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Abstract: This paper examines the efficiency of alternative energy equity Exchange-Traded Funds
(ETFs) and conventional energy equity ETFs from 2018 to 2020, utilizing a combination of an output-
oriented Slack-Based Data Envelopment Analysis (DEA) model and cluster analysis. In the context of
an output-oriented DEA model, efficiency is defined as the ability of an ETF to maximize its outputs
(annualized average return; environmental, social responsibility, and corporate governance; and
net asset value) given a fixed level of inputs (expense ratio and beta). The findings indicate that
alternative energy ETFs have the potential for long-term outperformance compared to conventional
energy ETFs in terms of efficiency. However, during financial crises, the performance differences
between the two types of ETFs diminish, with no significant outperformance observed in either
category. The expense ratio and net asset value are identified as key factors influencing the efficiency
of both ETF types. Additionally, social and governance metrics have a notably stronger positive
impact on conventional energy ETFs relative to alternative energy ETFs, highlighting the increasing
significance of these factors in financial asset performance.

Keywords: exchange-traded funds; energy; slack-based data envelopment analysis; cluster analysis;
COVID-19

1. Introduction

Previous studies have explored the performance of clean energy assets compared to
conventional energy assets and the significance of environmental, social, and governance
(ESG) investments during financial crises. In this context, Kuang (2021) discovered that
green bonds and clean energy stocks effectively mitigate the downside risks associated
with conventional energy stocks, albeit with varying risk-reduction capabilities. Miralles-
Quirós and Miralles-Quirós (2019) utilized a Vector Auto-Regressive–Asymmetric Dynamic
Conditional Correlation (VAR-ADCC) approach to demonstrate that alternative energy
Exchange-Traded Funds (ETFs) can outperform energy ETFs. Similarly, Pavlova and Boyrie
(2022) employed a five-factor model and reported that ESG ETFs can outperform con-
ventional ones, aligning with the findings of Folger-Laronde et al. (2020), who utilized
analysis of variance (ANOVA) and multivariate regression models and concluded that
higher levels of sustainability performance in ETFs do not safeguard investments during
market downturns. However, during the Coronavirus Disease (COVID-19) period, they
performed no better than conventional ETFs. These latter findings contradict the conclu-
sions of Broadstock et al. (2021), who investigated the short-term cumulative returns of
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the China Securities Index 300 (CSI300) and concluded that the ESG role had incremental
importance during times of crisis.

When examining past financial crises, Alexopoulos (2018) employed return and risk
measures and found that the 2008 financial crisis affected clean energy ETFs more signifi-
cantly than the 2014 oil crisis affected conventional energy ETFs, as the former were more
sensitive to exogenous factors than the latter. Dawar et al. (2021) provided evidence for the
decreasing dependence of clean energy stock returns on crude oil returns, reinforcing the
theory that these two assets react differently to market turmoil.

While many studies have assessed the performance of energy funds, they mostly
focus on indicators based on risk and return factors such as Jensen’s alpha (Jensen 1968),
value at risk (VaR), or the Sharpe ratio (Sharpe 1966). Other models, such as the Carhart
model (Carhart 1997) and the Fama–French five-factor model (Fama and French 2015),
incorporate additional factors like momentum, investment, size, and value. In terms of
evaluating the efficiency of a specific fund or portfolio, numerous authors have employed
various Data Envelopment Analysis (DEA) approaches to reach their findings. For example,
Murthi et al. (1997) used the original DEA model proposed by Charnes et al. (1978) to
assess the efficiency of mutual funds, while Basso and Funari (2016) applied a DEA model
with variable returns to scale (VRS) to compare the results obtained from this model with
traditional financial indicators.

In this given context, the DEA approach emerges as particularly advantageous. DEA,
a mathematical programming methodology, proves adept at gauging the efficiency of a
group of entities termed Decision-Making Units (DMUs). In our specific case, these DMUs
are the ETFs undergoing evaluation, with their performance intricately defined by multiple
inputs (indicators being minimized) and outputs (indicators being maximized). Employing
this methodology results in the classification of DMUs as either efficient or inefficient based
on a singular efficiency score.

Moreover, DEA facilitates the identification of benchmarks for inefficient DMUs,
supplying managers with invaluable insights into best practices. Additionally, the DEA
methodology has gained widespread acceptance and application in measuring ETF perfor-
mance due to its ability to surmount limitations associated with conventional performance
measures, a point underscored by Murthi et al. (1997) and Choi and Min (2017).

Notably, Murthi et al. (1997) underscored the advantages of this tool in portfolio
performance assessment. First and foremost, the methodology dispenses with the need for
a theoretical reference model (e.g., the Capital Asset Pricing Model or the Arbitrage Pricing
Theory). Instead, the efficiency of each ETF (DMU) is measured against a set of efficient
ETFs within the same category. Secondly, it enables the simultaneous consideration of both
risk (inputs) and profit measures (outputs), culminating in a comprehensive performance
assessment score.

The outputs most used in DEA models are related to return metrics, such as average
return, Sharpe ratio, and portfolio return. On the other hand, the inputs in DEA models can
vary more widely and include factors such as expense ratio, value at risk (VaR), turnover,
standard deviation, and several others that will be discussed in further detail. In this paper,
we employ a Slack-Based Measure (SBM) DEA model combined with cluster analysis,
considering two inputs (expense ratio and beta) and three outputs (annualized average
return; environmental social responsibility and corporate governance; and net asset value),
to evaluate the efficiency of 14 alternative energy equity ETFs and 55 conventional energy
equity ETFs. This model will allow us to evaluate and compare the efficiency of both types
of ETFs across two distinct time periods: a one-year period (2020) and a three-year period
(2018, 2019, and 2020). Additionally, it will help us identify the inputs and outputs that
have a greater impact on their efficiency.

From an investor’s standpoint, this study holds significant value, as it identifies the
most relevant indicators for each category of ETFs across various time frames, encom-
passing both normal and crisis periods, including the economic downturn triggered by
COVID-19. Furthermore, it evaluates the importance of environmental factors over time
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and compares them with other established financial factors. Hence, instead of assessing
hypotheses derived from an underlying asset-pricing model or other theoretical finance
framework, the methodology and metric employed in this exercise has the ability to clarify
empirical patterns within the sample data.

