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Abstract: In the present study, a novel end-to-end automatic speech recognition (ASR) framework,
namely, ResNeXt-Mssm-CTC, has been developed for air traffic control (ATC) systems. This frame-
work is built upon the Multi-Head State-Space Model (Mssm) and incorporates transfer learning
techniques. Residual Networks with Cardinality (ResNeXt) employ multi-layered convolutions with
residual connections to augment the extraction of intricate feature representations from speech signals.
The Mssm is endowed with specialized gating mechanisms, which incorporate parallel heads that
acquire knowledge of both local and global temporal dynamics in sequence data. Connectionist
temporal classification (CTC) is utilized in the context of sequence labeling, eliminating the require-
ment for forced alignment and accommodating labels of varying lengths. Moreover, the utilization of
transfer learning has been shown to improve performance on the target task by leveraging knowledge
acquired from a source task. The experimental results indicate that the model proposed in this study
exhibits superior performance compared to other baseline models. Specifically, when pretrained
on the Aishell corpus, the model achieves a minimum character error rate (CER) of 7.2% and 8.3%.
Furthermore, when applied to the ATC corpus, the CER is reduced to 5.5% and 6.7%.

Keywords: end-to-end ASR; ResNeXt-Mssm-CTC; air traffic control; transfer learning

1. Introduction

Aviation operational safety serves as the fundamental basis for the advancement of
civil aviation. Air traffic control (ATC) plays a crucial role in ensuring the safety and
efficiency of aircraft operations by managing airspace usage and providing guidance for
multiple aircraft during takeoffs, landings, and flights. ATC is responsible for maintaining
flight order and optimizing airspace utilization. Radio voice communication serves as the
predominant mode of communication between ATC controllers (ATCOs) and pilots [1].
ATCOs transmit control instructions to pilots using radio voice communication. Upon
receiving these instructions, pilots reiterate them through radio communication to validate
their accuracy. In recent years, the integration of ASR technology into the ATC domain has
emerged as a means to develop intelligent ATC systems. This integration aims to mitigate
the potential for human error and improve flight safety [1–3]. In current procedures, ASR
technology plays a pivotal role in the new ATC workflow, and the generation of accurate
ASR results is of utmost importance in facilitating subsequent applications.

In recent years, there has been a gradual shift from traditional systems to end-to-end
deep learning models. The cost function for connectionist temporal classification (CTC), as
proposed by Graves [4], effectively tackles the significant discrepancy in the lengths of input
and output sequences. This approach eliminates the need for individually constructing
the acoustic model (AM), pronunciation model (PM), and language model (LM), thereby
reducing the complexity of the process. Recurrent neural networks (RNNs), such as
the widely recognized Long Short-Term Memory (LSTM) [5] and Gated Recurrent Units
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(GRUs) [6], address the challenges of gradient explosion and vanishing that occur during
training. These models effectively capture long-distance dependency relationships in audio
sequences. Combining them with the CTC approach has yielded remarkable outcomes
in the domain of speech recognition tasks [7,8]. The Transformer model, as proposed
by Vaswani et al. [9], offers several advantages in the field of speech recognition. These
include easy parallelizable training and the ability to efficiently capture global features
in sequences, which drives the adoption of attention-based models. The global attention
mechanism of the Transformer, however, diminishes its capacity to effectively capture local
dependency relationships. To tackle this issue, scholars have integrated convolutional
neural networks (CNNs) with attention mechanisms, a technique that has demonstrated
remarkable efficacy in the domain of speech recognition [10–12]. Simultaneously, scholars
have directed their attention towards alternative approaches to sequence modeling, apart
from RNNs, as evidenced in the works of researchers [13–16]. Among these techniques, the
state-space model (SSM) [17] is a well-established method in the fields of signal processing
and control theory. It is extensively utilized in various applications involving continuous
or discrete-time series and control problems [18,19]. However, the cyclic time-varying
characteristics of the system result in high computational expenses, posing a challenge in
its universal application in large-scale modeling tasks. Recently, researchers have proposed
a reformulation and equivalent modeling of the state-space model using variable-length
kernels in a convolutional manner. This approach simplifies the extended model and
enables parallel training [13,14]. Further investigation suggests that an enhanced iteration
of the time-invariant state-space model has the capability to effectively represent long-
range dependency relationships. This model can serve as a substitute for self-attention
mechanisms in sequence-modeling tasks, such as language modeling [20–22].

