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Abstract: The paper proposes an anomaly detection method for UAVs based on wavelet decomposi-
tion and stacked denoising autoencoder. This method takes the negative impact of noisy data and the
feature extraction capabilities of deep learning models into account. It aims to improve the accuracy
of the proposed anomaly detection method with wavelet decomposition and stacked denoising
autoencoder methods. Anomaly detection based on UAV flight data is an important method of
UAV condition monitoring and potential abnormal state mining, which is an important means to
reduce the risk of UAV flight accidents. However, the diversity of UAV mission scenarios leads to a
complex and harsh environment, so the acquired data are affected by noise, which brings challenges
to accurate anomaly detection based on UAV data. Firstly, we use wavelet decomposition to denoise
the original data; then, we used the stacked denoising autoencoder to achieve feature extraction.
Finally, the softmax classifier is used to realize the anomaly detection of UAV. The experimental
results demonstrate that the proposed method still has good performance in the case of noisy data.
Specifically, the Accuracy reaches 97.53%, the Precision is 97.50%, the Recall is 91.81%, and the
F1-score is 94.57%. Furthermore, the proposed method outperforms the four comparison models
with more outstanding performance. Therefore, it has significant potential in reducing UAV flight
accidents and enhancing operational safety.

Keywords: anomaly detection; wavelet decomposition; stacked denoising autoencoder (SDAE); UAV
flight data

1. Introduction

In recent years, with the rapid advancement of science and technology, unmanned
aerial vehicles (UAVs) have progressively matured and emerged as a focal point in the
new wave of global technological and industrial revolution. Currently, there exists a
diverse range of UAV types available in the market including fixed-wing, multi-rotor, and
hybrid models, among others. As a reusable aircraft operated by autonomous control
or radio remote control [1], UAVs are widely used in environmental monitoring, aerial
photography, disaster detection, power inspection, express transportation, and other fields
due to their advantages of small size, lightweight, strong mobility, low cost, and easy
use [2,3]. In the field of agricultural and forestry plant protection, UAVs can be utilized
for plant health detection and pesticide spraying. Additionally, UAV aerial photography
has gained significant popularity among photography enthusiasts in the realm of aerial
photography. Moreover, they are employed for power line inspection and substation
equipment monitoring. UAV is a complex system that integrates multiple disciplines such
as electronics, control, sensors, and information, and it is usually designed with low or no
redundancy [4,5]. Since there is no pilot on-site operation in the process of carrying out
the task, the UAV does not have the real-time observation and response-ability of the pilot,
and it will not be able to take emergency measures in time in case of failure, which leads to
a higher accident rate of the UAV compared with that of the man–machine. The expansion
of the UAV industry and the diversification of application scenarios have led to a frequent
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occurrence of safety accidents during UAV flights, thus prompting widespread concerns
regarding the reliability and safety of UAVs.

UAV flight data refer to a series of flight parameters related to UAV performance
and status collected by onboard sensors during flight, usually including various attitudes,
speed, altitude, position, and other information. The common parameters are shown
in Table 1.

Table 1. Common flight parameters of UAV.

Category Parameters Description

Position altitude, longitude, latitude —

Velocity airspeed velocity of the UAV relative to the surrounding air
ground speed velocity of the UAV relative to the ground

Acceleration three-axis acceleration acceleration of UAV in X, Y, Z direction

Angle
pitching angle angle between the UAV body axis (along the nose) and the ground

plane (horizontal)
roll angle angle between the UAV’s horizontal axis and the horizontal plane

course angle angle of the UAV relative to due north

Angular velocity three-axis angular velocity angular velocity of UAV in X, Y, Z direction

Magnetic field three-axis magnetic field magnetic field of UAV in X, Y, Z direction

