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Abstract: In this paper, a novel data transmission scheme, interference perceptual multi-modulation
(IP-MM), is proposed for full-duplex (FD) systems. In order to unlink the conventional uplink (UL)
data transmission using a single modulation and coding scheme (MCS) over the entire assigned UL
bandwidth, IP-MM enables the transmission of UL data channels based on multiple MCS levels, where
a different MCS level is applied to each subband of UL transmission. In IP-MM, a deep convolutional
neural network is used for MCS-level prediction for each UL subband by estimating the potential
residual self-interference (SI) according to the downlink (DL) resource allocation pattern. In addition,
a subband-based UL transmission procedure is introduced from a specification point of view to
enable IP-MM-based UL transmission. The benefits of IP-MM are verified using simulations, and it is
observed that IP-MM achieves approximately 20% throughput gain compared to the conventional
UL transmission scheme.
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1. Introduction

Since the Third-Generation Partnership Project (3GPP) completed the first series of
specifications for the fifth-generation (5G) New Radio (NR) standard, 5G commercial
systems have been successfully deployed around the world [1–3]. The 5G NR standards
have continued to evolve over the past few years, and are currently evolving towards
5G-Advanced. Recently, 3GPP has completed the Release 18 project, which corresponds
to the 5G-Advanced launch [4–7]. From the physical layer point of view, the evolution of
duplex operation, including full-duplex (FD) technology, has been investigated to improve
the performance of 5G in terms of throughput, coverage, and connectivity [7]. As a
result of the investigation into Release 18, the technical report (TR) 38.858 was endorsed,
encompassing general aspects of FD schemes, analysis of the performance and its feasibility,
as well as potential enhancements [8]. Additionally, as part of the Release 19 package, the
work item for duplex evolution has been approved [9]. In Release 19, the standardization
effort for FD technology primarily focuses on supporting semi-static/dynamic FD operation
and addressing the cross-link interference problems [10]. Beyond 5G, FD is now considered
a promising technology to promote the emergence of 6G [11,12].

The FD technique enables the simultaneous transmission and reception of downlink
(DL) and uplink (UL) signals in the same time and frequency resources [13–15]. Thus, FD
can theoretically double the spectral efficiency compared to the conventional half-duplex
(HD) operation. The major challenge of FD-enabled cellular communication systems
is the performance degradation in the UL data rate caused by the self-interference (SI)
phenomenon, i.e., the transmitted DL signals cause unwanted interference to the received
UL signals. To make the FD operation feasible, numerous studies with respect to SI
estimation [16–26] and SI cancellation (SIC) [27–34] have been conducted.
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Regarding the SI estimation methods, Refs. [16–19] have examined how the nonlineari-
ties and phase noise in transmit and receive power amplifiers affect digital SIC techniques.
Ref. [20] proposed an efficient SI channel estimation algorithm based on partial training
for FD massive multiple-input–multiple-output (MIMO) systems. The authors of [21] de-
veloped a novel one-block training scheme based on a maximum likelihood estimator to
estimate the channels between the nodes as well as the residual SI channel simultaneously
for FD two-way relays. Ref. [22] conducted a study on joint estimation of SI channel and RF
impairments for orthogonal frequency-division multiplexing (OFDM) full-duplex systems.
In [23–26], several SI estimation schemes based on a deep learning approach were investi-
gated. Refs. [23–25] utilized deep neural networks for the reconstruction of the nonlinear
SI components to mitigate SI signals in FD systems. In [26], a pilot-aided linear minimum
mean-squared error (LMMSE) estimator was developed to jointly estimate the channel, phase
noise, and in-phase/quadrature-phase imbalance for multicarrier MIMO FD systems.

The SIC techniques can be applied individually in analog and digital domains as well as in
combination [14,27,35]. The radio frequency (RF) signals are initially attenuated in the analog do-
main to accommodate the dynamic range of the analog-to-digital converter (ADC). Subsequently,
the residual SI is further suppressed in the digital domain. Numerous digital nonlinear SIC
techniques have been proposed that can be classified into time-domain, frequency-domain, and
spatial-domain approaches [28–34]. Time-domain nonlinear SIC approaches were investigated
in [28,29]. In particular, in [28], iterative nonlinear SIC under mixer imbalance and amplifier
nonlinearity was proposed. Ref. [29] introduced a low-complexity SIC technique in multiple
carrier and multiple access systems that utilizes the whole band directly during digital sampling.
Refs. [30,31] proposed frequency-domain SIC techniques. Ref. [30] focused on developing a
low-complexity algorithm and Ref. [31] utilized basis function selection of frequency-domain
Hammerstein SIC. Space-domain SICs were studied in [32–34]. In [32], an iterative beamforming
algorithm was proposed for multipair FD relay systems. Ref. [33] proposed a beamforming
technique based on channel statistics for multi-set space–time shift keying-based FD millimeter
wave communication systems. Ref. [34] studied joint optimization of beamforming and phase
adjustment for FD relay systems with intelligent reflecting surfaces.