In the present study, we acknowledge the significance of both global and local depen-
dency relationships in the context of speech recognition modeling. We present a unique
amalgamation of ResNeXt [23] and Mssm [24]. The subsequent sections of this paper are
structured as follows. In Section 2, the principles and structures of the ResNeXt and Mssm
modules are elucidated, providing a comprehensive framework of the model. Further-
more, we present the implementation process of transfer learning techniques and decoding
algorithms. In Section 3, detailed information is presented regarding experimental data,
experimental platforms, experimental analysis, and specific model parameters. In Section 4,
the primary experimental results of the model and pertinent ablation experiments are
presented. In Section 5, a comprehensive overview of the entire study is presented, along
with an outline of future research directions.

2. Methodology

This section aims to introduce the fundamental components of the design model
employed in this study. Section 2.1 introduces the Mssm module. Section 2.2 delineates the
comprehensive framework of the model, incorporating the ResNeXt module. Section 2.3
presents the CTC decoding algorithm. Moreover, within the realm of air traffic control,
there is a scarcity of speech data, especially in cases where professionally annotated data are
essential. The efficacy of end-to-end speech recognition systems is significantly impacted
by the quantity, range, and diversity of the training data accessible. This limitation carries
substantial implications for the practicality of deploying end-to-end speech recognition
systems in civil aviation. Hence, this research employs transfer learning methods from
related domains and data augmentation strategies to increase data variability, with the goal
of enhancing the model’s ability to generalize within a specific task. Section 2.4 presents an
overview of transfer learning techniques.
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2.1. Mssm Module

The Time-Invariant State-Space Model can be described as a fully linear recurrent
network, as demonstrated in Equation (1).

xk = Axk−1 + Buk
yk = Cxk + Duk

}
y = SSM(u) (1)

The process involves the transformation of an input signal, denoted as u, into an
output signal, denoted as y, through a concealed process represented by x. Because of
the linear nature of this model, it can also be expressed as a convolution [13,25], enabling
parallelized training without the need for recurrences. More significantly, the efficiency
and effectiveness of this model are enhanced by imposing constraints on the parameters
A, B, C, and D, such that they are block-diagonal matrices, and by ensuring the stability
of the transition matrix A. This stability condition guarantees that the state-space model
(SSM) produces bounded outputs for bounded inputs [21,26]. Additionally, the efficacy of
this model is heavily contingent upon its initialization. Studies have demonstrated that by
employing a suitable initialization scheme, the system can proficiently encode the historical
information of the input signal [20,27]. The amalgamation of these concepts ultimately
gives rise to a model known as S4 [21]. The S4 model can be considered as predominantly
unidirectional. For non-causal applications, such as an audio encoder for offline speech
recognition, a bidirectional S4 with nonlinear activations and pointwise linear layers [28]
can be employed, as demonstrated in Equation (2). “Rev” denotes the reversal of the input
sequence u.

y← Cat([S4(u), Rev(S4(Rev(u)))])
y← Linear(Activation(y))

(2)

