℓp ⊂ ℓq if p ≤ q.

4. Multipliers Related to Imaginary Quadratic Fields

Now, consider the imaginary quadratic field K = Q(
√

D) of discriminant D < 0. Let
O ⊂ K denote the ring of integers. Let I be the group of fractional ideals ̸= 0,

I =
{
a1

a2
: a1, a2 ⊂ O, a1a2 ̸= 0

}
and P ⊂ I the subgroup of principal ideals

P = {(a) = aO : a ∈ K∗}.
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Then, H = I/P is the class group, and the class number of K is h = [I : P] < ∞. For more
detailed background of imaginary quadratic fields, see [13]. Define the fractional integral
associated with the imaginary quadratic field by

Is,K f (m) = ∑
0 ̸=a⊂O

f (m − N(a))

N(a)s , m ∈ Z, (25)

where a ranges over non-zero integral ideals and N : I → Q∗ is the norm. In the case of
integral ideals, N(a) = #(O/a).

The corresponding multiplier is

ms,K(x) = ∑
0 ̸=a⊂O

e−2πixN(a)

N(a)s ,

that is,
Îs,K f (x) = ms,K(x) f̂ (x), f̂ (x) = ∑

n∈Z
f (n)e−2πinx.

Our main result is stated as below.

Theorem 5. For 1
2 < s < 1, then ms,K belongs to weak-type L1/(1−s)[0, 1].

Proof. Let w be the number of units of K. For every class A ∈ H, we introduce the
corresponding multiplier:

ms,A(x) = ∑
0 ̸=a∈A

e−2πixN(a)

N(a)s (26)

Every class A contains an integral primitive ideal, i.e., every class is not divisible by a
rational integer > 1. Every primitive ideal can be written as

a =

[
a,

b +
√

D
2

]
with a > 0, b2 − 4ac = D, (a, b, c) = 1.

The above notation means a is a free Z-module,

a = aZ+
b +

√
D

2
Z.

Note that b+
√

D
2 ∈ O and a = N(a); with the generators of a, we associate the quadratic form

φA(x) = ax2
1 + bx1x2 + cx2

2 =
1
2

A[x]

where

A =

(
2a b
b 2c

)
.

This establishes a one-to-one correspondence between the ideal classes A ∈ H and the
equivalence classes of primitive binary quadratic forms φA of discriminant D. We choose√

D = i
√
|D| so that

za =
b +

√
D

2a
∈ H.

Then, the inverse ideal a−1 is a free Z-module generated by one and z̄a:

a−1 = [1, z̄a] = Z+
b −

√
D

2a
Z.
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Now, given a class A which contains a, we can write

ms,A(x) = ∑
0 ̸=b∼a∈A

e−2πixN(a)

N(a)s

Here, the equivalence b ∼ a means b = (α)a with α ∈ a−1, α ̸= 0, i.e., α = m + nz̄a with
m, n ∈ Z, not both zero. As m, n range over the integers, every ideal b ∼ a is covered
exactly w times. Moreover, we have N(b) = |α|2a = am2 + bmn + cn2; hence,

ms,A(x) = ∑
0 ̸=a∈A

e−2πixN(a)

N(a)s =
1
w ∑

(0,0) ̸=(m,n)∈Z2

e−2πixφA(m,n)

φA(m, n)s

On the other hand, we have
ms,K(x) = ∑

A∈H
ms,A(x).

Lillian Pierce [4] showed that ms,A ∈ L1/(1−s)[0, 1] and therefore ms,K ∈ L1/(1−s)[0, 1] .
□

5. Discrete Analogue of Stein–Weiss Inequality on Product Space

In their study of fractional integrals, Stein and Weiss [14] considered the operator Iα,
acting on functions on RN , given by

Iα f (x) =
∫
RN

f (y)
(

1
|x − y|

)N−α

dy. (27)

If we let ω(x) = |x|−γ, σ(x) = |x|δ, they proved under some conditions of γ and δ, that
the following weighted norm inequality holds:

||ωIα f ||Lq(RN) ≤ C|| f σ||Lp(RN), (28)

which is now known as the Stein–Weiss inequality. When γ = δ = 0 , 1/q = 1/p − α/N,
(28) is the famous Hardy–Littlewood–Sobolev inequality, for more details, see [15–17].