Finally, unlike the DEA models employed in the literature (see Section 2) that rely
on the assumption of homogeneous DMUs—the ETFs in our case–which can limit their
accuracy in analyzing heterogeneous datasets, we employ clustering benchmarking, a
technique that breaks down a group of ETFs into clusters based on their distinct character-
istics (conventional vs. alternative energy). This approach allows for the identification of
similarities within clusters and differences between them, thereby enhancing the accuracy
of DEA analysis. Furthermore, comparing DEA models without clustering benchmarking
to those that employ it enables the calculation of the technology gap ratio (TGR), a metric
that assesses the relative efficiency of different ETF clusters against the whole set of ETFs
(i.e., the meta-frontier). Additionally, a robustness analysis has been conducted, which
enables the evaluation of potential impacts on efficiency stemming from variations in
factors, which may transpire during periods of market turbulence.

The remainder of the paper is organized as follows: Section 2 provides a review of
previous works that have applied DEA to evaluate efficiency or have utilized other models
to analyze ESG or energy funds. Section 3 outlines the DEA methodology employed in this
study. Section 4 presents details about the data used and the rationale behind selecting
specific inputs and outputs. Section 5 presents and examines the results obtained. Finally,
Section 6 presents the main conclusions and offers potential insights for investors based on
the findings.

2. Literature Review

Table 1 highlights the literature that exists on the performance evaluation of mutual
funds, ETFs, and portfolios using DEA models, which incorporate various inputs and
outputs. However, it is evident that a limited number of studies have specifically applied
the DEA approach to assess the efficiency of energy ETFs or incorporated environmental
factors in the assessment.

For instance, Allevi et al. (2019) utilized a DEA model that incorporated environmental
consumption and saving indicators to evaluate the performance of European green mutual
funds. Their findings indicated a positive relationship between environmental factors and
the funds’ efficiency. Similarly, Tsolas and Charles (2015) employed SBM models (Tone
2001) to evaluate the performance of green ETFs, although their study did not consider
environmental-based factors as indicators.

Given the rapid growth of investment in clean energy and the increasing popularity
of the ETF industry due to its accessibility to a wide range of investors, it becomes crucial
to incorporate environmental and socially responsible factors when evaluating any type of
open-end fund, especially those focusing on energy equities.

In subsequent studies, Choi and Min (2017) applied the Range Direction Model (RDM)
to assess 312 mutual funds, and Tsolas (2022) used the same methodology for utility ETFs.
Although the RDM is non-radial (i.e., it allows to account for non-proportional changes in
the inputs and outputs), it is not units-invariant, limiting its applicability for comparing
DMUs with different units of measurement for inputs and outputs.

Like Tsolas and Charles (2015), we employ the SBM DEA model, which is non-radial
and units-invariant. This makes the SBM DEA model more flexible and robust than the
Charnes, Cooper, and Rhodes (CCR) model (Charnes et al. 1978) used by Murthi et al.
(1997) and the Banker, Charnes, and Cooper (BCC) models (Banker et al. 1984) applied
by Premachandra et al. (2012), Basso and Funari (2014), and Basso and Funari (2016).
The CCR DEA model assumes Constant Returns to Scale (CRS), which may not always
hold. In contrast, despite assuming VRS, the BCC model, like the CCR model, assumes a
proportional change in either inputs or outputs (depending on the model’s orientation) for
efficiency, a somewhat unrealistic assumption.
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Table 1. Literature review on DEA models applied to the performance evaluation of mutual funds,
ETFs, and portfolios.

Authors Main Purpose Methodologies Inputs Outputs

Murthi et al. (1997)

Assess the performance of 2083
mutual funds divided into
categories and compare the
results with the traditional

Jensen’s alpha and the Sharpe
index (1965–1993).

CCR DEA model
Expense ratio; Load;

Turnover and Standard
Deviation.

Return

Premachandra et al.
(2012)

Assess the relative performance
of 66 large mutual fund families

in the US (1993–2008).

Two-stage BCC DEA
model

Management fees;
Marketing and

distribution fees; Fund
Size; Net Expense Ratio;

Turnover Ratio; Standard
Deviation

Net Asset Value (NAV);
Average Return

Basso and Funari
(2014)

Evaluate the performance of 189
European socially responsible

investment (SRI) funds and
compare them with 90 non-SRI
European funds (2006–2009).

CCR DEA model; BCC
DEA model

β-coefficient; Initial
payout invested.

Final fund value; Ethical
measure

Tsolas and Charles
(2015)

Measure the performance of 16
green ETFs with DEA metrics

(2008–2010).
SBM DEA models

Price Cash-flow (P/CF) of
the portfolio and Price

Book (P/B) of the portfolio

Sharpe ratio; Jensen’s
alpha

Basso and Funari
(2016)

Compare the results of DEA
performance measures with

traditional financial indicators
for 312 mutual funds

(2006–2013).

BCC DEA model with
variable returns to scale

Volatility; β-coefficient;
Downside Risk Monthly total returns

Choi and Min (2017)

Evaluate the efficiency of eight
ETFs and their benchmark index
(KOSPI 200) and compare with
the individual performance of

the underlying stocks.

DEA portfolio efficiency
index (DPEI); Range

Direction Model (RDM)
Total risk; Systematic risk Average portfolio return

Zhang and Chen
(2018)

Determine the performance of
energy portfolios based on daily

fossil-fuel futures prices
(2006–2015).

DEA window analysis
method and DEA

directional distance.

Return’s standard
deviation; VaR Mean returns

Allevi et al. (2019)

Evaluate the environmental and
financial performance of

European green mutual funds
(2012–2015).

BCC DEA model with four
different groups of inputs
and outputs (that focus on

environmental and
financial aspects or purely

on financial indicators).

β-coefficient; Initial
payout invested;
Downside risk;
Environmental

consumption indicators

Final value;
Environmental saving

indicators; Green
indicator

Tsolas (2019)

Propose an approach that
integrates Grey Relational

Analysis and DEA for selecting
the best utility ETFs (2008–2010).