Most previous studies on FD have focused on the development of SIC algorithms. Unlike
previous studies, this study focuses on the further optimization of UL data transmission
under a given residual SI level after SIC. To this end, the drawbacks and limitations of the
conventional UL transmission scheme specified in 5G NR [36] are analyzed. In NR, a physical
uplink shared channel (PUSCH) corresponding to the UL data channel is transmitted based on
a single MCS level. Given that the FD operation is employed, the BS requires that the residual
SI level be identified beforehand to estimate the effective signal-to-interference-plus-noise
ratio (SINR) and corresponding MCS level. However, estimating the instantaneous residual
SI level is challenging because of the complicated nonlinearities in the transceiver [21,30].
Moreover, the residual SI level varies dynamically depending on the frequency-domain
resource allocation of the DL signal. Although the residual SI level is known at the BS, the
conventional UL transmission scheme still suffers from a huge UL throughput degradation
because a conservative MCS level is selected to meet the target error rate. Therefore, it is
necessary to develop a more efficient UL transmission scheme for FD systems.

Motivated by the above considerations, in this paper, a novel UL data transmission
scheme, interference perceptual multi-modulation (IP-MM), is proposed for FD systems.
The proposed IP-MM enables the transmission of UL data channels based on multiple MCS
levels, where a different MCS level is applied to each subband of the UL transmission. To
determine the MCS levels, a deep convolutional neural network (CNN) is developed. The
CNN selects an optimized MCS level for a given subband using channel information and
DL resource allocation information as input. A new PUSCH transmission scheme based on
the IP-MM is then proposed from a specification point of view.

The main contributions are summarized as follows:

• First, an IP-MM scheme designed to enhance the robustness of UL transmission in FD
systems is proposed. The proposed IP-MM scheme employs multiple MCS levels for
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a PUSCH, where the MCS levels are optimized depending on the SI levels for each
subband. To this end, the 5G specification related to PUSCH transmission is analyzed,
and the limitations of the current scheme when it directly employed in FD systems are
identified. Furthermore, a new PUSCH transmission procedure based on the proposed
IP-MM is introduced.

• A CNN architecture is developed to determine the optimal MCS level for PUSCH.
The proposed CNN uses PDSCH resource allocation information and channel state
information as input signals. Then, the regression layer of CNN selects the optimal
MCS levels depending on the SI levels.

• The advantages of the proposed IP-MM scheme over the conventional scheme are
verified through various simulations. Notably, the proposed IP-MM shows robust
performance even with limited channel knowledge. The IP-MM scheme leads to a
substantial reduction in the SIC requirements for FD systems.

The remainder of this paper is organized as follows. In Section 2, the system model is
introduced. In Section 3, the conventional UL transmission scheme for 5G NR is briefly
reviewed, and the proposed IP-MM is introduced in Section 4. The performance of the
IP-MM is evaluated in Section 5. Finally, Section 6 summarizes the results of this study.

2. System Model

As a waveform, conventional cyclic prefix OFDM (CP-OFDM) is considered for both
DL and UL [36]. The transmitted complex digital signal on the kth subcarrier in an OFDM
symbol is denoted by S[k]. After operating the K-point inverse fast Fourier transform
(IFFT), a time-domain baseband CP-OFDM signal s(n) is generated. The DL signal sDL(n)
and UL signal sUL(n) are generated at the BS and UE, respectively.

The DL signal is transmitted after passing through the digital-to-analog converter
(DAC) and the power amplifier (PA). At the same time, the DL signal flows into the BS
receiving antenna so that the UL and DL signals are received together. The DL signal power
level is suppressed by antenna domain SIC techniques such as antenna isolation or active
cancellation at the radio frequency (RF) front-end [14]. The received DL and UL signals
are adjusted by using a low noise amplifier (LNA) and they are converted to digital signal
through the analog-to-digital converter (ADC). In order to eliminate DL signal from the
desired UL signal in digital domain, digital SIC techniques can be applied [14,30]. After
that, the UL signal is demodulated and decoded.