In 2021, Wang [18] extended the Stein–Weiss inequality to the so-called product space
case. Now, consider RN as a product space by writing RN = RN1 ×RN2 × · · · ×RNk , k ≥ 2.
Let

0 < αi < Ni, i = 1, 2, . . . , k and α = α1 + α2 + · · ·+ αk.

Wang actually studied the weighted norm inequality of the so-called strong fractional integral
operator Jα , defined by

Jα f (x) =
∫
RN

f (y)
k

∏
i=1

(
1

|xi − yi|

)Ni−αi

dy. (29)

Theorem 6 ([18]). Let 0 < α < N, γ, δ ∈ R, 1 < p ≤ q < ∞. Then,

||ωJα f ||Lq(RN) ≤ C|| f σ||Lp(RN), (30)

is equivalent to

γ <
N
q

, δ < N
p − 1

p
, γ + δ ≥ 0,

1
q
=

1
p
+

γ + δ − α

N
. (31)

For γ ≥ 0, δ ≤ 0,

αi −
Ni
p

< δ, i = 1, 2, . . . , k. (32)
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For γ ≤ 0, δ ≥ 0,

αi − Ni
q − 1

q
< γ, i = 1, 2, . . . , k. (33)

For γ > 0, δ > 0,

∑
i∈{1,2,...,k}

αi≥Ni/p

(
αi −

Ni
p

)
< δ, ∑

i∈{1,2,...,k}
αi≥Ni(q−1)/q

(
αi − Ni

(
q − 1

q

))
< γ, (34)

It is natural to ask whether the discrete analogue of Theorem 6 holds. Considering the
discrete operator Tα,γ,δ, defined as follows,

Tα,γ,δ f (n) = ∑
m1∈ZN1
m1 ̸=n1

∑
m2∈ZN2
m2 ̸=n2

· · · ∑
mk∈ZNk
mk ̸=nk

f (m)

|n|γ|m|δ
k

∏
i=1

(
1

|ni − mi|

)Ni−αi

, |m||n| ̸= 0. (35)

where

m = (m1, m2, . . . , mk), n = (n1, n2, . . . .nk) ∈ ZN1 ×ZN2 × · · · ×ZNk ,

the following Theorem is expected.

Theorem 7. Under the conditions of (31)–(34), we have

||Tα,γ,δ f ||ℓq(ZN) ≤ C|| f ||ℓp(ZN). (36)

Proof. We can assume that f ≥ 0. Let Q = Q1 ×Q2 ×· · ·×Qk ⊂ RN1 ×RN2 ×· · ·×RNk , where

Qi =

{
xi = (x1

i , x2
i , . . . , xNi

i ) : − 1
2
< xj

i ≤
1
2

, j = 1, 2, . . . , Ni

}
, i = 1, 2, . . . , k.

Define F, associated with f , as

F(x) = f (n), x ∈ Q + n, (37)

Q is the fundamental cube in RN . Since

RN =
⋃

n∈ZN

(Q + n),

F is well defined. Note that for the appropriate constant C,

|ni − mi|−Ni+αi ≤ C|ni + ui − (mi + vi)|−Ni+αi , i = 1, 2, . . . , k,

|n|−γ ≤ C|n + u|−γ, |m|−δ ≤ C|m + v|−δ,
(38)

where ui, vi ∈ Qi, i = 1, 2, . . . , k and u = (u1, u2, . . . , uk), v = (v1, v2, . . . , vk). Therefore,
we have