Weight correlation
analysis based on DEA

Portfolio price to earnings
(P/E) ratio; Total expense

ratio
Sharpe ratio

Henriques et al. (2022)
Assess the performance of 60

ETFs in the energy sector
(2014–2018).

DEA model—Weighted
Russell Directional

Distance model combined
with a multiobjective

interval portfolio model

Beta; Standard Deviation

Jensen’s alpha; Sharpe
index; Mean annual
return; Trailing total

return

Tsolas (2022)

Employ a super-efficiency
methodology to assess and

prioritize ETFs with the aim of
identifying the best utility ETFs.

Range-adjusted
measure-based DEA

Expense ratio; Beta;
Tracking Error

Total Assets; 1-Year
Return (%)

Zhang and Chen (2018) utilized window DEA analysis and a DEA directional distance
to assess energy portfolios based on daily fossil-fuel futures prices. However, akin to the
BCC and CCR models, the DEA directional distance model is radial. Finally, Tsolas (2019)
employed Grey Relational Analysis, deemed suitable for problems considering multiple
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factors and their inter-relationships, while Henriques et al. (2022) used DEA as a filtering
procedure to compute ETF portfolios in the energy sector.

One common limitation of all these studies, thus far, is the treatment of ETFs as
homogeneous DMUs. Therefore, we contribute to the literature by proposing cluster
analysis to group ETFs based on their characteristics and performance. This allows us to
compare the efficiency of ETFs within each cluster, rather than just comparing the efficiency
of all ETFs together. This is a more granular approach that provides a more nuanced
understanding of the efficiency of ETFs.

Finally, the paper analyzes the performance of ETFs across two distinct time periods
(2020 and 2018–2020) to capture the impact of market conditions and the COVID-19 pan-
demic. This is important because the relative performance of ETFs can vary depending on
market conditions.

3. Methodology

DEA, initially introduced by Charnes et al. (1978), is a model used to estimate the
efficiency of DMUs with CRS. Later, Banker et al. (1984) extended the CCR model and
introduced the BCC model, which allows for VRS.

In our study, we used the SBM model proposed by Tone (2001). This model offers
a more suitable approach for assessing efficiency as it is non-radial and units-invariant,
unlike the CCR and BCC models. Furthermore, the SBM model can be input-, output-,
or non-oriented, providing flexibility in evaluating efficiency. This latter model not only
measures efficiency but also provides valuable information on the specific increase or
decrease required for each output or input of the inefficient DMUs, respectively.

Additionally, we incorporated cluster analysis into the SBM model to evaluate the
efficiency of DMUs based on the cluster frontier. The combination of the SBM model and
cluster analysis enabled us to account for the unique characteristics and performance of
each DMU (Tone and Tsutsui 2015).

3.1. The SBM Model

Considering a set of n DMUs (DMU1, DMU2, . . . , DMUn), where X = [xij, i = 1, 2, . . .,
m, j = 1, 2, . . ., n] is the (m × n) matrix of inputs, Y = [yrj, r = 1, 2, . . ., s, j = 1, 2, . . ., n] is the
vector of outputs (s × n) and the rows of these matrices corresponding to the inputs and
outputs of DMUk are, respectively, given by xT

k and yT
k , with T indicating the transpose of a

vector. The SBM model is given as (Tone 2001):

Min
λ, s−, s+

ρ
1− 1

m ∑m
i=1 s−i /xik

1+ 1
s ∑s

r=1 s+r /yrk

s.t.
xik∑n

j=1 xijλj+s−i , i = 1, . . . , m,
yrk∑n

j=1 yrjλj− s+i , r = 1, . . . , s,
λj ≥ 0, j = 1, . . . , n,
s−i ≥ 0, i = 1, . . . , m,
s+i ≥ 0, r = 1, . . . , s,

(1)

where ρ is the efficiency score; s−i for all i = 1, . . ., m, and s+r , for all r = 1, . . ., s, represent
the input excesses and output shortfalls for each input and output, respectively; and λj
represents an intensity factor that refers to the importance of the DMUj (j = 1, . . ., n) that is
viewed as the benchmark.

From problem (1), we can perceive that an increase in s−i or s+i , ceteris paribus, will
decrease its objective function value. Hence, it can be stated that 0 < ρ < 1. ρ in (1) can also
be formulated as:

ρ = (
1
m∑m

i=1

xik − s−i
xik

)(
1
s ∑s

r=1
yrk + s+r

yrk
)
−1

(2)
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The ratio xik−s−i
xik

evaluates the rate of reduction in input i and 1
m ∑m

i=1
xik−s−i

xik
is the

average reduction in inputs, in percentage. Likewise, the ratio yrk+s+r
yrk

measures the rate

of increase in output r and 1
s ∑s

r=1
yrk+s+r

yrk
is the average increase in outputs, in percentage.

Hence, ρ is considered the ratio of average inefficiencies of inputs and outputs.
Model (1) is converted into model (3), using a positive scalar variable t:

Min
t, λ, s−, s+

τ = t − 1
m ∑m

i=1 ts−i /xik

s.t. t + 1
s ∑s

r=1 ts+r /yrk = 1,
xk = Xλ + s−,
yk = Yλ − s+,

λ ≥ 0, s− ≥ 0, s+ ≥ 0, t > 0.

(3)

If S−= ts−, S+= ts+ and Λ = tλ, problem (3) becomes:

Min
t, λ, s−, s+

τ = t − 1
m ∑m

i=1 S−
i /xik

s.t. t + 1
s ∑s

r=1 S+
r /yrk = 1,

txk = XΛ +S−,
tyk = YΛ− S+,

Λ ≥ 0, S− ≥ 0, S+ ≥ 0, t > 0.

(4)

The optimal solution is formulated as:
ρ* = τ*, λ* = Λ*/t*, s−∗ = S−/t*, s+∗ = S+/t*.

Definition 1. A DMUk is SBM-efficient if ρ∗ = 1. The previous condition can be equally defined
as s−∗ = 0 and s+∗ = 0.