Details of nonlinearity models and channel models are described in the
following subsections.

2.1. Transmitter Nonlinearity

Considering the strong nonlinearity of the PA and the relatively weak nonlinearities of
the DAC and mixer, the generalized memory polynomial (MP) model is used for modeling
PA nonlinearity [30,37]. Then, the output signal of the PA xPA is given by

xPA(n) =
P−1

∑
p=0

M−1

∑
m=0

hPA,p(m)sDL(n − m)|sDL(n − m)|2p, (1)

where hPA,p denotes the impulse response for the pth order nonlinearity, P is the highest
nonlinearity order, and M denotes the memory depth of the PA.

2.2. Channel Model

The output signal of PA xPA(n) is transmitted over the L-tap multipath SI channel.
Denoting hSI(l) for l = 0, 1, ..., (L1 − 1) as the impulse response of the SI channel, the
received SI signal is given by

xSI(n) =
L1−1

∑
l=0

hSI(l)xPA(n − l). (2)
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The SI channel is typically modeled as Rician fading, which is composed of two parts:
(i) strong near-field components representing line-of-sight (LOS) paths and (ii) weak far-
field components of the reflected non-LOS (NLOS) paths [20].

The received signal r(n) at the LNA input is given by

r(n) = xUL(n) + xSI(n) + w(n), (3)

where

xUL(n) =
L2−1

∑
l=0

hUL(l)sUL(n − l). (4)

hUL is the L2-tap UL channel and w is the additive white Gaussian noise (AWGN). The UL
channel hUL is modeled as Rayleigh fading.

2.3. Receiver Nonlinearity

The receiver nonlinearity is dominated by the strong nonlinearity of the LNA [37].
Typically, the nonlinear distortion of the receiver is much lower than that of the transmitter,
since the residual SI that enters the receive chain after analog SIC is much lower than the
third-order input intercept point (IIP3) [30,37]. Assuming a power series for modeling
nonlinearity of the LNA, the output of LNA is given by

y(n) =
Q−1

∑
q=0

hLNA,qr(n)|r(n)|2q

(a)
≈ hLNA,0xUL(n) +

Q−1

∑
q=0

hLNA,qψSI,q(n) + w̃(n), (5)

where Q is the highest nonlinear order and hLNA,q is the q-th order coefficient of the LNA

nonlinear model. ψSI,q(n) is defined as ψSI,q(n)
∆
= xSI(n)|xSI(n)|2q. w̃ is effective noise

following an independent zero-mean Gaussian noise at the LNA output [37]. (a) holds for
that the strength of the linear component of the desired signal xUL is much greater than the
nonlinear components [30].

2.4. SINR Formulation

Assuming that SIC techniques are applied [14], the LNA output signal in (5) can be
rewritten as

ỹ(n) = hLNA,0xUL(n)︸ ︷︷ ︸
desired signal

+
√

ρSIC

Q−1

∑
q=0

hLNA,qψSI,q(n)︸ ︷︷ ︸
residual SI

+w̃(n), (6)

where ρSIC is a power scaling factor, which reflects the capability of the SIC techniques.
After removing the CP and K-point FFT, the received signal on the kth subcarrier can be
written as

Ỹ[k] = hLNA,0XUL[k] +
√

ρSIC

Q−1

∑
q=0

hLNA,qΨSI,q[k] + W̃[k], (7)

where XUL[k], ΨSI,q[k], and W̃[k] are the frequency-domain representations of xUL(n),
ψSI,q(n), and w̃(n), respectively. Then, the received SINR on the kth subcarrier is given by

γ[k] =
|hLNA,0XUL[k]|2

ρSIC

∣∣∣∣∣Q−1
∑

q=0
hLNA,qΨSI,q[k]

∣∣∣∣∣
2

+ σ̃2

, (8)

where σ̃2 denotes the effective noise power.
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3. Conventional UL Transmission Scheme