Currently, anomaly detection based on UAV flight data is a powerful approach for
UAV condition monitoring and potential anomaly mining. This data-driven method
eliminates the reliance on specific physical models or expert knowledge, allowing for the
comprehensive utilization of flight data to achieve effective anomaly detection [6]. It holds
more promise compared to prior knowledge and model-based methods, making it highly
significant in reducing the risk of UAV flight accidents and enhancing operational safety.
Many researchers are using machine learning algorithms to conduct anomaly detection
research on UAV flight data due to the rapid development of machine learning technology.
Wang et al. [7] proposed an online anomaly detection method for UAV flight status using the
least squares support vector machine (LS-SVM) prediction model. The proposed algorithm
was verified using simulated flight data, and the experimental results demonstrated its
effectiveness in detecting online anomalies for UAVs. Bronz et al. [8] used SVM algorithms
based on UAV flight logs to categorize UAV behavior during normal and fault phases and
achieved a high level of Accuracy in detecting uncontrolled UAV faults. Yaman et al. [9]
developed a lightweight fault detection algorithm for UAV engine anomalies using the SVM
algorithm to classify the audio signals, which can work in real time in an embedded system.
González-Etchemaite et al. [10] developed a supervised learning-based fault detection and
identification module for multi-rotor UAVs, which realized real-time detection based on
random forest and support vector machine. Experiments on simulated and real data verified
the effectiveness of the solution. Thanaraj et al. [11] proposed a hybrid FDI model for a
quadrotor UAV that integrates an extreme learning neuro-fuzzy algorithm with a model-
based extended Kalman filter (EKF). The results show that the Fuzzy-ELM FDI model
exhibits greater efficiency and sensitivity, while Fuzzy-ELM and R-EL-ANFIS FDI models
demonstrate better performance than a conventional neuro-fuzzy algorithm. Li et al. [12]
detected anomalies in flight data based on the density similarity between the data using the
DBSCAN clustering algorithm and achieved better results. Altinors et al. [13] performed
fault diagnosis based on data received by the UAV motor. Signal preprocessing, feature
extraction, and machine learning methods were applied to the obtained dataset. Decision
tree (DT), Support Vector Machines (SVM), and K-Nearest Neighbor algorithms are used
for experiments, and the results showed that the three machine learning algorithms all
achieved high Accuracy. Aiming at the high-dimensional characteristics of UAV sensor
data, Duan [14] et al. proposed an anomaly detection method for UAV sensor data based
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on Kernel Principal Component Analysis (KPCA) and experimented with simulated data,
and the results showed that the method can achieve satisfactory results. Ahn et al. [15]
proposed a detection algorithm based on clustering and a convolutional neural network for
the anomaly detection problem of UAV swarm flight data. First, the flight data were labeled
by principal component analysis and K-means clustering, and then a one-dimensional
convolutional neural network classifier was trained. This method achieved good results
on real flight data. It can be seen from the above relevant studies that machine learning
methods are widely used in anomaly detection of UAV.

In recent years, deep learning technology has developed rapidly, and it has been widely
used in many research fields, such as lithium battery health prediction [16–18], bearing
fault diagnosis [19–22], and air quality prediction [23–26]. Therefore, some researchers
have started to study the anomaly detection of UAV flight data based on deep learning
technology to ensure the safety and reliability of UAV flights. Xiao et al. [27] proposed a
scheme based on recurrent neural networks (RNNs) for the detection of abnormal behavior
of UAVs. Firstly, the RNN was used to train and build the normal behavior model of
UAV, and then an appropriate threshold was selected through extensive experiments. If
the normalized root mean square error between the true position and the model output
position is greater than the threshold, the UAV is considered to have abnormal behavior.
Finally, the proposed scheme achieves an average Accuracy of 98% on both experimental
data. Wang et al. [28] proposed a long-short-term memory recurrent neural network
method for UAV anomaly detection and used real UAV flight data to verify the method.
The experimental results show that the method can effectively detect point anomalies.
Jeon et al. [29] proposed a method for detecting structural abnormalities of quadcopter
UAVs, which uses a long short-term memory (LSTM) network and an autoencoder model
to learn complex features from routine flight data. The experimental results show that
the proposed method has a good effect on detecting structural abnormalities of UAVs.
Yang et al. [30] proposed a method for detecting anomalous states in UAVs using timestamp
slicing and multiple separable convolutional neural networks (TS-MSCNN) and conducted
experiments with real data. This method solves the problem that the traditional abnormal
state detection model ignores the difference of POS data frequency domain in the process
of feature learning. Wang et al. [31] proposed a method based on long and short-term
memory residual filtering. Firstly, the method involves extracting the spatiotemporal
characteristics of the flight data using an LSTM network to obtain the estimated values of
the monitoring parameters. Then the residuals between the real data and the estimated
values are smoothed by the filter. Finally, the smoothed residuals are compared with
a statistical threshold to achieve fault detection of UAV flight data. Wang et al. [32]
proposed a multivariate sequence anomaly detection model based on an improved graph
neural network with a transformer, a graph attention mechanism, and a multi-channel
fusion mechanism. The combination of a multi-channel transformer structure and a graph
attention mechanism enables intrinsic pattern extraction from different data and better
captures the features of the time series. Finally, the multi-channel data fusion module is
used to integrate the global information and improve the Accuracy of anomaly detection.
The experimental results demonstrate that the average Accuracy of the proposed model is
92.83% and 96.59% on the two datasets of UAV, respectively. Zhong et al. [33] conducted
research on anomaly detection and recovery prediction of UAV flight data by combining
artificial neural networks and long-short-term memory networks based on spatiotemporal
correlation. Artificial neural networks were used to mine the spatiotemporal correlation of
flight data and screen out relevant parameter sets. Subsequently, a long-term and short-
term memory network model was trained based on these parameter sets to achieve anomaly
detection and recovery prediction. Anidjar et al. [34] collected audio information from the
UAV flight via a Bluetooth earphone fixed on top of the UAV and then converted the audio
signal into a graphical representation using the Wav2Vec2 model based on the transformer
structure. Next, a modified VGG-16 convolutional neural network is used to train the
image classification model to achieve anomaly detection of the UAV. Finally, the authors



Aerospace 2024, 11, 393 4 of 20

further improved the approach for real-time detection and verified the effectiveness of the
approach in real-time scenarios. In addition, the establishment of UAV real-time anomaly
detection systems based on deep learning technology is also a popular research field. At
present, many anomaly detection algorithms have high accuracy, but the calculation process
is complicated and takes a long time, which makes it difficult to meet the needs of real-time
scenarios. Therefore, the research of high-accuracy and lightweight algorithms based on
deep learning technology is the future development direction.