Definition 2. It is possible to obtain a set of efficient reference units for the SBM-inefficient DMUk
by considering the indices of the DMUs related with λ∗

j > 0.

Consider the reference set of the SBM-inefficient DMUk as: Ek = {j: λ∗
j > 0, j = 1, . . .,

n}. The point of the efficient frontier that can be considered as a reference DMU for the
SBM-inefficient DMUk is:

(x̂k , ŷk) = (xk − s−∗, yk+s+∗) = (∑j∈Ek
λ∗

j xj,∑j∈Ek
λ∗

j yj) (5)

Model (1) uses the CRS assumption. To consider VRS, it is required to add the
constraint eTλ = 1 to model (1).

The output-oriented version of model (1) is (Tone and Tsutsui 2015):

Max
λ, s−, s+

ρ′ = 1 + 1
s ∑s

r=1 s+r /yrk

s.t. xik = ∑n
j=1 xijλj + s−i , i = 1, . . . , m

yrk = ∑n
j=1 yrjλj − s+i , r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n,
s−i ≥ 0, i = 1, . . . , m,
s+i ≥ 0, r = 1, . . . , s.

(6)

Definition 3. A DMUk is SBM-output-efficient if ρ′∗ = 1, which is equivalent to s+∗ = 0.
Nevertheless, it is possible that s−∗ ̸= 0.
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3.2. SBM Model with Cluster Benchmarking

Traditional DEA models incorporate data assumptions that can impact the accuracy of
the results. Corton and Berg (2009) assert that one crucial factor influencing DEA’s accuracy
is the assumption of homogeneity among the DMUs. To address this concern, clustering
benchmarking proves valuable when dealing with heterogeneous data (Jiang et al. 2020).
Clusters can be identified by applying a statistical clustering method tailored to the specific
issue at hand or externally sourced, drawing upon the insights of experts in the field (Tone
and Tsutsui 2015).

This technique involves breaking down a group of DMUs into clusters based on dis-
tinct characteristics, enabling the identification of similarities within clusters and differences
between them. By leveraging the homogeneity within clusters and the heterogeneity across
different clusters, clustering benchmarking offers advantages. A comparison between
DEA models without clustering benchmarking (i.e., the meta-frontier with an overall set
of DMUs) and those that employ this feature allows the calculation of the technology gap
ratio (TGR) (Battese et al. 2004). The TGRk of DMUk is computed as follows:

TGRk =
ρ′k

meta (VRS)∗

ρ′k
cluster (VRS)∗ (7)

where ρ′k
meta (VRS)∗ is the SBM-output-efficiency value of DMUk that corresponds to the

meta-frontier and ρ′k
cluster (VRS)∗ is the SBM-output-efficiency value of DMUk that cor-

responds to the cluster-frontier. The lower the TGR value, the higher the grouping re-
quirement, and vice versa. The value of TGRk varies between 0 and 1, and a TGRk closer
to 1 suggests that there is a small gap between the meta-frontier and the cluster-frontier.
Expression (8) reveals that the efficiency of DMUk measured for the meta-frontier can be
obtained by the product of the efficiency of DMUk measured for the cluster-frontier and
the TGR:

ρ′k
meta (VRS)∗

= ρ′k
cluster (VRS)∗ × TGRk (8)

3.3. Robustness Analysis

In practical applications, precise measurements of input and output factors can be
challenging, and this becomes crucial when employing DEA since the efficiency of DMUs
is sensitive to potential data errors (Zerafat Angiz et al. 2012). To address this, various
approaches have been proposed to incorporate fuzziness into DEA models by introducing
tolerance levels. One prominent approach is the α-level approach, which transforms the
fuzzy DEA model into a set of parametric programs to determine the lower and upper
bounds of efficiency scores (Hatami-Marbini et al. 2011). The MaxDEA software enables
the inclusion of fuzzy inputs and outputs in the model, computing the lower and upper
bounds of efficiency scores. This facilitates the evaluation of the impact that changes in
inputs and outputs can have on efficiency scores. The lower and upper bounds of inputs
and outputs are defined as follows:

xL
ij = xij ≤ xij ≤ xij = xU

ij ,
yL

ij = yij ≤ yij ≤ yij = yU
ij .

where [xL
ij, xU

ij ] and [yL
ij, yU

ij ] are the α-level form of the fuzzy inputs and fuzzy outputs, and
L and U designate the lower and upper bounds, respectively. By applying a tolerance δ (i.e.,
a percentage perturbation, representing a deviation in terms of percentage change) to these
inputs and outputs it is possible to obtain the new following intervals:

xL
ij = xij(1 − δ) ≤ xij ≤ xij(1 + δ) = xU

ij ,
yL

ij = yij(1 − δ) ≤ yij ≤ yij(1 + δ) = yU
ij .
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4. Data and Assumptions

The data utilized in this paper pertains to the time span from 2018 to 2020, focusing
on the distinct evaluation of alternative energy ETFs (AEEs) and conventional energy
ETFs (EEs). Based on the available data, a comprehensive set of 69 ETFs was considered,
comprising 14 AEEs and 55 EEs. The indicators selected to perform the assessment are
further described below.

4.1. Annualized Average Return

The average return is a frequently utilized output in the scientific literature when
employing DEA models and other methodologies (Murthi et al. 1997; Allevi et al. 2019;
Zhang and Chen 2018; Basso and Funari 2014). This measure finds popularity due to its ap-
plicability from both a portfolio perspective and for evaluating individual securities across
various time horizons. However, when examining energy-related funds, relying solely on
this indicator may not provide a sufficiently comprehensive performance evaluation.

4.2. Expense Ratio (ER)

The ER serves as a valuable indicator for evaluating a particular fund from an op-
erational management standpoint since it assesses the total costs of the fund relative to
its managed assets. In a study by Premachandra et al. (2012), ER was employed as an
input in a two-stage DEA model to evaluate the efficiency of a fund in both the operational
management and portfolio management functions.