Mathematics 2024, 12, 1545 14 of 15

∑
m1∈ZN1
m1 ̸=n1

∑
m2∈ZN2
m2 ̸=n2

· · · ∑
mk∈ZNk
mk ̸=nk

f (m)

|n|γ|m|δ
k

∏
i=1

(
1

|ni − mi|

)Ni−αi

≤ C ∑
m1∈ZN1
m1 ̸=n1

∑
m2∈ZN2
m2 ̸=n2

· · · ∑
mk∈ZNk
mk ̸=nk

{
k

∏
i=1

∫
vi∈Qi

}
f (m)

|n + u|γ|m + v|δ
k

∏
i=1

(
1

|ni + ui − mi − vi|

)Ni−αi

dvi

≤ C ∑
m1∈ZN1
m1 ̸=n1

∑
m2∈ZN2
m2 ̸=n2

· · · ∑
mk∈ZNk
mk ̸=nk

{
k

∏
i=1

∫
vi∈Qi

}
F(m + v)

|x|γ|m + v|δ
k

∏
i=1

(
1

|xi − mi − vi|

)Ni−αi

dvi

(x = n + u)

≤ C ∑
m1∈ZN1
m1 ̸=n1

∑
m2∈ZN2
m2 ̸=n2

· · · ∑
mk∈ZNk
mk ̸=nk

{
k

∏
i=1

∫
yi∈Qi+mi

}
F(y)

|x|γ|y|δ
k

∏
i=1

(
1

|xi − yi|

)Ni−αi

dyi

(y = m + v)

≤ C
∫
RN

F(y)
|x|γ|y|δ

k

∏
i=1

(
1

|xi − yi|

)Ni−αi

dy = CT ∗
α,γ,δF(x), x ∈ Q + n.

(39)

Now, by (39) and applying Theorem 6, we have

||Tα,γ,λ f ||ℓq(ZN) =

(
∑

n ̸=0
Tα,γ,λ f (n)q

) 1
q

≤ C

(
∑

n ̸=0

∫
x∈Q+n

T ∗
α,γ,λF(x)qdx

) 1
q

≤ C||T ∗
λ,α,βF||Lq(RN) ≤ C||F||Lp(RN) = C|| f ||ℓp(ZN),

(40)

Under the same conditions as (31)–(34), note that ℓp1(ZN) ⊂ ℓp2(ZN) if p1 ≤ p2, We can
actually improve (31) to

1
q
≤ 1

p
+

γ + δ − α

N
.

The proof is completed. □

6. Discussion

In the realm of harmonic analysis, discrete analogues play a crucial role in extending
theoretical frameworks and computational techniques to discrete domains. These analogues
provide a bridge between continuous and discrete settings, allowing for the exploration
of complex phenomena in discrete structures such as sequences, grids, and graphs. In
this paper, we delve into the rich tapestry of discrete analogues in harmonic analysis,
exploring various facets ranging from discrete fractional operators to multipliers derived
from number theoretic identities. Compared to the results obtained by Stein and Wainger
in [2], we see that there may be cancellations in the sum ∑n=1 χ(n) f (m − n2)n−s, so it
is expected that a better result should obtained. However, Theorem 1 shows that the
corresponding multiplier ms,2 still belongs to the weak-type L2/(1−s)[0, 1].

7. Conclusions

In our research, we embarked on extending classical results pioneered by Stein and
Wainger, enriching their framework by introducing the Dirichlet character. This addition
allowed us to delve deeper into the connection between Euler’s identity and its multipliers,
uncovering novel insights into the interplay between number theory and harmonic analysis.

Building upon this foundation, we leveraged Lillian Pierce’s groundbreaking work
on multipliers associated with quadratic forms. This provided a powerful lens through
which we could explore multipliers corresponding to quadratic imaginary fields. Moreover,
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we employed an implication method to establish the discrete analogue of the Stein–Weiss
inequality on product spaces.

Our investigation not only extends the scope of classical results but also highlights the
intricate connections between harmonic analysis, number theory, and discrete mathematics.
By bridging these disciplines, we aim to contribute to a deeper understanding of funda-
mental principles and to pave the way for new avenues of exploration at the intersection of
these fields.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Riesz, M. Sur les fonctions conjuguées. Math. Z. 1928, 27, 218–244. [CrossRef]
2. Stein, E.; Wainger, S. Discrete analogues in harmonic analysis. II. Fractional integration. J. Anal. Math. 2000, 80, 335–355.

