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Abstract: Many of the reports created at assembly lines, where all components of an aircraft are
installed, frequently indicate that errors threaten safety. The proposed methodology in this study
evaluates error prediction and risk mitigation to prevent failures and their consequences. The results
linked to a typical electrical harness manufacture of a military aircraft estimated reductions of 93%
in time and 90% in error during the creation of engineering manufacturing processes using AI
techniques. However, traditional risk assessments methods struggle to identify and mitigate errors
effectively. Thus, developing an advanced methodology to ensure systems safety is needed. This
paper addresses how innovative AI technology solutions can overcome these challenges, mitigate
error risks, and enhance safety in aerospace. Technologies, such as artificial intelligence, predictive
algorithms, machine learning, and automation, can play a key role in enhancing safety. The aim of
this study is to develop a model that considers the factors that can potentially contribute to error
creation, through an artificial intelligence (AI) approach. The specific AI techniques used such as
support vector machine, random forest, logistic regression, K-nearest neighbor, and XGBoost (Python
3.8.5) show good performance for use in error mitigation. We have compared the modeled values
obtained in this study with the experimental ones. The results confirm that the best metrics are
obtained by using support vector machine and logistic regression. The smallest deviation between
the measured and modeled values for these AI methods do not exceed 5%. Furthermore, using
advancements in machine learning methods can enhance error mitigation in aerospace. The use of
AutoML can play a key role in automatically finding an appropriate model which provides the best
performance metrics and therefore the most reliable forecast for data prediction and error mitigation.

Keywords: predictive algorithm; artificial intelligence; error mitigation; machine learning; risk matrix

1. Introduction

In the aerospace safety field, there are different types of data collected to analyze
accidents, non-conformances, deviations, and errors. Safety databases are composed of
reports with integrated tools to allow the creation of understandable data for analysts in
different formats. Typically, systems for quality, security, and safety are integrated into the
aerospace organization and monitored to ensure compliance with safety standards like
International Civil Aviation Organization (ICAO) Annex 19 [1]. Traditional methods use
indicators to define an event as being acceptable. Most of the investigation processes, which
are related to the identification of these factors, aim to evaluate undesired outcomes [2]. Risk
assessment processes are fundamental to identify, evaluate, and mitigate potential risks.
The approach of risk mitigation by assessment is considered critical to safe operations [3].
Aviation has developed aeronautical decision-making systems, which consider factors
such as requirements, aircraft performance, and safety parameters to help make the best
decisions [4]. A risk matrix is used to evaluate the likelihood and consequences of an
event. After defining the risk, impact mitigation techniques are applied to avoid potential
errors [5,6]. However, the limitations of current databases in safety risk assessment prevent
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the provision of efficient risk mitigation measures. Therefore, ensuring safety at the highest
level is compromised.

Aerospace safety risk refers to the evaluation of undesired situations that may lead to
accidents or incidents. Undesired outcomes and hazards may be present in all aerospace
activities. There are associated uncertainties that need to be properly considered in order to
avoid higher risks [7]. Thus, continuous safety monitoring is performed to manage these
undesired factors. Events such as equipment damage, serious incidents, injury to people,
or multiple deaths may occur. Measures for risk mitigation are directly associated with
safety risk [8]. The methods used to control safety risks rely on likelihood analysis of safety
outcomes, considering factors such as equipment failures or human errors. Strategies to
mitigate these risks are also established for this purpose [9].

Aerospace activities result from a chain of complex events involving multiple variables
and different scenarios with rapid changes that require fast decisions. The multiple depen-
dent variables involved in the end-to-end process make aerospace activities susceptible
to hazards. In particular, aerospace is affected by latent conditions such as design and
manufacturer decisions, procedure writers, management, and maintenance activities [10].
These conditions are generated mainly by people who make incorrect decisions within
inadequate organizational processes. Consequently, real-time hazard predictions are a
cutting-edge approach to challenge. Continuous research and development in aviation
technology aim to enhance safety methods, making them more effective in anticipating and
preventing failures [11].

In recent years, data have grown exponentially; therefore, requirements are more
difficult to meet and errors may appear more often. Electrical systems are more complex
and higher data accuracy is required for efficient performance [12]. New technology has
improved flight safety. However, there is evidence that human errors are the main trigger
for errors [13,14]. Systems have increased in complexity and more interconnections are
necessary for good performance [7]. The complexity and interconnection of aerospace
systems can contribute to increasing the probability of error creation and failure prop-
agation. Current approaches do not have the necessary capability to address potential
risk and to establish strategies for error mitigation. Thus, the integration of advanced
error mitigation using AI methods to evaluate the risk of error creation under real-time
conditions is necessary. AI approaches can provide innovative solutions to overcome the
limitations of existing techniques.