In 5G NR, UL data are encoded and modulated based on a single MCS level and
transmitted via PUSCH, as shown in Figure 1a [36]. To determine the MCS level for a
PUSCH, the BS first estimates the UL channel based on the UL reference signal (RS) trans-
mitted by the UE. Then, the BS determines the time and frequency resources for scheduling
PUSCH. Subsequently, the effective SINR is calculated for a given set of subcarriers to
be scheduled to determine the MCS level for the PUSCH. To obtain an effective SINR
γeff, exponential effective SINR mapping (EESM) is used [38]. Assuming that the BS can
accurately determine the residual SI level for all PUSCH resources, the SINR on the kth
subcarrier is equal to (8). Then, γeff is given by

γeff = EESM(γ, β) = −β log

(
1
|S| ∑

k∈S
exp

(
−γ[k]

β

))
, (9)

where S is the set of subcarriers of interest to be averaged, |S| is the cardinality of S , and β
is a coefficient calibrated using link-level simulations to fit the compression function to the
AWGN block error rate (BLER) results. Based on γeff, one representative MCS satisfying
the target BLER is selected. The BS provides PUSCH resource allocation information and
the MCS level to the UE via downlink control information (DCI). From the indicated MCS
level, the UE extract the modulation order (Qm) and coding rate (C). Subsequently, the
transport block size (TBS) is determined as TBS = Qm · C · |S|. Based on the selected MCS,
the TB is encoded and modulated into complex symbols. These modulated symbols are
mapped to the physical resources corresponding to the resources indicated by the DCI. The
mapping to the resource elements (REs) (k, j) allocated for PUSCH is in increasing order
of first index k over the assigned resource blocks (RBs) and then index j. Here, k is the
subcarrier index, j is the OFDM symbol index, and RB corresponds to a set of REs, in which
1 RB consists of 12 REs. Finally, the UE transmits PUSCH to the BS.

Figure 1. Illustration of UL transmission in FD systems: (a) conventional UL transmission scheme
and (b) proposed IP-MM based UL transmission scheme.
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4. Proposed IP-MM Scheme

The conventional UL transmission scheme based on a single MCS level has several
critical problems, as follows.

• The conventional scheme incurs performance degradation in terms of UL throughput
due to the use of single MCS. As described in (9), the SINR is averaged over the sub-
carriers in which the PUSCH is scheduled for MCS determination. In this procedure, a
conservative MCS level is selected to satisfy the target BLER, although the UL signal
experiences different levels of residual SI depending on the subcarriers.

• For the conventional scheme, the BS needs to predict the received SINR over all the
UL subcarriers by estimating the instantaneous residual SI level. As in (8), the residual
SI is the superposition of a number of nonlinear components passing through the PA
nonlinear channel, SI channel, and LNA nonlinear channel. It is very challenging
to estimate the nonlinear channel coefficients and SI channel because this typically
requires complicated algorithms based on polynomial expansions [21].

• The residual SI level on a subcarrier is affected by the frequency domain resource
allocation of a physical downlink shared channel (PDSCH) corresponding to the DL
signal, as illustrated in Figure 1. The residual SI level on a subcarrier could be very
different depending on whether the PDSCH is assigned to the subcarrier or not (5G NR
supports two different types of frequency-domain resource allocation for PDSCH and
PUSCH [36]. Type 0 corresponds to the distributed mapping and type 1 corresponds
to the contiguous mapping. Typically, type 0 is used for PDSCH while type 1 is used
for PUSCH). Since the PDSCH resource allocation is dynamically changed in every
time slot, it is very difficult to correctly estimate the instantaneous SI level.

Based on the above observations, an IP-MM based UL transmission scheme is devel-
oped, as shown in Figure 1b. To resolve the first issue, multiple MCS levels are applied
for the PUSCH transmission. The entire UL frequency resource allocated for a PUSCH is
divided into several subbands, and different MCS levels are applied for each subband. The
second and third issues are resolved by adopting a deep learning algorithm. Instead of
estimating the residual SI level on each subcarrier, the deep learning algorithm directly
calculates the optimal MCS level for each subband.

Details of the proposed IP-MM scheme are described in the following subsections.