Autoencoder is a typical unsupervised learning model that enables the automatic learn-
ing of a representation function of a dataset from a large number of data samples, which
can be used for feature extraction and data dimensionality reduction. In order to quickly
achieve anomaly detection from system log files, Cavallaro et al. [35] analyzed log files
from data centers. First, they used modern Natural Language Processing (NLP) methods to
map the log files’ words to a high-dimensional metric space; then, they used an invariant
mining model and autoencoder to cluster and classify various system events. Finally, they
carried out experiments and obtained an average of F-measure metric over 86%. With the
development of deep learning technology, autoencoder models have attracted the attention
of many researchers and have been applied in many fields [36–38]. Meanwhile, researchers
have proposed improved models for traditional autoencoders, such as noise reduction au-
toencoders, convolutional autoencoders, and stacked autoencoders. Autoencoder models
have been successfully applied in anomaly detection and fault diagnosis [39,40] due to their
ability to learn effective data representations for downstream classification or regression
tasks. Zhang et al. [41] proposed a method for anomaly detection in high-dimensional
data based on an autoencoder and least squares support vector machine. The experimental
results on real high-dimensional datasets demonstrate the method’s excellent performance.
Yang et al. [42] proposed the STC-LSTM-AE method, a spatiotemporal correlation neural
network based on LSTM and autoencoder, for unsupervised anomaly detection and the
recovery of UAV flight data. The model uses the Savitzky–Golay filtering technique to
reduce sensitivity to data noise. The effectiveness of the method is verified using real UAV
flight data.

However, although traditional autoencoder models are commonly used in UAV
anomaly detection research, stacked autoencoders, a deep model, have received less atten-
tion in this field. Due to the relative simplicity of the structure of the traditional self-encoder
model, it may have insufficient feature extraction ability and overfitting problems when
dealing with high-dimensional data. UAV flight data are typical high-dimensional data,
so it is of great significance to investigate the application of stacked self-encoders in UAV
flight data anomaly detection. In addition, as the difficulty of UAV missions increases
and the harsh environment in which they operate increases, the Accuracy of UAV status
information acquisition decreases, and the collected flight data contain a large amount of
noisy data, which reduces the effectiveness of the anomaly detection algorithm to some ex-
tent. Therefore, it is necessary to study noise reduction processing for UAV flight data and
combine it with deep learning models to improve the Accuracy of the anomaly detection
algorithm in detecting noisy data. Wavelet decomposition is a signal processing technology
based on wavelet transform, which can be used to remove noise in signals and has been
widely used in many research fields [43–48].

This paper proposes a UAV flight data anomaly detection method based on wavelet
decomposition and stacked denoising autoencoder. The wavelet decomposition technology
can effectively denoise the original data. As an efficient representation learning model, the
stacked denoising autoencoder can well complete the feature extraction of data, which can
then be input to the softmax classifier to achieve the classification and identification of the
anomalous state. A series of experiments were conducted on an actual dataset to verify the
effectiveness of the proposed method. It was also compared with other common anomaly
detection algorithms, and the comparative results demonstrate its superior performance.
The innovations of this study are outlined below:
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1. This study proposes a deep learning method based on wavelet decomposition and
stacked denoising autoencoder for detecting anomalies in noisy UAV data.

2. The adoption of wavelet decomposition can effectively filter the noise information in
the original data and improve the signal-to-noise ratio of the data.

3. As a deep representation learning model, the stacked denoising autoencoder can
effectively learn the feature representation of high-dimensional UAV data, reduce
the data dimension, and overcome the difficulty of insufficient abnormal data in the
dataset to a certain extent.

4. By improving the reconstruction loss function of the stacked autoencoder model,
selecting the PReLU activation function, adding the batch normalization layer, and set-
ting the learning rate dynamic adjustment strategy CosineAnnealingLR, the method
gives better performance on real datasets.

This study is divided into five parts. Section 1 outlines the background significance of
the study while providing an overview of UAV anomaly detection research and the short-
comings of the current research. Section 2 describes the data and outlines the selected data
parameters. It also presents various models and methods, such as wavelet decomposition,
autoencoder, denoising autoencoder, stacked denoising autoencoder models, and evalu-
ation metrics for model performance. Section 3 introduces the experimental conditions,
research methods, and results, and it conducts a model comparison experiment. Section 4 is
the experimental study of some important factors that affect the performance of the model.
Finally, Section 5 summarizes the research of this paper.