Inspired by the concept of multi-head self-attention, the S4 layer can be expanded in a
more flexible manner by projecting the input signal of dimension Di onto H ∈ {2, 4, 8, . . .}
independent signals of dimension Di = Di/H. Each of these signals is then processed
independently using an SSM with independent initialization. While it is feasible to utilize
a basic nonlinear activation function like ReLU or GELU, we have chosen to implement a
novel gating mechanism, outlined below. Subsequently, the process is iterated to construct
a stacked module, as illustrated in Figure 1a. This module functions as an alternative
model for S4 in Equation (2) by establishing a bidirectional model. This multi-head design
provides flexibility in understanding significant temporal intervals and diverse forms of
temporal patterns in sequential data.
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By default, the GELU activation function was employed in prior research, as demon-
strated in Equation (2). In certain experimental studies [21,28], it was observed that the
activation of GLU also yielded positive outcomes. However, the utilization of a multi-head
state-space architecture with H heads offers an increased number of gating possibili-
ties. This design utilizes an inter-head gating (IHG) methodology, in which half of the
heads regulate the remaining heads, facilitating communication between different heads.
This approach has been demonstrated to produce superior outcomes [24], as illustrated
in Figure 1b. The computation of the IHG output involves blending the heads accord-
ing to the following equation (where σ represents the sigmoid function), as depicted in
Equation (3).

a(h) = y(h)·σ
(

y(h+H/2)
)

, h = {1, . . . , H/2} (3)

2.2. Overall Architecture of the Model

The Mel spectrogram encompasses information in both the temporal and spectral
domains. As ResNeXt serves as the input frontend for our model, we utilize the Mel
spectrogram as the input data. The architectural framework of our model is depicted in
Figure 2.
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Figure 2. Overall architecture of the model.

The initial component of the model comprises ResNeXt, as shown in Figure 3. The
utilization of local receptive fields in convolutional layers enables the network to concen-
trate on specific features within the data, thereby playing a critical role in the recognition
of the local structure present in speech signals. Typically, speech signals exhibit local
features in both the frequency and time domains, and the convolutional kernels’ local
receptive field aids in capturing these crucial features. Convolutional operations exhibit
translation invariance, indicating that the model is resilient to shifts in the input. In the
field of speech recognition, it is common for speakers to exhibit slight variations in speech
rate. The utilization of convolutional layers with translation invariance in the model assists
in effectively addressing these variations. The utilization of pooling layers in the model
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serves to reduce the dimensionality of the output generated by the convolutional layers.
This not only enhances the computational efficiency of the model, but also enhances its
resilience to minor variations in the input, such as superfluous information and noise
present in speech signals. ResNeXt employs a cascading arrangement of convolutional
layers to progressively capture higher-level characteristics, transitioning from local acous-
tic features to more conceptual speech segments. This approach facilitates the model’s
comprehension of the hierarchical organization inherent in speech signals. Meanwhile,
the incorporation of residual connections mitigates the issue of gradient vanishing that
arises from the increase in the depth of CNNs. Finally, the output, which establishes local
time–frequency correlations, is subjected to dimension reduction through a flattening layer
in order to be utilized as input for the subsequent phase.
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The second section predominantly consists of a series of interconnected Mssm modules.
Firstly, the utilization of the multi-head mechanism enables the model to acquire diverse
representations simultaneously, wherein each head is dedicated to capturing distinct facets
of the input data. This phenomenon contributes to the augmentation of the model’s
ability to accurately represent input data, particularly in scenarios where speech signals
contain multiple distinct features. Secondly, the incorporation of a multi-head structure
enhances the model’s capacity for generalization, thereby enabling it to effectively handle
variations such as diverse speakers, fluctuations in speech rate, and environmental noise.
Each individual head has the ability to specialize in capturing distinct patterns in speech
variations. Finally, given that speech signals are inherently sequential in nature, the
utilization of a multi-head structure enables the model to effectively process and attend
to information across various temporal scales simultaneously. This contributes to the
enhancement of the modeling capacity for temporal relationships in speech signals, thereby
facilitating a deeper comprehension of the dynamic characteristics of speech. After these
two components, the output is subjected to a linear transformation using a linear layer.
This transformation maps the feature dimensions to the number of classes at each time step.
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Subsequently, the final classification prediction probabilities are calculated using a SoftMax
layer.