4.1. Deep Learning Algorithm for MCS Determination

MCS determination uses a CNN based on a regression approach with the network
structures presented in Table 1. The CNN structure is considered to give meaning to the
spatial location of bitmap, UL channel, and SI channel information according to subbands
and to extract the spatial characteristics as much as possible by using 2D filters for MCS
determination. The CNN determines the MCS levels for all subbands using the bitmap
for PDSCH resource allocation, the magnitude of the UL channel hUL, and the magnitude
of the SI channel hSI as the input signals. The size of the bitmap is NDL

RBG bits, where
NDL

RBG is the number of RB groups (RBGs) allocated for the PDSCH and an RBG consists of
multiple RBs [36]. As the target signals of CNN, the selected MCS levels based on γeff,i for
i = 1, 2, ..., Nsub are used, where Nsub is the number of subbands. Meanwhile, γeff,i is the
effective SINR for the ith subband obtained from (9) by replacing S with Si where Si is a
set of REs within the ith subband. During the learning process, the network weights of the
CNN are optimized to reduce the root-mean-square error between the estimated and target
MCS levels. For the regression problem, 32 MCS levels [36] are normalized to the range
[0, 1] for fast and accurate training.
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Table 1. Structure of the employed CNN for the MCS determination.

Layer Dimension Parameters Activation

Input (3, NRB, 1) - -
Convolution 1D (3, NRB, 32) 320 -
Batch Normalization (3, NRB, 32) 64 ELU
Max Pooling 1D (3, 67, 32) - -
Convolution 1D (3, 67, 48) 13,872 -
Batch Normalization (3, 67, 48) 96 ELU
Max Pooling 1D (3, 34, 48) - -
Convolution 1D (3, 34, 64) 27,712 -
Batch Normalization (3, 34, 64) 128 ELU
Avg Pooling 1D (3, 17, 64) - -
Flatten - - -
FC (Regression) (Nsub) 3072 × Nsub Sigmoid

The CNN consists of an input layer, three convolutional layers, three batch normal-
ization layers, three polling layers, and a fully connected (FC) layer. In the input layer, a
signal of size 3 × R attaching the bitmap for the PDSCH resource allocation with a size
of 1 × NRB, magnitude of hUL with size 1 × NRB, and magnitude of hSI of size 1 × NRB is
used as the input of the CNN, where NR is the number of total RBs. In the convolutional
layer, the number of convolution filters for the first, second, and third layers is set to 32, 48,
and 64 with the filter size 3 × 3, respectively. Batch normalization layers are used between
the convolutional layer and the activation function [39]. For the pooling layer, max and
average pooling are considered with 1 × 2 filter size, a stride size of 2, and no zero-padding.
The exponential linear unit (ELU) is used as the activation function layer, except for the
FC layer, where the sigmoid is employed [40]. Finally, the FC layer is used to connect all
neurons from the previous convolutional layer to the output neurons of size Nsub × 1 and
attach them to the regression layer. Based on the values calculated in the regression layer,
the CNN determines the MCS levels for all subbands by scaling the output values with
size Nsub × 1 ranging [0, 1] from the regression layer to the range [1, 32] and selecting the
closest MCS levels for all subbands between the scaled values and set of MCS levels.

4.2. IP-MM Based UL Transmission Procedure

After determining the MCS levels for all subbands, the BS sends the corresponding
UL scheduling information to the UE. Based on the scheduling information, the TBS is

calculated as TBSIP-MM =
Nsub
∑

i=1
Qm,i · Ci · |Si| where Qm,i, Ci and |Si| are the modulation

order, coding rate, and number of REs for subband i, respectively. Because MCS i is
applied to subband i, the modulated symbols of the TB corresponding to MCS i should be
mapped within subband i. Therefore, the resource mapping should be changed from the
original mapping used in the conventional scheme. As shown in Figure 1b, the modulated
symbols of a TB are mapped to the physical resources in the frequency-first and time-second
manner within subband i. After resource mapping for the subband i is performed, resource
mapping is continued for the next subband i + 1 until all subbands are mapped. In terms
of DL control signaling, the IP-MM requires additional bits in a DCI to indicate multiple
MCS levels for a PUSCH. Consequently, the IP-MM may lead to an increase in DL control
signaling overhead. Addressing this concern requires the exploration of a new DCI design
minimizing signaling overhead. This remains the topic of future research because it is
beyond the scope of current research.