[CrossRef]
3. Wainger, S. An introduction to the circle method of Hardy, Littlewood, and Ramanujan. J. Geom. Anal. 2021, 31, 9113–9130.

[CrossRef]
4. Pierce, L. Discrete Analogues in Harmonic Analysis. Ph.D. Thesis, Princeton University, NJ, USA, 2019.
5. Stein, E.; Wainger, S. Two discrete fractional integral operators revisited. J. Anal. Math. 2002, 87, 451–479. [CrossRef]
6. Oberlin, D. Two discrete fractional integrals. Math. Res. Lett. 2001, 8, 1–6. [CrossRef]
7. Pierece, L. Discrete fractional Radon transforms and quadratic forms. Duke Math. J. 2012, 161, 69–109. [CrossRef]
8. Pierece, L. On discrete fractional integral operators and mean values of Weyl sums. Bull. Lond. Math. Soc. 2011, 43, 597–612.

[CrossRef]
9. Bourgain, J.; Stein, E.; Wright, J. On a multi-parameter variant of the Bellow–Furstenberg problem. Forum Math. Pi 2023, 11, 1–64.

[CrossRef]
10. Bourgain, J.; Mirek, M.; Stein, E.; Wróbel, B. Dimension-free estimates for discrete Hardy-Littlewood averaging operators over the

cubes in Zd. Amer. J. Math. 2019, 141, 857–905. [CrossRef]
11. Mirek, M.; Stein, E.; Trojan, B. ℓp(Zd)-estimates for discrete operators of Radon type: maximal functions and vector-valued

estimates. J. Funct. Anal. 2019, 8, 2471–2521. [CrossRef]
12. Mehmood, S.; Mohammed, P.; Kashuri, A.; Chorfi, N.; Mahmood, S.; Yousif, M. Some New Fractional Inequalities Defined Using

cr-Log-h-Convex Functions and Applications. Symmetry 2024, 16, 407. [CrossRef]
13. Iwaniec, H.; Kowalski, E. Analytic Number Theory; American Mathematical Society: Providence, RI, USA, 2004.
14. Stein, E.; Weiss, G. Fractional Integrals on n-Dimensional Euclidean Space. J. Math. Mech. 1958, 7, 503–514. [CrossRef]
15. Stein, E. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals; Princeton University Press: NJ, USA, 1993.
16. Hardy, G.; Littlewood, J. Some Properties of Fractional Integrals. J. Math. Mech. 1928, 27, 565–606. [CrossRef]
17. Sobolev, S. On a Theorem of Functional Analysis. Mat. Sb. 1938, 46, 471–497.
18. Wang, Z. Stein-Weiss inequality on product spaces. Rev. Mat. Iberoam. 2021, 37, 1641–1667. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/BF01171098
http://dx.doi.org/10.1007/BF02791541
http://dx.doi.org/10.1007/s12220-020-00579-9
http://dx.doi.org/10.1007/BF02868485
http://dx.doi.org/10.4310/MRL.2001.v8.n1.a1
http://dx.doi.org/10.1215/00127094-1507288
http://dx.doi.org/10.1112/blms/bdq127
http://dx.doi.org/10.1017/fmp.2023.21
http://dx.doi.org/10.1353/ajm.2019.0023
http://dx.doi.org/10.1016/j.jfa.2018.10.020
http://dx.doi.org/10.3390/sym16040407
http://dx.doi.org/10.1512/iumj.1958.7.57030
http://dx.doi.org/10.1007/BF01171116
http://dx.doi.org/10.4171/rmi/1244

	Introduction
	Multipliers Twisted with Dirichlet Characters
	Multiplier Related to Euler's Identity 
	Multipliers Related to Imaginary Quadratic Fields
	Discrete Analogue of Stein–Weiss Inequality on Product Space
	Discussion
	Conclusions
	References