2. Materials and Methods
2.1. Data Description and Preprocessing

The data used in this study come from the flight data of a certain type of multi-rotor
UAV. It contains the position, attitude, speed, altitude, and other related parameters during
the UAV flight, specifically 118 parameters. The data contain both normal flight data and
two flight anomalies, GPS drift, and UAV spin, as shown in Table 2, and the data are stored
in “CSV” format.

Table 2. The labels of flight data.

Data Labels Explanation

0 Normal
1 GPS drift
2 Spin

Data preprocessing is an important step in the data analysis process. During the
analysis, it was found that there are duplicate and missing data in the original dataset.
Firstly, the duplicate samples and missing values in the dataset are detected and the
redundant duplicate sample data are eliminated; then, the missing data are processed using
mean interpolation. In addition, this paper uses the maximum–minimum value method to
normalize the original data, and the normalization function is shown in Equation (1).

x′i =
xi −min(xi)

max(xi)−min(xi)
(1)

where xi represents the original data, x′ represents the normalized data, min(xi) represents
the minimum value of the data, max(xi) represents the maximum value of the data, and
the normalization process is performed for all data.

2.2. Parameters Selection

In this paper, we analyzed the correlation among 11 parameters related to abnormal
events that have occurred in UAVs. These parameters were selected from the original
dataset with the help of professionals. It is important to note that only a subset of the
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118 parameters in the original dataset are related to risky events in UAVs. The Pearson
correlation coefficient analysis results are shown in Figure 1.
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Figure 1. Correlation analysis heat map.

From the heat map of the Pearson correlation coefficient, it can be seen that the corre-
lation between the parameters ATT.Roll and EKF1.Roll reaches 1, indicating that these two
parameters are perfectly correlated. In addition, the correlation of the EKF1.VN parameter
with the ATT.Roll and EKF1.Roll parameters is also high. Therefore, the two parameters
ATT.Roll and EKF1.Roll must be traded off.

2.3. Wavelet Decomposition

If anomaly detection is performed directly without denoising the noisy data, it is also
difficult for the deep model to obtain good learning and classification recognition results.
Wavelet decomposition is a signal time–frequency analysis method with good performance
in multi-resolution detail analysis. Signal-to-noise separation using wavelet decomposition
can largely suppress noise and retain the singular information of the original signal well,
which is a simple and effective method [49]. Figure 2 illustrates the primary process of
noise reduction through wavelet decomposition, which involves three main steps.

1. Wavelet transform. Select the appropriate wavelet basis function and number of
decomposition layers for wavelet decomposition of the signal to obtain the low-
frequency coefficients and high-frequency coefficients.

2. Determine the threshold and threshold function. High-frequency coefficients are
mainly represented as noise signals and effective signals, and low-frequency coeffi-
cients are represented as effective signals. Therefore, the high-frequency coefficients
are processed with appropriate thresholds and threshold functions, and the low-
frequency coefficients are retained.

3. Reconstruct the signal. Apply inverse wavelet transform to the low-frequency coeffi-
cients and high-frequency coefficients after processing, and the denoised signal can
be obtained.
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Figure 2. The process of wavelet decomposition.

Wavelet transform is the basis of wavelet decomposition denoising, and the process of
wavelet transform is shown in Equation (2).

W f (a, b) =
∣∣∣∣ 1√

a

∣∣∣∣∫ −∞

+∞
X(t)ϕa,b

(
t− b

a

)
dt (2)

where ϕ(t) is the wavelet basis function, a is the scale factor, and b is the translation
factor. Common wavelet basis functions include Daubechies wavelet, Symlets wavelet,
Coiflets wavelet, and biorthogonal wavelet. The Daubechies wavelet is the most commonly
used basis function, and in this study, the db4 wavelet basis function was chosen for
wavelet decomposition.

The inverse wavelet transformation process is shown in Equation (3).

X(t) =
1

c(ϕ)

x 1
a2 W f (a, b)ϕa,b

(
t− b

a

)
dadb (3)

where cϕ is the allowable condition for the wavelet basis function, as shown in Equation (4).

cϕ =
∫ ∣∣ϕa,b(ω)

∣∣2
|ω| dω (4)

where ϕa,b(ω) is the Fourier transform of ϕa,b(t).

2.4. Autoencoder (AE)

Autoencoder is an efficient coding method for learning and extracting the main
features of the data, which is implemented in the form of neural networks. Autoencoders
are trained to reconstruct the input data, and since the training process does not require data
labeling, autoencoders are an unsupervised learning model. Figure 3 shows the structure
of the standard autoencoder, which typically comprises two parts: the encoder and the
decoder. It specifically consists of an output layer, a hidden layer, and an output layer.
The encoder network is formed by the input layer and the hidden layer, while the decoder
network is formed by the hidden layer and the output layer. Typically, the number of
neurons in the hidden layer is lower than that in the input layer, giving the autoencoder the
ability to degrade data and extract features. Additionally, the use of activation functions to
introduce nonlinearity can enhance the autoencoder’s representation learning ability.
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Figure 3. The structure of standard autoencoder.