5. Simulation Results

In this section, the simulation results are presented to verify the benefits of the pro-
posed IP-MM scheme. For the proposed IP-MM, it is assumed that the UL resources are
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equally divided into Nsub subbands. For PA nonlinearity, it is assumed that P = 3 and
M = 3, and the coefficients are adopted from [30] given by

hPA,0(0) = 1.05 + 0.09j hPA,1(0) = −0.05 − 0.29j
hPA,2(0) = −0.97 − 0.70j hPA,0(1) = −0.07 − 0.00j
hPA,1(1) = 0.22 + 0.23j hPA,2(1) = −0.25 − 0.37j
hPA,0(2) = 0.03 − 0.01j hPA,1(2) = −0.06 − 0.09j
hPA,2(2) = 0.12 + 0.15j.

For the LNA nonlinearity, it is assumed that Q = 3, and the coefficients in [37] are used,
which are given by

hLNA,0 = 1.0108 + 0.0858j

hLNA,1 = 0.0879 − 0.1583j

hLNA,2 = −1.0992 − 0.8891j.

For the UL and SI channels, tapped delay line (TDL) models C and D are assumed, respec-
tively [41]. The first tap in TDL model D follows a Rician fading distribution because of
the LOS path. The remaining simulation parameters are summarized in Table 2.

For deep learning, 200,000 channel realizations are generated, and 80% and 20% of
the realizations are used as the training and validation sets, respectively. The CNN is
trained over 50 epochs using the Adam optimizer, with an initial learning rate of 10−3 [42].
During the training process, a mini-batch gradient descent algorithm with a batch size of
64 is considered, which splits the training dataset into small batches to estimate the error
gradient before the model weights are updated.

For comparison, the performance of the conventional scheme with an ideal SINR in
which the BS accurately determines γ[k] for all subcarriers is evaluated together. Two
types of IP-MM are evaluated for the proposed IP-MM: (i) IP-MM with full hSI knowledge
(IP-MM-full) and (ii) IP-MM with partial hSI knowledge, where only the LOS component is
available (IP-MM-LOS). The upper-bound performance of IP-MM with optimal MCS levels
(IP-MM-opt) is also plotted.

Table 2. Simulation parameters.

Parameter Value

Carrier frequency 4.0 GHz
Subcarrier spacing 30 kHz

FFT size 2048
System bandwidth 50 MHz

Number of total RBs (NRB) 133 RBs
RBG size 8 RBs

Number of RBGs for PUSCH (NUL
RBG) 8 RBGs

Resource allocation type type 0 for DL, type 1 for UL
UL channel model TDL-C, 200 ns, 3 km/h
SI channel model TDL-D, 100 ns, 0 km/h

Received noise power −90 dBm
Received DL signal power 43 dBm
Received UL signal power −77 dBm

Target BLER 10−1

Figure 2 shows cumulative distribution function (CDF) of the effective SINRs for the
conventional scheme and the proposed IP-MM. For the conventional scheme, the effective
SINR, γeff, is obtained as described in (9), i.e., by averaging the SINRs over the whole REs
within PUSCH transmission bandwidth. On the other hand, for the proposed IP-MM, the
effective SINR is obtained for each subband, i.e., γeff,i is calculated by averaging the SINRs
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over REs in the ith subband. In Figure 2, it is observed that the mean of the effective SINR
of the proposed IP-MM γeff,i is greater than that of the conventional scheme γeff. Moreover,
it is observed that the effective SINR of IP-MM is improved as the number of subbands
Nsub increases due to the diversity effect. Therefore, the proposed IP-MM scheme can be
expected to provide UL throughput gain over the conventional scheme.

Figure 3 provides some examples of MCS determinations for the conventional and
proposed IP-MM schemes depending on Nsub when NDL

RBG = 8 and ρSIC = −130 dB. As
introduced in Section 3, a single MCS level is determined based on γeff for the conventional
scheme. For the proposed IP-MM, the MCS level is determined per subband, i.e., the ith
MCS level for the ith subband is determined based on γeff,i. As described in Figure 3,
MCS levels for some subbands of the proposed IP-MM scheme are determined by higher
values than the MCS level of the conventional scheme. For example, for IP-MM scheme
when Nsub = 8, the MCS levels for subbands 4, 5, 6 and 8 are determined as 6, 6, 5, and
4, respectively, while the MCS level of the conventional scheme is determined as 3. As a
result, the IP-MM scheme can potentially improve the UL throughput compared with the
conventional scheme by transmitting parts of UL data with a higher MCS level.