Concerning safety issues, different approaches, such as manufacturing processes based
on the latest 4.0 technology, are solutions to produce final safety products [15]. Industry
4.0 is based on a methodology that represents a smart chained network where machines
and products interact with each other automatically. This technology can not only improve
flight safety [16], but also has a significant impact on overcoming challenges and enhancing
sustainable business performance.

The safety process involves identification problems that appear in the early design
stage through an approach aiming to identify future threats by prediction. The use of AI
techniques provides more evidence for more accurate decision making [17,18]. Predictive
algorithms developed in this context with application to aerospace can play a key role in
preventing failures [19] and consequently in preventing accidents and saving human lives.

Artificial intelligence technology can prevent undesired situations from occurring [20].
The integration of AI into design models has the potential to enhance safety and reliability.
AI models can not only handle complex and nonlinear data but also have the capacity to
anticipate errors and make the best decisions in case uncertainties appear. Furthermore,
advanced analytics and AI algorithm development can analyze large amounts of data to
identify patterns which can potentially contribute to create failures [21]. All of these factors
are relevant for use as references for safety in aviation [22].

This innovative approach leverages a risk matrix function, which enables a structured
evaluation and visualization of threats. This approach is driven by real-time data, which
require a dynamic understanding of risk by considering multiple factors and probabilistic
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approaches for making real-time decisions [23]. The methodology established in this study
will accelerate the development of tasks, monitor real-time data, and assess the risk of error
creation and its severity. Using the algorithm’s insights, the best decision can be made
in the dynamic manufacturing area and in simultaneously forecasting the risk of error
creation for new datasets [24–26].

The main aim of this study is to prevent failures in existing manufacturing processes by
applying techniques based on AI machine learning. Moreover, this methodology enhances
efficiency and productivity by integrating this technology in the engineering processes
and enabling real-time communication between interconnected devices [17,27,28]. The
use of automation of existing manual tasks will not only improve the work delivered
from the engineering to the manufacturing area, but will also reduce the human decision
factor, thereby decreasing the risk of accidents. Vulnerabilities may compromise the data,
increasing the risks of cyberattacks. Consequently, security strategies are implemented to
protect the integrity of the algorithm [29].

The objectives of this research are to design an AI model to mitigate errors and
evaluate their risks in the aerospace manufacturing assembly line. In particular, support
vector machine (SVM), random forest (RF), logistic regression (LR), K-nearest neighbor
(KNN), and XGBoost (eXtreme Gradient Boosting) have been used and evaluated using the
following metrics: accuracy, precision, recall, and F1-score. Additionally, this approach can
not only reduce errors but potentially enhance efficiency and bring improvements in the
aerospace manufacturing assembly line. Overall, this study aims to enhance safety and
keep aerospace at the highest level [30].

2. Materials and Methods

Aerospace frequently uses a high volume of electrical harness drawings. Three-
dimensional models are used to create a full-scale drawing enriched with manufacturing
information, which is called a Formboard drawing. Harness assessment is performed
using a computer-aided-design (CAD) model that represents an assembly with electrical
components. The risk matrix is calculated according to the criteria shown in Table 1, which
is based on the following input parameters: number of wires (H), terminations (Z), and
electrical components (N). The most vulnerable stage, in terms of error creation, involves
harness transformation from the current model to a flattened model. Electrical parameters
are added to the model in order to flatten the 3D model accordingly. The generated mesh is
extracted using an automatic script. The target is to flatten the entire mesh generated in the
real length to produce a 2D model.

The risk matrix function, which represents a modern and effective approach to safety
management, evaluates and prioritizes risks based on their likelihood and impact. The
inputs/outputs of the AI model developed in this study are presented in Figure 1. The
inputs to the system (X1, X2, X3, X4) are the factors related to the type of harness and the
outputs include automation, predictions, and risk assessments to inform decision making
in the engineering processes.
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The dataset related to C295 aircraft consists of 157 electrical harnesses, which are
obtained from the bill of material of each instance. It includes information about wiring
length, number of electrical components, and electrical protection length. In total, in this
study, the dataset includes 18,523 m of total wiring length, 21,200 electrical components,
and 250 m of protective sheath length present in the 157 instances.

The functionality of the risk matrix provides features for identification of the risk in a
more efficient manner. It is defined by categories such as low, medium, and high risk, which
are established by assigning scores to each element of the dataset. Thus, data prioritization
needs to be considered for immediate attention and mitigation. Overall, management of
the risk provides information in real time in order to make the best decisions [31].