The encoder’s task is to learn the primary features of the input data and map the input
signal to the hidden layer space. The decoder’s task is to restore the transformed data to its
original space representation. Equation (5) is used for encoding, and Equation (6) is used
for decoding.

h = f (x) = ϕ(Wx + b) (5)

where ϕ is the activation function of the encoder network, W is the weight matrix of the
encoder network, b is the bias vector, and h is the hidden layer vector.

x̂ = g(h) = σ (W ′x + b′
)

(6)

where σ is the activation function of the decoder network, W ′ is the weight matrix of the
encoder network, b′ is the bias vector, and x̂ is the hidden layer vector. Activation functions
ϕ and σ are both nonlinear functions used to learn nonlinear relationships between data.
Commonly used activation functions include ReLu, Sigmoid, and Tanh.

The goal of training the autoencoder is to optimize the parameters of the autoencoder
to minimize the reconstruction error L(x, x̂). The mean square error is usually used to
calculate the reconstruction error, and the reconstruction error L and the loss function J are
shown in Equations (7) and (8).

L(x, x̂) = ‖x− x̂‖2 (7)

J(x, x̂) =
1

2n

n

∑
i=1
‖xi − x̂i‖2 (8)

2.5. Denoising Autoencoder (DAE)

Denoising autoencoder is an extension of the traditional autoencoder. It adds noise
to input data based on the autoencoder and then reconstructs “clean” data from noisy
input data by training the network. Compared with traditional autoencoder, the denoising
autoencoder can learn more robust feature representation and has good generalization
ability [50]. The structure of the DAE is shown in Figure 4.
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X represents the original ‘clean’ data, X′ represents the noisy data and X̂ represents
the ‘clean’ data reconstructed by DAE. X is obtained from “clean” data by a stochastic
mapping: X′ ∼ qD((X′|X)). This conditional distribution represents the probability that
a given sample of data x produces a sample x′ containing noise. The common method
for introducing noise involves applying Gaussian noise or randomly setting values to
zero. In this paper, we will take the way of adding Gaussian noise to train the denoising
autoencoder. The optimization objective of the denoising autoencoder is to minimize the
error between the clean data and the reconstructed output, and the loss function is shown
in Equation (9).

JDAE = J(x, x̂) =
1

2n

n

∑
i=1

L(x, g( f (x′))) (9)

2.6. Stacked Denoising Autoencoder (SDAE)

The traditional denoising autoencoder is improved based on the standard autoencoder,
which only consists of an encoder and a decoder, while the stacked denoising autoencoder is
a deep learning model that stacks multiple denoising autoencoders. The stacked denoising
autoencoder utilizes the encoder output of the i-th denoising autoencoder as the encoder
input of the i + 1 denoising autoencoder. Greedy training is then completed layer by
layer. Compared with the denoising autoencoder, the stacked denoising autoencoder has
a deeper network structure and can learn deeper feature representations from input data
in an unsupervised manner. Then, the deep feature representations learned by SDAE
are input into the softmax classifier. Finally, a small amount of labeled data is used for
network fine-tuning to achieve the anomaly classification recognition of UAV flight data.
The structure of the stacked noise reduction self-encoder is shown in Figure 5 [51].

The training of the stacked noise reduction autoencoder model can be divided into
two stages: pre-training and fine-tuning. The task of the pre-training phase is to train
multiple denoising autoencoders and stack them. After training the first noise-reducing
autoencoder, the weights and biases of the output layer are removed, and the output of
the hidden layer is used as the input of the next denoising autoencoder, which is used
to complete the training of the second denoising autoencoder, and so on to complete the
stacking of multiple denoising autoencoder networks. At the same time, to achieve the
classification and identification of the UAV flight anomalies, the softmax classifier is added
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at the end of the network. After the pre-training of the SDAE network is completed, the
weights of the SDAE network and the weights of the Softmax classification layer are used
as the initial parameters of the deep network, and the back-propagation algorithm is used
to fine-tune the network and update the network weights.

Figure 5. The structure of stacked denoising autoencoder (SDAE).

In the SDAE training process, the mean square error shown in Equation (9) is tra-
ditionally used as the loss function. However, it can lead to overfitting. To improve the
generalization performance of SDAE, this paper considers adding the L2 regularization
term to the traditional loss function to reduce the complexity and instability of the model,
as shown in Equations (10)–(12). Here, λ is the regularization parameter of the weight
penalty term.