4.3. Environmental, Social, and Governance (ESG)

The application of ESG criteria in the study of funds and portfolio performance has
experienced exponential growth during and after the COVID-19 crisis. The pandemic
brought about increased awareness among investors regarding the significant influence
ESG indicators can have on global markets. Notably, researchers such as Singh (2020) and
Broadstock et al. (2021) have delved into the impact of the crisis on ESG-related portfolios
and stocks, uncovering findings that have the potential to reshape investors’ perceptions of
company fundamentals. In this context, the Morgan Stanley Capital International (MSCI)
ESG ratings play a crucial role as they gauge a company’s ability to withstand pertinent
ESG risks. These ratings are categorized into letter and numeric scores, ranging from AAA
to CCC and 0 to 10, respectively.

4.4. Beta

Beta serves as a market risk measure, determining the volatility of an asset in relation
to the overall market. This volatility is particularly relevant for tracking index-based ETFs
and proves to be a valuable indicator from an investor’s standpoint, as it allows them
to gauge how an asset responds to market shocks. A higher beta indicates greater risk
associated with the security, but it may also offer the potential for higher returns relative to
the market. Consequently, there arises a question regarding the inclusion of beta as either
an input or an output in the assessment. In this context, Allevi et al. (2019) incorporate
systematic risk, represented by beta, as an input to evaluate the efficiency of ETFs in
comparison to individual stocks. By considering beta as an input, they assess the efficiency
of ETFs in managing systematic risk and their ability to outperform individual stocks.
Hence, we will follow an analogous approach.

4.5. Net Asset Value (NAV)

The NAV is a widely employed metric for evaluating the performance of mutual funds
and ETFs due to its ability, much like the ER, to provide a comprehensive assessment of
fund management. Similar to ER, NAV offers a two-fold perspective on fund management.
In a study by Premachandra et al. (2012), NAV was utilized both as an output in a DEA
approach focused on the operational function and as an input in a DEA approach centered
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around portfolio management. This demonstrates the versatility of NAV as an indicator,
showcasing its adaptability in various types of evaluations.

The selection of input and output factors to evaluate the efficiency of ETFs was
based on the specific characteristics of our data and aimed to facilitate a comprehensive
comparison of results between the two categories of ETFs from financial and environmental
perspectives. Detailed information regarding the inputs and outputs utilized in our study
can be found in Table 2.

Table 2. Inputs and Outputs.

Return ER ESG BETA NAV

Description

Annualized
total return
(Calculated

as an
average)

Measure of
operating

costs relative
to assets

MSCI rating
based on en-
vironmental;
social respon-
sibility; and
corporate

governance

Systematic
risk of an

ETF
compared to
the tracked

index

Net value of
fund’s assets

less its
liabilities, per
outstanding

share

Type of factor Output Input Output Input Output

Unit % % 0–10 units of
score - Dollar

Source: lists of ETFs analyzed and the corresponding data on the inputs and outputs are available online at:
https://etfdb.com/ (accessed on 17 November 2022).

Tables 3 and 4 provide a summary of the descriptive statistics for all observations,
highlighting distinct differences in the average values across indicators for both AEEs and
EEs over different time periods. Notably, for the 1-year analysis, return emerges as the
indicator with the largest disparity between the two ETF categories, with EEs exhibiting
an average value 83% higher than that of AEEs. Conversely, the indicator with minimal
variation is beta, with a negligible 2% difference favoring EEs.

Table 3. Descriptive Statistic of the Inputs and Outputs—1 yr.

Statistic Return ER ESG BETA NAV

Number of Observations 69 69 69 69 69
Number of Observations (AEE) 14 14 14 14 14
Number of Observations (EE) 55 55 55 55 55

Mean 1.133653 0.006602 5.099855 6.266734 1.27 × 109

Mean (AEE) 0.682153 0.006114 7.832857 6.157707 8.9 × 108

Mean (EE) 1.248581 0.006726 4.404182 6.294486 1.37 × 109

Standard Deviation 0.515168 0.002923 3.246057 1.682877 4.03 × 109

Standard Deviation (AEE) 0.167837 0.001175 0.836452 0.510572 1.47 × 109

Standard Deviation (EE) 0.510999 0.003217 3.266623 1.870746 4.46 × 109

Minimum 0.000895 0.00084 0 0.00485 1,419,010
Minimum (AEE) 0.507796 0.0042 6.7 5.39485 1,419,010
Minimum (EE) 0.000895 0.00084 0 0.00485 2,322,090

Maximum 1.000396 0.0087 9.24 7.32485 5.08 × 109

Maximum (AEE) 3.0079 0.0087 9.24 2.47 5.08 × 109

Maximum (EE) 3.077696 0.0201 8.51 10.49485 3.21 × 1010

In the 3-year analysis, it was found that the average returns for AEEs were 45%
higher than those of EEs. Notably, the most significant disparity was observed in the NAV
indicator, with EEs exhibiting a 54% higher value compared to AEEs. It is worth noting
that as the time period extends, there is a tendency for the differences between inputs and
outputs to decrease. This suggests a convergence in the performance measures between
the two ETF categories over longer durations.

https://etfdb.com/
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Table 4. Descriptive Statistic of the Inputs and Outputs—3 yrs.

Statistic Return ER ESG BETA NAV

Number of Observations 69 69 69 69 69
Number of Observations (AEE) 14 14 14 14 14
Number of Observations (EE) 55 55 55 55 55

Mean 1.173944 0.006464 5.529565 2.38886 1.27 × 109

Mean (AEE) 1.840840 0.006114 7.832857 2.279833 8.9 × 108

Mean (EE) 1.004189 0.006553 4.943273 2.416612 1.37 × 109

Standard Deviation 0.640938 0.0030074 4.339402 1.682876 4.03 × 109

Standard Deviation (AEE) 0.838275 0.001175 0.836452 0.510572 1.47 × 109

Standard Deviation (EE) 0.451089 0.003319 4.67102 1.870746 4.46 × 109

Minimum 0.000976 0 0 −3.87302 0
Minimum (AEE) 0.976976 0.0042 6.7 1.516976 1,419,010
Minimum (EE) 0.000976 0 0 −3.87302 0

Maximum 3.275376 0.0201 29.65 6.616976 3.21 × 1010

Maximum (AEE) 3.275376 0.0087 9.24 3.446976 5.08 × 109

Maximum (EE) 2.628876 0.0201 29.65 6.616976 3.21 × 1010

5. Results

This section presents the results obtained from the application of the proposed DEA
model, utilizing the MaxDEA 8 Ultra software for computation.