2.3. Training and Decoding

The CTC algorithm does not necessitate precise alignment between the input and
output. In the proposed end-to-end ASR model, the goal is to predict the text sequence
S = {s1, ..., sm} from the input speech signal X = {x1, ..., xo}, in which si is from a special
vocabulary based on Chinese characters and English letters. In general, multiple frames in
X correspond to a token of S . The length of speech frames is usually much longer than the
label length. To address this issue, the CTC loss function was designed to automatically
achieve alignment between the speech and label sequence. The tth frame corresponds
to the output label k, and its probability is denoted zt

πt . Given the speech input X, the
probability of the output sequence π is shown in Equation (4). Therefore, the probability
of the final sequence can be obtained via Equation (5), in which v is the set of all possible
sequences and A denote the length of T sequences over the vocabulary.

p(π|X) =
T

∏
t=1

zt
πt , π ∈ A (4)

p(S|X) = ∑
π∈v−1(s)

p(π|X) (5)

The decoding process employs Beam Search as opposed to the conventional greedy
algorithm. Beam Search represents a middle-ground approach that balances the pursuit of
the global optimum with the need to manage the trade-off between search time and model
accuracy.

2.4. Transfer Learning

In the realm of traditional machine learning, it is a fundamental requirement that the
training data and testing data have independent and identically distributed characteristics.
Transfer learning techniques from related domains, however, overcome this limitation.
Transfer learning has been shown to improve learning performance in the target domain
by leveraging knowledge from other domains and reducing the reliance on a substantial
volume of data during the learning process. The utilization of transfer learning tech-
niques enables the exploitation of invariant fundamental features and shared structures
among interconnected domains, thereby facilitating the transfer and reuse of supervised
information.

Specifically, the domain under consideration comprises two distinct components:
the feature space X and its corresponding marginal probability distribution P(X), where
{x1, . . . , xn} ∈ X. Given the domain D = {X, P(X)}, the task T encompasses the label
space y and the target prediction function f (x). Furthermore, in the context of transfer
learning, when considering a specific source domain Ds and source task Ts, as well as a
target domain Dt and target task Tt (where Ds ̸= Dt or Ts ̸= Tt), the objective is to leverage
the knowledge acquired from Ds and Ts in order to improve and optimize the learning
efficiency of the prediction function ft(x) in Dt.

This technique integrates pretraining and knowledge transfer, effectively mitigating
the problem of limited data availability in the civil aviation field and tackling specific
pronunciation difficulties. Initially, our model undergoes pretraining on a large-scale
Aishell dataset in the source domain in order to attain proficient transcription capabilities.
Subsequently, the model undergoes fine-tuning and retraining on the relatively smaller
target domain ATC corpus, thereby facilitating knowledge transfer and enhancing its
ultimate performance through the sharing of weight parameters. Ultimately, the model
demonstrates satisfactory performance on the source task and maintains its ability to
generalize to the target task.
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3. Experimental Evaluation
3.1. Experimental Data

The dataset utilized for pretraining in transfer learning consists of the Aishell-1 corpus
and the enhanced Aishell-1 corpus, which incorporates data augmentation techniques.
These two datasets are collectively referred to as the extended Aishell corpus. The ATC
corpus is sourced from real-time control recordings obtained from the North China Air
Traffic Control Bureau of Civil Aviation of China, as well as control simulation training
recordings from the Civil Aviation Flight University of China. Please refer to Table 1 for
further information. Additionally, the modeling units comprise a total of 4243 Chinese
characters, along with one special character denoted as “blank” and one unidentified
character referred to as “unk”.

Table 1. Basic information of the corpus.

Corpus Language Access Size
Utterances

Train Dev Test

expanded Aishell-1 Chinese Public 329 h 240,288 14,326 7176
ATC speech
(Mandarin) Chinese Simulation 67 h 28,785 1240 1371

3.2. Experimental Platform

The experiments were performed using a Windows operating system. The computer
configuration was as follows: Intel Xeon Silver 4110 CPU (Intel, Santa Clara, CA, USA),
two NVIDIA RTX2080Ti 11 G discrete graphics cards, 128 GB 2 666 MHz ECC memory,
480 GB SSD, and a 4 TB SATA hard disk. The Pytorch (1.10.2) framework was used to build
the neural network model.