JSDAE = JMSE + JL2 (10)

JMSE =
1

2n

n

∑
i=1
‖xi − x̂‖2 (11)

JL2 = λ
n

∑
i=1

W2
i (12)

2.7. Model Evaluation Metrics

To comprehensively evaluate the effectiveness of the proposed model in UAV flight
data anomaly detection and compare it with other models, this paper intends to use
Accuracy, Precision, Recall, and F1-score as model evaluation indexes. The Accuracy is the
proportion of samples that are correctly classified; the Precision is the proportion of samples
that are truly abnormal or normal out of all samples that the model judges to be abnormal or
normal; and the Recall is the proportion of samples that are correctly classified as abnormal
or normal out of all samples that are abnormal or normal. The prediction results of the
classifier are classified into four main cases: true-positive class (TP), false-positive class (FP),
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false-negative class (FN), and true-negative class (TN). Therefore, the Accuracy, Precision,
Recall, and F1-score are calculated as follows:

accuracy =
TP + TN

TP + FP + TN + FN
(13)

precision =
TP

TP + FP
(14)

recall =
TP

TP + FN
(15)

F1− score =
2× acc× rec

acc + rec
(16)

3. Experiments and Results
3.1. Anomaly Detection Model

To validate the performance of the anomaly detection model based on wavelet de-
composition and stacked noise reduction self-coding proposed in this paper, experiments
are conducted using real UAV flight datasets. All experiments are implemented based on
Python (3.10) on a computer equipped with Intel(R) Core (TM) i7-8550U CPU, NVIDIA
GeForce MX150 GPU, 16 GB RAM, and Windows 10 64-bit system. The framework of the
anomaly detection model proposed in this paper is shown in Figure 6.

Aerospace 2024, 11, x FOR PEER REVIEW  11  of  20 
 

 

2.7. Model Evaluation Metrics 

To comprehensively evaluate the effectiveness of the proposed model in UAV flight 

data anomaly detection and compare it with other models, this paper intends to use Ac-

curacy, Precision, Recall, and F1-score as model evaluation indexes. The Accuracy is the 

proportion of samples that are correctly classified; the Precision is the proportion of sam-

ples that are truly abnormal or normal out of all samples that the model judges to be ab-

normal or normal; and the Recall is the proportion of samples that are correctly classified 

as abnormal or normal out of all samples  that are abnormal or normal. The prediction 

results of the classifier are classified into four main cases: true-positive class (TP), false-

positive class (FP), false-negative class (FN), and true-negative class (TN). Therefore, the 

Accuracy, Precision, Recall, and F1-score are calculated as follows: 

  (13) 

  (14) 

  (15) 

  (16) 

3. Experiments and Results 

3.1. Anomaly Detection Model 

To validate the performance of the anomaly detection model based on wavelet de-

composition and stacked noise reduction self-coding proposed in this paper, experiments 

are conducted using real UAV flight datasets. All experiments are implemented based on 

Python (3.10) on a computer equipped with Intel(R) Core (TM) i7-8550U CPU, NVIDIA 

GeForce MX150 GPU, 16 GB RAM, and Windows 10 64-bit system. The framework of the 

anomaly detection model proposed in this paper is shown in Figure 6. 

 

Figure 6. The framework of the proposed approach in this work. Figure 6. The framework of the proposed approach in this work.

Firstly, we perform necessary preprocessing operations on the raw data to achieve the
deletion of duplicate values, the supplement of missing values, and the normalization of
data. Secondly, the wavelet decomposition method is used to denoise the preprocessed
data to overcome the impact of noise on the subsequent model detection effect. Thirdly, the
data are divided into training and test sets. The training set is used to train the stacked
denoising autoencoder network and the softmax classifier as well as optimize the model
parameters. Finally, the model’s effectiveness is validated on the test dataset and compared
with other models to demonstrate the advantages of the proposed method.
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3.2. Experimental Analysis
3.2.1. Wavelet Decomposition

Firstly, we used wavelet decomposition with the db4 wavelet basis function and soft
thresholding processing to denoise the preprocessed data. For example, we decomposed
the AHR2. Then, we rolled parameter data into high-frequency and low-frequency data
using wavelet decomposition and reconstruction. Figure 7 shows (a) the low-frequency
component after three-level wavelet decomposition, (b) the high-frequency component after
one-layer wavelet decomposition, (c) the wavelet component after two-layer decomposition,
and (d) the low-frequency component after three-layer wavelet decomposition.
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It can be seen from Figure 7 that the original data are decomposed into high-frequency
components and low-frequency components by wavelet decomposition. The small am-
plitude high-frequency component is similar to the Gaussian signal and contains less
valuable information, which can be considered as noise contained in the original data.
On the other hand, the low-frequency component contains almost all the characteristics
and trend information of the data, making it clean data. Furthermore, as the number of
decomposition layers increases, the extreme value of the high-frequency noise component
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is smaller and smaller, which means that the denoising effect increases with the increase of
decomposition layers.

3.2.2. SDAE Training

The processed data are split 7:3 into training and test data for training and testing the
stacked denoising autoencoder. The depth of the SDAE network structure will directly
affect the classification performance of the model. The research of Larochelle et al. [52]
shows that the fault diagnosis Accuracy of the deep learning model improves with the
increase in the number of hidden layers of the model. However, when the number of
hidden layers of the network exceeds 3, the Accuracy and generalization ability of the
model will become worse. To balance the Accuracy and generalization ability of the SDAE
model, the number of hidden layers of the SDAE network is set to 3. The Adam optimizer
is an optimization algorithm with an adaptive learning rate, which has proven to be very
effective in practice, so the Adam optimizer is selected.