In our analysis, we used statistical tests to evaluate the differences in the TGR between
the two clusters. Specifically, we applied the t test for differences in means (Table 5) and the
Kolmogorov–Smirnov test (Table 6). Upon thorough examination, we identified significant
differences between the clusters, allowing us to affirm the validity of the chosen approach.

Table 5. t test for differences in means.

.ttest TGR, by (Cluster)
Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
1 14 0.3785036 0.0987606 0.3695284 0.1651443 0.5918629
2 55 0.961333 0.0214056 0.1587481 0.9184174 1.004249

combined 69 0.8430778 0.0384225 0.3191616 0.7664068 0.9197488

diff −0.5828294 0.0647636 −0.7120981 −0.4535607

diff = mean(1) − mean(2) t = −8.9993
Ho: diff = 0 degrees of freedom = 67

Ha: diff < 0 Ha: diff! = 0 Ha: diff > 0
Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

t test for differences in means for 3-yr period

.ttest TGR, by (Cluster)
Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
1 14 0.2557203 0.0841287 0.3147806 0.0739714 0.4374692
2 55 0.9775502 0.0100757 0.0747237 0.9573496 0.9977509

combined 69 0.831092 0.0397245 0.3299762 0.751823 0.9103609

diff −0.72183 0.0461097 −0.8138652 −0.6297947

diff = mean(1) − mean(2) t = −15.6546
Ho: diff = 0 degrees of freedom = 67

Ha: diff < 0 Ha: diff! = 0 Ha: diff > 0
Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

t test for differences in means for 1-yr period
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Table 6. Kolmogorov–Smirnov test.

Two-sample Kolmogorov-Smirnov test for equality of distribution functions
Smaller group D p-value

1: 0.7494 0.000
2: 0.0000 1.000
Combined K-S: 0.7494 0.000

Kolmogorov-Smirnov·test·for-3-yr period

Two-sample Kolmogorov-Smirnov test for equality of distribution functions
Smaller group D p-value

1: 0.8571 0.000
2: 0.0000 1.000
Combined K-S: 0.8571 0.000

Kolmogorov-Smirnov-test·for 1-yr period

Detailed insights are provided through Tables 7 and 8, offering comprehensive descrip-
tive statistics for the efficiency scores (cluster- and meta-frontier) and the corresponding
TGR values. The analysis encompasses EEs and AEEs across multiple time horizons,
providing a holistic understanding of their performance.

Table 7. Descriptive statistics of the results obtained for each ETF category for the 1-yr period.

ETF Category Statistics Efficiency Scores
(Meta-Frontier)

Efficiency Scores
(Cluster-Frontier) TGR

Alternative Energy

Mean 0.14 0.50 0.26
Standard Deviation 0.27 0.40 0.31

Minimum 0.00 0.01 0.00
Maximum 1.00 1.00 1.00

Count 14.00 14.00 14.00

Conventional Energy

Mean 0.28 0.28 0.98
Standard Deviation 0.40 0.40 0.07

Minimum 0.00 0.00 0.53
Maximum 1.00 1.00 1.00

Count 55.00 55.00 55.00

Table 8. Descriptive statistics of the results obtained for each ETF category for the 3-yr period.

ETF Category Statistics Efficiency Scores
(Meta-Frontier)

Efficiency Scores
(Cluster-Frontier) TGR

Alternative Energy

Mean 0.29 0.55 0.38
Standard Deviation 0.42 0.47 0.37

Minimum 0.00 0.00 0.00
Maximum 1.00 1.00 1.00

Count 14.00 14.00 14.00

Conventional Energy

Mean 0.16 0.19 0.96
Standard Deviation 0.30 0.33 0.16

Minimum 0.00 0.00 0.06
Maximum 1.00 1.00 1.00

Count 55.00 55.00 55.00

The key findings of the analysis are succinctly summarized in the preceding tables,
revealing a higher potential for improvement among EEs in both the 1-year and 3-year
time periods.
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Specifically, the EEs exhibit room for improvement of 72% in the 1-year period and
81% in the 3-year period, whereas the AEEs demonstrate room for improvement of only
50% in the 1-year period and 45% in the 3-year period.

Figures 1 and 2 visually depict the efficiency scores for the meta-frontier and cluster-
frontier. The left side showcases the performance of AEEs, while the right side displays the
performance of EEs.
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Figure 2. Efficiency scores for 69 ETFs on meta- and cluster-frontier—3-yr analysis.

The analysis of Figures 3 and 4 reveals a noticeable disparity between the meta-frontier
and cluster-frontier for AEEs compared to EEs in both time periods. AEEs exhibit a more
significant difference between the two frontiers. This observation is supported by the
considerably lower average TGRs for AEEs, with a minimum of 0.26 in the 1-year period,
compared to EEs, which have a minimum of 0.96 in the 3-year period. These values indicate
a larger gap between the frontiers for AEEs.
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Figure 3. Number of ETFs in different intervals of efficiency scores.

Additionally, it is noteworthy that the average TGR values for AEEs slightly decreased
over the 3-year period, indicating a growing disparity between the two frontiers, while EEs
experienced a slight decrease. This trend suggests that the gap between the meta-frontier
and cluster-frontier slightly increased for AEEs, while it slightly narrowed for EEs over the
extended time duration.

During the 1-year period, there was a decrease in the number of efficient alternative
energy ETFs (AEEs) from the cluster-frontier (4 ETFs) to the meta-frontier (1 ETF), whereas
the number of efficient conventional energy ETFs (EEs) remained consistent for both
frontiers (12 ETFs)—as depicted in Figure 3.