3.3. Experimental Analysis

The dataset utilized in this research consists of Mel spectrograms with a shape of
(None, 3, 64, 512), where the dimension “None” represents a variable value. These four
dimensions correspond to batch size, channels, height, and width, respectively. During
the training phase, the forward–backward algorithm is utilized to calculate the loss of the
CTC objective function. The Adam optimizer is employed to update the model weights,
utilizing an initial learning rate of 0.01, and hyperparameters β_1 = 0.9, β_2 = 0.98,
ϵ = 10−9. Additionally, a learning rate scheduler is employed, which incorporates a warm-
up learning rate schedule for the initial 1000 steps, gradually augmenting the learning
rate to its initial value. Subsequently, the learning rate experienced a decay of 20% in each
training epoch. During the process of inference, a Beam Search technique is employed with
a width of 5 in order to acquire the ultimate predicted text.

Additionally, a series of ablation experiments were conducted. Firstly, in the context of
the extended Aishell corpus, we conducted a comparative analysis of various representative
networks, namely, LSTM, GRU, Transformer (MHSA + FFN), and Mssm, using the same
convolutional structure. Then, following pretraining on the ATC corpus, the experimental
results were analyzed by manipulating the number of layers in the Mssm module. Finally,
following pretraining on the ATC corpus, the Mssm module remained unchanged as we
employed various convolutional structures to examine the experimental outcomes. In the
conducted experiments, the assessment of the speech recognition task’s overall performance
was carried out by considering various metrics, including the character error rate (CER),
real-time factor (RTF), total parameters, and training time. CER is determined using the
formula presented as Equation (6).

CER =
I + D + S

N
× 100% (6)
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where the denominator N represents the total length of the true label and the notations I, D,
and S denote the number of the insertion, deletion, and substitution operations, respectively.
The RTF was applied to evaluate the decoding efficiency.

RTF =
Td
Ts

(7)

Here, Td is the time decoded for a speech with a duration of Ts.

3.4. Model Parameters

During the experimental procedure, our model’s fundamental structure is ResNeXt
50_Mssm@X, with X denoting the quantity of layers in Mssm. The precise parameter
configurations of the model are detailed in Table 2.

Table 2. Details of architecture (input: Mel spectrogram with shape equal to (None, 3, 64, 512).

Structural Order Output Size Parameter Setup

Conv layer (None, 64, 32, 256) k = (7, 7), s = (2, 2), f = 64
Max pooling layer (None, 64, 16, 128) k = (3, 3), s = (2, 2)
Residual block × 3 (None, 64, 16, 128) {k 1, k2 = (3, 3) and f1, f2 = 64}× 3
Residual block × 4 (None, 128, 8, 128) {k 1, k2 = (3, 3) and f1, f2 = 128} × 4
Residual block × 6 (None, 256, 4, 128) {k 1, k2 = (3, 3) and f 1, f2 = 256}× 6
Residual block × 3 (None, 512, 1, 128) {k 1, k2 = (3, 3) and f1, f2 = 512}× 3

Permute (None, 1, 128, 512) (0, 2, 3, 1)
Flatten layer (None, 128, 512) start_dim = 1, end_dim = 2

Mssm module × X (None, 128, 512)
numheads = 8, f f n_dim = 2048,

mssm intermediate_dim = 512
Linear layer (None, 128, 4245) Linear(512, len(dict))

4. Results and Discussion
4.1. Main Results

Table 3 displays a comparison of the word error rate (WER) performance of our
model ResNeXt50_Mssm@12 with contemporary models on the ATC corpus. The models
compared include Transformer [29], Conformer in WeNet [30], Branchformer [11], and
Zipformer-M [31]. No external language model was employed. Among models with
similar parameters, our ResNeXt50_Mssm@12 model demonstrates the lowest character
error rate (CER) of 5.5% and 6.7% on the ATC corpus. In comparison to other models, our
model exhibits greater competitiveness in recognition outcomes.