The sigmoid function and the rectified linear unit (ReLU) function are commonly used
in the training of autoencoders. However, the sigmoid function is prone to problems such
as gradient disappearance and large calculation costs. The ReLU activation function will
put the neuron in a state of inhibition when the neuron receives negative signals, which can
increase the sparse effect of the training process and extract sparse features. However, in
stacked autoencoders, overly sparse features are not favorable for the decoder to generate
samples, which results in inadequate fitting. Therefore, the PReLU function is adopted
as the activation function in this paper, and the PReLU activation function is shown in
Equation (17).

f (xi) =

{
xi (xi > 0)
aixi (xi < 0)

(17)

For the PReLU activation function, the ai coefficients in the negative part are not
constant but are adaptively learned to be updated, which is usually completed by the
momentum method as shown in Equation (18).

∆ai = µ ∆ai + ε
∂ε

∂ai
(18)

where µ is the momentum, ε is the learning rate, and ε is the objective function.
The difference between ReLU and PReLU is shown in Figure 8, which shows that the

PReLU activation function allows the neuron to produce an output value when x < 0. At
the same time, the PReLU activation function increases the number of parameters by a very
small amount compared to ReLU, resulting in a small risk of overfitting the network, which
avoids the poor fit caused by excessive sparseness of features, and it does not affect the
generalization performance of the model.
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To prevent overfitting, we add an L2 regularization term to the traditional MSE loss
function, as shown in Equation (10). Furthermore, to solve the problems of gradient
disappearance and explosion that may arise during the training of stacked autoencoders,
this paper adapts the batch normalization method [53] by adding a batch normalization
layer to the network. The batch normalization first performs a whitening process on the
input data, as shown in Equation (19).

x̃ =
x− E(x)√
Var(x) + ε

(19)

where E(x) represents the mean of a batch of input data, Var(x) denotes the variance of
the batch, and ε is a very small integer avoiding a denominator of 0. After the whitening
process, the data were linearly transformed, as shown in Equation (20).

y = λx̃ + β ≡ BNλ,β(x) (20)

where λ, β are updated by iterative training. After applying Equation (20), the network
effectively incorporates strong nonlinear expression capabilities, thereby circumventing
convergence problems arising from extreme values within the nonlinear interval and
enhancing overall convergence speed.

Overall, the main training parameters of the SDAE network are shown in Table 3.
The CosineAnnealingLR is a learning rate scheduler, which means that the learning rate is
dynamically adjusted according to the cosine function during the model training process.
This strategy is widely used in deep learning and has been shown to be effective on many
tasks. The initial learning rate in this study was set to 0.053.

Table 3. Description of SDAE parameters.

Parameters Value

Network layer number 3
Epochs 50

Batch size 40
Activation function PReLU

Optimizer Adam
Learning rate CosineAnnealingLR
Loss function as per Equation (10)

The trained model was used to run five experiments on the test data. The Accuracy,
Precision, Recall, and F1-score of the five experiments are shown in Figure 9.

As can be seen in Figure 9, the Accuracy and Precision of the model is around 97%
and the Recall is also over 91%, while the F1-score reaches over 94%. The model’s four
performance metrics remained stable across all five experiments, indicating its reliability.
Table 4 shows the model’s performance on the test data, which was calculated by averaging
the results of the five experiments. The results show that Accuracy is 97.53%, Precision is
97.50%, Recall is 91.81% and F1-score is 94.59%.

Table 4. The experimental results of the proposed approach.

Model Accuracy Precision Recall F1-Score

Proposed model 97.53% 97.50% 91.81% 94.57%

Furthermore, we select multiple fault detection models for comparison, including
SVM, random forest, GBDT, and CNN. The comparison results are shown in Table 5.
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Table 5. Comparison of experimental results of 5 models.

Model Accuracy Precision Recall F1-Score

SVM 76.87% 80.19% 74.36% 77.17%
Random forest 84.13% 81.94% 80.94% 81.44%

GBDT 89.00% 87.60% 87.07% 87.33%
CNN 90.71% 82.35% 88.49% 85.31%

Proposed model 97.53% 97.50% 91.81% 94.57%

As can be seen from Table 5, the SVM model has the worst classification results with an
Accuracy of only 76.87%. Random forest and GBDT are common ensemble learning models
that integrate multiple decision trees to improve the classification Accuracy of the model.
The Accuracy of random forest and GBDT is 84.13% and 89.00%, respectively. However,
the Recall rate of the random forest model is only 80.94%, indicating that the model may
misidentify abnormal data as normal data. As a common deep neural network model,
CNN achieves the highest Accuracy among the four contrast models, but the Precision is
low. Compared with the four contrast models, the method proposed in this paper achieves
better results, which utilizes both normal and abnormal data from the historical UAV flight
dataset to fully extract the deep robust features of the data through the encoding and
decoding process. Therefore, it can achieve more efficient anomaly identification, which is
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conducive to identifying risks during UAV flight and improving the reliability and safety
of UAVs in performing their tasks.