In the 3-year period, there was a decline in the number of efficient AEEs and EEs
from the cluster-frontier to the meta-frontier, with a more pronounced decrease observed
in the former. Specifically, the number of efficient AEEs decreased from seven to three
ETFs. Furthermore, upon conducting a combined analysis of the two periods, it becomes
evident that the number of efficient AEEs is higher in the 3-year period, while the number
of efficient EEs is higher in the 1-year period—as depicted in Figure 4.

These findings align with the research of Pavlova and Boyrie (2022), who observed
that ESG ETFs outperformed the market prior to the crisis but did not exhibit superior
performance during the COVID-19 crash. Similarly, Demers et al. (2021) reported that
companies with higher ESG scores did not experience superior returns during the COVID-
19 crisis. However, contrasting results were reported by Nofsinger and Varma (2014) for the
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2000–2011 period, where socially responsible investment (SRI) outperformed conventional
funds during the crisis period of 2007–2009.
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Table 9 presents the percentage of efficient ETFs categorized by type. It is evident that,
for the cluster-frontier, the percentage of efficient AEEs surpasses that of efficient EEs in
both periods. This indicates that a larger proportion of AEEs are capable of maximizing
their outputs.

Table 9. Percentage of efficient ETFs for meta- and cluster-frontiers—1-yr and 3-yr periods.

Meta-Frontier Cluster-Frontier

1 yr
Percentage of efficient AEEs 7.14% 28.57%
Percentage of efficient EEs 21.82% 21.82%

3 yrs
Percentage of efficient AEEs 21.43% 50.00%
Percentage of efficient EEs 9.09% 12.73%

Figures 5 and 6 illustrate that the average values of outputs (NAV, ESG, and return)
are significantly higher for efficient ETFs compared to inefficient ones, particularly in the
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3-year period. Specifically, efficient funds exhibited higher NAV, ESG, and return values by
341%, 78%, and 66%, respectively. On the other hand, the average values of inputs (beta
and ER) are lower for efficient ETFs compared to inefficient ones in both periods, with this
difference being more pronounced in the 3-year period. In the 3-year period, efficient funds
had lower beta and ER values by 58% and 22%, respectively.
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5.1. Potential Improvements

Figures 7 and 8 showcase the potential improvement for each input and output that
inefficient ETFs can achieve to become efficient, based on the analysis of the cluster-frontier
results. The data presented pertain to a 1-year period and are organized by indicator and
ETF category.

Among the indicators, the ER demonstrates the highest potential for improvement,
with a remarkable −137%. This implies a reduction in the average ER from 0.0069 to
0.0029. Notably, the potential for improvement in ER is more pronounced for EEs at −182%
compared to AEEs at −32%. The NAV also displays a significant improvement potential,
averaging 97%. EEs exhibit a higher improvement potential of 97% compared to AEEs
at 81%. ESG demonstrates a reasonable average improvement potential of 36%, with a
more substantial relevance for EEs at 43% compared to AEEs at 13%. This highlights the
importance of environmental, social, and governance factors for EEs compared to AEEs.
Return and beta indicate the lowest potential for improvement, with averages of 14% and
−5%, respectively. It is noteworthy that the improvement potential for return in AEEs is
minimal at 0.4%, while beta shows a more significant value of 10%. Conversely, EEs have
a 15% improvement potential for return and a lower value of −4% for beta. Overall, to
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enhance the efficiency of both EEs and AEEs over the 1-year period, a reduction in the ER
and an increase in the NAV are key areas for improvement.
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Figure 8. Average potential improvement for each input and output for inefficient ETFs—1-yr
analysis.
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The analysis conducted in the previous section is also applied to a 3-year period, as
illustrated in Figures 9 and 10, to examine the impact of time on the results. Similarly to the
1-year period, the ER exhibits the highest potential for improvement, with a remarkable
−212%. This indicates a reduction in the average ER from 0.0068 to 0.0022. Consistent
with the findings from the 1-year period, the potential for improvement in ER is more
pronounced for EEs at −267% compared to AEEs at −52%. The NAV demonstrates the
same level of improvement potential as observed in the 1-year period, with nearly identical
values for both EEs (97%) and AEEs (96%). ESG values show a similar improvement
potential to the 1-year period, with an average of 33%, but with a smaller gap between EEs
(37%) and AEEs (17%). Return and beta indicate significantly more room for improvement
compared to the 1-year period, with average values of 23% and −22%, respectively. When
comparing the 3-year period to the 1-year period, it is noteworthy that AEEs show a higher
improvement potential for return (35% versus 20%) while EEs display a 20% improvement
potential for return. Therefore, it can be concluded that the average absolute values for
improvement potential increase over a longer period (except for ESG). However, the most
critical areas for achieving higher efficiency remain the same for both ETF categories—the
ER and NAV.
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Figure 9. Potential improvement for each input and output for inefficient ETFs—3-yr period.
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Figure 10. Average potential improvement for each input and output for inefficient ETFs—3-yr
period.

5.2. Correlation Analysis

Table 10 presents the correlation values between the efficiency scores and the indicators
for both ETF categories across the two periods. Upon analyzing this table, it becomes
evident that there exists a positive correlation between the outputs (return, ESG, and NAV)
and the efficiency scores, while a negative (or null) correlation is observed between the
inputs (ER and beta) and the efficiency scores. It is also noteworthy that the absolute values
of the correlations tend to be stronger over a longer period, with the exception of ESG,
which exhibits more relevance over the shorter period, particularly for AEEs. In the 1-year
period, the indicator with the strongest correlation to efficiency scores for AEEs is beta
(−0.572), while for EEs it is ESG (0.330). Conversely, in the 3-year period, the indicator with
the strongest correlation to efficiency scores for AEEs is return (0.628), and for EEs, it is
NAV (0.403).

Table 10. Correlation between the efficiency scores and the input and output factor for each ETF
category—1-yr and 3-yr periods.