Figure 4 shows the UL throughput performances according to Nsub when NDL
RBG = 8

and ρSIC = −130 dB. It is observed that the performance of IP-MM improves as Nsub
increases. This is because more optimized MCS levels can be applied per subband in finer
granularity as Nsub increases. For Nsub = 8, the proposed IP-MM achieves approximately
20% UL throughput gain compared with the conventional scheme. IP-MM-full and IP-
MM-LOS, which select the MCS levels based on the proposed CNN algorithm, can achieve
approximately 90% of the performance of the IP-MM-opt. Notably, the performance of
IP-MM-LOS is similar to that of IP-MM-full. Therefore, it can be concluded that knowledge
of the LOS component for the SI channel is sufficient for deep learning to determine the
MCS levels.

Figure 2. CDF of effective SINR according to Nsub when NDL
RBG = 8 and ρSIC = −130 dB.
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Figure 3. Examples of MCS determination according to Nsub when NDL
RBG = 8 and ρSIC = −130 dB.
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Figure 4. UL throughput performances according to Nsub when NDL
RBG = 8 and ρSIC = −130 dB.

Figure 5 illustrates the UL throughput performances according to NDL
RBG when Nsub = 8

and ρSIC = −130 dB. The performance of IP-MM and conventional schemes decreases
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with NDL
RBG. This occurs because of that the UL signal suffers from a stronger SI as NDL

RBG
increases since a larger NDL

RBG implies that more RBGs are allocated for PDSCH. For the
considered NDL

RBG regime, the proposed IP-MM outperforms the conventional scheme. It is
observed that the performance gain of the IP-MM scheme over the conventional scheme
increases as NDL

RBG decreases, and it decreases as NDL
RBG increases. Specifically, the proposed

IP-MM scheme achieves approximately 25% and 4% gain when NDL
RBG = 2 and NDL

RBG = 14,
respectively. This is because the advantage of employing multiple MCS levels for a PUSCH
is maximized when each subband is suffering from a different level of SI, i.e., the γeff,i, for
i = 1, 2, ..., Nsub is different. As NDL

RBG decreases, the difference among subband SINRs, i.e.,
γeff,i, for i = 1, 2, ..., Nsub will be large because certain subbands may encounter significant
SI, while others might experience almost no SI. On the other hand, as NDL

RBG increases, most
of the subbands are affected by strong SI. Therefore, the performance gain of the proposed
IP-MM scheme becomes marginal in response to a large NDL

RBG regime.
Figure 6 describes the UL throughput according to ρSIC when NDL

RBG = 8 and Nsub = 8.
In general, as the SIC capability decreases (i.e., ρSIC increases), the UL throughput decreases.
The proposed IP-MM scheme achieves approximately 14∼70% gain in terms of throughput
compared with the conventional scheme. Notably, the proposed IP-MM scheme shows
significant improvement regardless of the SIC capability. To be specific, the IP-MM-full
achieves 22% gain at ρSIC = −160 dB (in a high SIC-capability regime), 14% gain at
ρSIC = −130 dB (in a middle SIC-capability regime), and 70% gain at ρSIC = −80 dB (in a
low SIC-capability regime). In particular, the benefit of the IP-MM scheme is maximized
in the low SIC-capability regime. In other words, the IP-MM can more effectively meet
the minimum UL throughput requirement for FD systems with a limited SIC capability.
From the other point of view, the proposed IP-MM can be used for alternating solutions to
relax the SIC requirement. It is observed that the proposed IP-MM requires 8 dB less SIC
capability than the conventional scheme to achieve the same UL throughput of 35 Mbps.
This implies that, for the IP-MM scheme, the SIC requirement can be further relaxed to
achieve the target UL throughput.
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Figure 5. UL throughput performances according to NDL
RBG when Nsub = 8 and ρSIC = −130 dB.
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Figure 6. UL throughput according to ρSIC when NDL
RBG = 8 and Nsub = 8.

6. Conclusions

In this paper, a novel UL transmission scheme, IP-MM, was proposed for FD systems.
In IP-MM, a UL data channel was transmitted based on multiple MCS levels, where different
MCS level was applied to each subband of the UL transmission. To determine the MCS
level for each UL subband, a CNN algorithm was developed, which utilized the channel
information and the DL resource allocation pattern. Additionally, we proposed using a
subband-based UL transmission procedure from a specification point of view to enable
IP-MM-based UL transmission. The benefits of IP-MM were verified using simulations, and
it was observed that IP-MM achieved approximately 20% UL throughput gain compared
to the conventional scheme.
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