Table 3. Evaluation metrics for different models on the ATC corpus.

Model Type Params
CER (%)

Dev Test

Transformer [29] Transducer 64.5 M 6.9 8.2
Conformer in WeNet [30] CTC/AED 46.3 M 5.8 7.1

Branchformer [11] CTC/AED 45.4 M 5.6 7.0
Zipformer m [31] Transducer 73.4 M 5.6 6.9

ResNeXt50_Mssm@12 (ours) CTC 54.03 M 5.5 6.7

4.2. Ablation Studies
4.2.1. Pretraining Results for Different Backend Models on the Extended Aishell Corpus

Comparison experiments for the models were conducted using the ResNeXt50_Mssm
@8 architecture during the pretraining process. In the comparison models, the number of
layers in the MHSA + FFN model is identical to that in our framework, with both models
consisting of eight layers. Additionally, our proposed model consists of four stacked
layers of Bidirectional LSTM (BiLSTM) and Bidirectional GRU (BiGRU), each containing
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512 hidden units. The number of trainable parameters in this model is nearly identical to
that in the comparison model.

The loss curve for the specific training process is depicted in Figure 4. The iteration
comprises of 20 epochs, totaling 100,120 steps. Each step consists of 48 samples, and
the loss value is recorded every two iterations. When comparing the convergence of the
Transformer (MHSA + FFN) and Mssm models to BiLSTM and BiGRU, it is evident that
the former two models demonstrate superior convergence. In the initial phases of training,
the convergence rates of BiLSTM and BiGRU exhibit similarity, followed by Transformer
(MHSA + FFN), while the Mssm model demonstrates the most optimal convergence speed.
In the advanced phases of the training process, the training loss of each model tends
to stabilize; however, the training loss of BiLSTM and BiGRU models exhibits notable
fluctuations. In contrast, the loss curves of the Transformer (MHSA + FFN) and Mssm
models exhibit smaller amplitudes.
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Table 4 presents the comparative outcomes of four models with respect to the CER,
RTF, total parameters, and training time. Our model demonstrates superior competitiveness
in recognition results compared to other models, achieving a final result of 8.3% on the
test set. Additionally, our model demonstrates comparatively reduced time consumption
per step and overall training duration. The total number of parameters in our model is
38.5 million, which is 0.82 times, 0.93 times, and 1.18 times the number of parameters in the
BiLSTM, BiGRU, and Transformer (MHSA + FFN) models, respectively. Additionally, the
mean RTF for the test samples are 0.24, 0.23, 0.20, and 0.21 for BiLSTM, BiGRU, Transformer
(MHSA + FFN), and our model, respectively.

Table 4. Evaluation metrics for different backend models.

Model
CER (%)

RTF Params Training
TimeDev Test

ResNeXt50_BiLSTM@4 13.0 14.4 0.24 46.9 M 1.51 s/step
ResNeXt50_BiGRU@4 12.9 14.1 0.23 41.2 M 1.36 s/step

ResNeXt50_MHSA_FFN@8 8.1 8.9 0.20 32.6 M 1.33 s/step
ResNeXt50_Mssm@8(ours) 7.2 8.3 0.21 38.5 M 1. 35 s/step
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4.2.2. Experimental Results for Mssm Modules with Different Numbers of Layers in the
ATC Corpus

To determine the most effective configuration of the proposed framework to enhance
task performance, each set of experiments was initially trained using the extended Aishell
corpus dataset. The weight set that yielded the most favorable experimental outcomes
during the testing phase was preserved as the initial parameters of the model for the
subsequent retraining procedure on the ATC corpus dataset. The training process is
depicted in Figure 5. A total of ten epochs were conducted, consisting of 10,510 steps, with
48 samples in each step. Mssm modules with 4, 8, and 12 layers all demonstrated prompt
convergence. From step 2000 onwards, the convergence speed exhibited greater stability as
the number of layers increased.
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The comparison results of the character error rate (CER) with varying numbers of
layers in the Mssm module on the dev and test sets of the ATC corpus are presented in
Table 5. The CER for the Mssm modules with 4, 8, and 12 layers on the test set are 7.4%,
6.9%, and 6.7%, respectively. The CER for the 12-layer Mssm module exhibits a reduction
of 9.5% and 2.9% when compared to the 4-layer and 8-layer Mssm modules, respectively.
With the proliferation of layers, there is a direct correlation between the number of layers
and the training time, as well as the total number of model parameters, resulting in linear
growth. Increasing the number of layers in the Mssm module has a substantial impact on
improving recognition accuracy.