1-yr Scores 3-yr Scores

AEE EE AEE EE

Return 0.199 0.318 0.628 0.271
ER −0.210 −0.189 −0.423 −0.263

ESG 0.468 0.330 0.285 0.294
Beta −0.572 0.000 −0.595 −0.398
NAV 0.446 0.310 0.516 0.403
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5.3. Robustness Analysis

For a 1-year period, when incorporating a tolerance (i.e., a percentage perturbation,
representing a deviation in terms of percentage change) of δ = 5% to the current inputs and
outputs based on the cluster-frontier, a total of seven ETFs (two AEEs and five EEs) are
identified as robustly efficient, while thirty-seven remain robustly inefficient, and twenty-
five are potentially efficient. When expanding the tolerance to δ = 10%, the number of
robustly efficient ETFs remains the same at seven (two EEs and five AEEs), while twenty-
four remain robustly inefficient, and thirty-eight become potentially efficient (see Figure 11).
Considering a 5% to 10% increase in the factors, AEEs exhibit a potential improvement
ranging from 58% to 77%, whereas EEs show a greater potential improvement ranging
from 64% to 122% (see Figure 12). Conversely, if all factors experience a 5% to 10% decrease,
AEEs are expected to face a potential worsening of −32% to −37%, while EEs show a higher
potential worsening ranging from −47% to −50% (see Figure 13). Overall, the efficiency
of AEEs demonstrates greater resilience to potential variations in inputs and outputs
compared to EEs, which display a more pronounced sensitivity in terms of efficiency.
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Figure 11. Upper and lower bounds of efficiency scores for each ETF—1-yr period.

Over a 3-year period, when considering a tolerance of δ = 5% applied to the inputs and
outputs based on the cluster-frontier, eight ETFs (three AEEs and five EEs) are identified
as robustly efficient, while fifty-two remain robustly inefficient, and nine are potentially
efficient. Expanding the tolerance to δ = 10%, the number of robustly efficient ETFs reduces
to six (two EEs and four AEEs), with fifty remaining robustly inefficient and thirteen
becoming potentially efficient (refer to Figure 12). Upon increasing the factors by 5% and
10%, AEEs exhibit a potential improvement of 23% to 47%, respectively, whereas EEs show
a lower potential improvement ranging from 7% to 14% (see Figure 13). Conversely, when
decreasing the factors by 5% and 10%, AEEs experience a potential worsening of −23% to
−41%, respectively, while EEs demonstrate a slightly lower potential worsening ranging
from −15% to −32% (see Figure 14). In contrast to the observations from the one-year
period, EEs demonstrate greater immunity to efficiency variations over the longer term
when applying tolerances to the inputs and outputs, compared to AEEs.
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Figure 12. Upper and lower bounds of efficiency scores for each ETF—3-yr period.
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Figure 13. Average upper and lower bounds of efficiency scores for each ETF—1-yr period.

Thus, when perturbing inputs and outputs, AEEs exhibit a greater improvement
potential than EEs over the longer term, while EEs demonstrate significantly higher room
for improvement than AEEs in the short term. Furthermore, it can be observed that the
absolute values associated with potential worsening are smaller than those of potential
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improvement for AEEs in both periods. However, for EEs, the potential worsening becomes
more pronounced over the longer term.
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6. Conclusions

The rapid growth of the clean energy sector presents an opportunity for investors and fund
managers to diversify their portfolios by including firms focused on sustainable energy sources.
This study investigates the efficiency of alternative energy ETFs in comparison to conventional
energy ETFs, considering both financial and environmental factors. The performance of 14 al-
ternative energy ETFs and 55 conventional energy ETFs was evaluated using an SBM-DEA
model over a one-year period (2020) and a three-year period (2018–2020). This non-radial
modeling approach provides insights into the necessary adjustments that inefficient ETFs
should make to achieve efficiency. By combining the SBM model with cluster analysis,
ETFs can be grouped according to their energy type, distinguishing between AEEs and
EEs. Furthermore, robustness analysis allows for an assessment of the potential influence
on efficiency resulting from changes in factors, which can occur during periods of market
turbulence.

When the data are divided into groups based on ETF type, the percentage of efficient
AEEs increases significantly, while EEs do not exhibit a strong reaction. TGR values for
AEEs are substantially lower, indicating that these ETFs, on average, only achieve 26%
and 38% of their potential output over the 1-year and 3-year periods, respectively, when
compared to the meta-frontier. Hence, there is a stronger connection between the inputs
and outputs used in the assessment for conventional energy ETFs. This outcome could be
attributed to the absence of environmental and socially responsible factors, which would
likely exhibit a stronger association with alternative energy funds, rather than performance
indicators that are more applicable to established and highly valued ETFs.

Introducing 5% and 10% perturbations in the evaluation factors has minimal impact
on efficiency, particularly over the longer term, as more than 50 ETFs remain robustly
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inefficient during this period. However, in the short term, variations in indicators could
lead to expanded potential efficiency for more ETFs when increasing the tolerance level.
Our results further highlight that the factors that most significantly influence the efficiency
of both ETF categories are the ER and NAV. Therefore, reducing operational expenses and
improving the assets/liabilities ratio are crucial actions for fund managers to enhance ETF
efficiency. Additionally, it is noteworthy that an increase in ESG factors would positively
impact conventional energy ETFs to a greater extent than alternative energy ETFs, with
even more pronounced effects compared to return or beta.

From an investor’s perspective, it is important to consider how alternative and con-
ventional energy ETFs react to changes in the same indicators, especially during periods of
market crises, as investigated in our study. The rapid growth of the clean energy indus-
try and the diversity offered by AEEs present compelling reasons for introducing these
securities into investor portfolios. In this study, we have endeavored to provide a set of
inputs and outputs that better assess the efficiency of ETF categories from both financial
and environmental perspectives. However, we acknowledge that the reported data lack
a significant sample of alternative energy ETFs, which could lead to more relevant and
comprehensive results.

Future research should incorporate additional indicators to evaluate the efficiency of
AEEs and EEs, particularly focusing on more specific indicators based on environmental
and socially responsible attributes, alongside substantial data for alternative energy ETFs.

Additional research avenues may explore alternative methodologies, such as inves-
tigating the influence of ESG factors on the efficiency of AEEs and EEs through a multi-
objective metaheuristic algorithm (e.g., Tian et al. 2023). Alternatively, researchers could
delve into the development of an energy-focused stochastic disassembly line balancing
problem for AEEs and EEs (e.g., Zhang et al. 2023).
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