4. Discussion

To assess the effectiveness and importance of wavelet decomposition denoising, we
conducted a repeated experiment using the stacked denoising autoencoder without wavelet
decomposition. We kept all data preprocessing operations and parameter settings the same
as in the original experiment. The results of the two experiments are shown in Table 6.

Table 6. Comparison of SDAE and WD-SDAE.

Model Accuracy Precision Recall F1-Score

SDAE 94.95% 95.24% 90.86% 93.00%
WD-SDAE 97.53% 97.50% 91.81% 94.57%

Table 6 shows that the stacked noise reduction autoencoder model achieves better
classification after wavelet denoising. This indicates that wavelet decomposition effectively
reduces the negative impact of high-frequency noise on feature extraction, and the SDAE
extracts important feature representations.

To explore the influence of wavelet decomposition layers on subsequent models, we
tested the data filtered by different wavelet layers. In the test, other experimental settings
were identical except for wavelet decomposition layers. The wavelet decomposition layers
are set as 1, 2, 3, and 4, respectively, for the experiment, and the results are shown in Table 7.

Table 7. Experimental results under different wavelet decomposition layers.

Wavelet Decomposition Layers Accuracy Precision Recall F1-Score

1 95.73% 95.32% 90.93% 93.07%
2 96.71% 96.01% 90.78% 93.32%
3 97.53% 97.50% 91.81% 94.57%
4 95.18% 94.97% 90.47% 92.67%

It can be seen from Table 7 that when the number of wavelet decomposition layers is
1, 2, 3, and 4, the Accuracy of the model is 95.73%, 96.71%, 97.53%, and 95.18%, respectively.
The model works best when the number of wavelet decomposition layers is 3.

In addition, the Accuracy of the model increases as the number of wavelet decomposi-
tion layers increases, which may be since as the number of wavelet decomposition layers
increases, the greater the filtering of high-frequency noise. However, when the number of
wavelet decomposition layers is 4, the model’s Accuracy does not increase but decreases,
which may be that excessive filtering destroys the important features of the data.

The random noise added to the network is an important factor affecting the perfor-
mance of the stacked denoising autoencoder. Excessive noise interference will increase
the difficulty of model training and reconstruction output, and affect the result of feature
learning. Too little noise may lead to the inability to extract robust feature representation.
To determine the appropriate noise and make the model extract more robust feature expres-
sion, this paper carried out test experiments with different proportions of Gaussian noise
and selected the appropriate noise ratio according to their training loss results. Under the
same model structure, the noise ratios of 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 are selected for
training. The training loss results under different noise ratios are shown in Figure 10.

It can be seen from Figure 10 that under the same training round, when the noise ratio
is 0.1, the training loss value is the smallest, which indicates that the feature extraction and
data reconstruction ability of the model is the best at this time. In addition, Figure 10c–f
show that if a larger proportion of Gaussian noise is added, the loss value of the model will
increase. Therefore, it is necessary to add an appropriate proportion of noise in combination
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with the actual situation of the data, which will help the model extract robust data features
and better reconstruct the data.
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5. Conclusions

Anomaly detection based on UAV flight data is a powerful means of UAV condition
monitoring and potential abnormal state mining, which is of great significance to reduce the
risk of UAV flight accidents and improve the safety of UAV operation. However, with the
increasing diversity of UAV mission scenarios and the harsher environment, the Accuracy of
UAV state information acquisition is reduced, and the noise contained affects the Accuracy
of the anomaly detection algorithm to a certain extent. In order to overcome the negative
impact of noise in the original data on the anomaly detection model and combine it with the
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feature extraction ability of the deep learning model, this paper proposes a UAV anomaly
detection method based on wavelet decomposition and stacked denoising autoencoder. As
an efficient representation learning model, the stacked denoising autoencoder can extract
robust feature representations. Meanwhile, the use of wavelet decomposition helps to
eliminate the negative impact of high-frequency noise on the model.

This paper conducts experiments on real UAV datasets and evaluates the model
performance with Accuracy, Precision, Recall, and F1-score. The comparison with other
common anomaly detection models also reflects the excellent performance of the proposed
method. The proposed method can overcome the negative impact of noise in the original
data, and the Accuracy and Precision in multiple tests reach more than 97%. Meanwhile,
the Recall reaches 91.81%, and the F1-score reaches 94.57%.

Finally, we explore some important factors that affect the performance of the model.
The conclusions are as follows:

(1) Using wavelet decomposition to filter the original data can remove the negative
impact of noise and improve the model’s performance.

(2) Three-layer wavelet decomposition can achieve the best denoising effect, and exces-
sive filtering may destroy the important features of the data and cause the performance
of the model to decline.

(3) The proportion of random noise in the stacked denoising autoencoder needs to be
determined according to the specific data. An appropriate proportion of noise is
beneficial to the model to extract robust data features and better reconstruct data,
while an excessive proportion of noise will be counterproductive.
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