Table 5. Evaluation metrics of Mssm module with different layers in the ATC corpus.

Model
CER (%)

RTF Params Training
TimeDev Test

ResNeXt50_Mssm@4 6.2 7.4 0.17 22.4 M 1.02 s/step
ResNeXt50_Mssm@8 5.8 6.9 0.21 38.5 M 1. 35 s/step
ResNeXt50_Mssm@12 5.5 6.7 0.24 54.03 M 1.83 s/step
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4.2.3. Experiment Results with Different Convolutional Structures in the ATC Corpus

The influence of various convolutional structures on the outcomes of the target task is
presented in Table 6. In order to maintain a roughly equivalent total number of parameters,
we fixed the number of layers in the Mssm module at 12 and selected VGG16, VGG19,
ResNet34, ResNet50, and ResNeXt50 as the experimental controls. There was no statistically
significant disparity observed in the duration of training for each network architecture. The
duration per step for each of the five models was 2.11 s, 2.23 s, 1.76 s, 1.96 s, and 1.83 s,
respectively. The total training time for all models was kept within 6 h. On the dev and test
sets, the CERs of the five models were 6.0%, 5.8%, 5.7%, 5.7%, and 5.5%, as well as 7.1%,
7.0%, 7.0%, 6.8%, and 6.7%, respectively. The performance of ResNeXt50 exceeded that of
VGG16, VGG19, ResNet34, and ResNet50.

Table 6. Evaluation metrics for different convolutional structures in the ATC corpus.

Model
CER (%)

RTF Params Training
TimeDev Test

VGG16_Mssm@12 6.0 7.1 0.23 54.3 M 2.11 s/step
VGG19_Mssm@12 5.8 7.0 0.25 62.4 M 2.23 s/step

ResNet34_Mssm@12 5.7 7.0 0.23 53.5 M 1.76 s/step
ResNet50_Mssm@12 5.7 6.8 0.24 61.6 M 1.96 s/step

ResNeXt50_Mssm@12 5.5 6.7 0.24 54.03 M 1.83 s/step

5. Conclusions

This study introduced a novel end-to-end speech recognition model named ResNeXt-
Mssm-CTC. ResNeXt focuses on extracting spectrotemporal features from speech signals.
The Mssm module is designed to learn both local and global temporal dynamics in sequen-
tial data, while CTC is utilized to automatically manage the inconsistency in the lengths
of input and output sequences. Moreover, transfer learning methods aim to mitigate the
limited availability of annotated data and the particular phrase pronunciations within the
air traffic control (ATC) domain. The model attained a character error rate (CER) of 8.3% in
the primary task. Furthermore, the ResNeXt50_Mssm@12 model demonstrated superior
recognition performance in the specified task, resulting in a reduction in the character error
rate (CER) to 6.7%. This framework is anticipated to function as a foundational element in
intelligent air traffic control systems, making a substantial contribution to smooth operation
and the overall enhancement of efficiency. Its applications include verifying consistency in
repeated instructions, conducting post-event investigations, serving as a backup controller,
facilitating air traffic control simulations, and supporting training activities.

Moreover, in forthcoming research, we will collect and expand the ATC corpus to
optimize our model. We aim to explore speech recognition tasks in English and mixed
Mandarin–English scenarios, with a focus on providing technical support for automatic
speech recognition (ASR) applications in the air traffic control (ATC) domain.
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