The new digital environment requires a holistic approach that integrates more au-
tomation and system interconnection. The latest implemented technology in industry 4.0
contains hi-tech strategies that enable sustainability by establishing connections between
objects and interconnecting intelligent systems. The development of predictive innovative
algorithms plays a key role in predicting error creation and achieving a better performance
of the results [28]. Integrating AI methodologies into the manufacturing processes can
enhance both efficiency and safety. The AI techniques used in this study include SVM,
RF, LR, KNN, and XGBoost, which contribute to the analysis and results. SVM can be
used for both data classification and regression. RF maintains accuracy from the average
effect return of each individual tree. LR is used to estimate the probability of the binary
outcomes. KNN presents high consistency in the results. XGBoost achieves high accuracy
in predictions. Predictive algorithm functionalities, such as model evaluation, can be
beneficial in assessing the performance of the model using appropriate metrics [32]. The
appropriate selection of AI techniques to train the model and the continuous monitoring
of the outcomes can be fundamental to make accurate predictions [33]. The predictive
algorithm structure developed in this study is presented in Figure 1.

2.1. Automation Script

Complete automation is achieved by using a script that automates repetitive tasks
necessary to turn the 3D harness model into a 2D manufacturing drawing. The developed
automatic script includes the operations such as rotation of the electrical components
and labeling of the electrical components. Other, more complicated operations such as
rotation of the wiring, quick rolls, bends, and/or translation of the terminations are also
automatically performed. This situation enables the automatic spreading of the 3D harness
model into a 2D Formboard without errors [34].

Additionally, industrialization involves the creation of whole engineering documen-
tation required for harness manufacturing. In traditional methods, this process is created
from the perspective of the compliance with the requirements. In this new approach, a
risk matrix function, which evaluates the likelihood of errors during the manufacturing
process, is used. This assessment can be performed with five main dimensions: 3D model,
the ‘Formboard’ (FB) defined as X1 representing the complexity of the 3D geometry, and
X2, X3, and X4.

Table 1. Criteria associated with each harness category associated with the risk matrix.

Description Variables Criteria Cluster Rule Category

Formboard
(FB) X1 Number of zones (Z)

Very large Z > 100 5
Large 60 < Z < 100 4

Medium 20 < Z < 60 3
Small 2 < Z < 20 2

Very small Z = 2 1

Technical
Instructions

(IT)
X2 Number of wires (H)

Very large H > 600 5
Large 300 < H < 600 4

Medium 100 < H < 300 3
Small 10 < H < 100 2

Very small H < 10 1
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Table 1. Cont.

Description Variables Criteria Cluster Rule Category

Manufacturing Bill of Material
(BOM)

Electrical Test (ET)

X3
X4

Number of components
(N)

Number of wires (H)

Very large N > 500 5
Large 300 < N < 500 4

Medium 100 < N < 300 3
Small 20 < N < 100 2

Very small N < 20 1

Very large H > 600 5
Large 300 < H < 600 4

Medium 100 < H < 300 3
Small 10 < H < 100 2

Very small H < 10 1

2.2. Risk Matrix

The complexity matrix for each of the harnesses was generated using input scores.
The parameters which were used were determined by quantification of the number of
zones (Z), number of wires (H), and number of electrical components (N) present in
each harness dataset. The risk matrix function in an explicit form is represented in the
following equation:

Φ(Z, H, N) = Σ4
i=1Xi =X1(Z) + X2(H) + X3(N)+X4(H) (1)

The initiation of the kernel size, denoted as Xi, for the case study of the electrical
harness in a military aircraft C295 follows the steps depicted in Figure 2. It shows the
algorithm structure and highlights the different values of the risk matrix for each range
associated with scores assigned to the dataset. A red color is assigned for a very high and
high risk; yellow for a medium risk; and green for a low and very low risk of error creation.
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Figure 2. Algorithm diagnostic for the selection of electrical harness complexity in manufacturing plant.

The final score, as a sum of these values, determines the likelihood of error creation
during the manufacturing engineering processes. Scores from 4 to 20 correspond from the
simplest to the most complex geometry of the 3D electrical harness shown in Table 2.

Table 2. Rule established to define risk matrix assessment in each harness.

Category Rule Risk Matrix

1 0 ≤ Φ ≤ 4 Very Low
2 4 < Φ ≤ 8 Low
3 9 ≤ Φ ≤ 12 Medium
4 13 ≤ Φ ≤ 17 High
5 Φ > 17 Very High
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The risk matrix outcomes split the dataset into three main groups. The dataset is
grouped into high, medium, and low risk of creating an error during the
manufacturing process.

Histograms in Figure 3 show how the scores are assigned to the parameters X1, X2, X3,
and X4 in the case study of C295 military aircraft. From these histograms, only a very small
percent of 3.8% of the dataset had scores of 4 and 5, which could potentially generate errors.
The ability to focus attention on specific data or components rather than treating the entire
system uniformly improves effectiveness in the processes. Clustering data will help to
identify the features and similarities between them for failure anticipation. The clusters
suggest that certain combinations of parameters can occur together, indicating relationships
between these variables [35].
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Figure 4 shows the risk matrix function evaluated for each harness within the dataset
and the probability associated with the error creation during the manufacturing engineering
processes in a color code.
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2.3. Clustering Hierarchy

The main types of algorithms differ in the type of input/output data and scope of the
problem that should be solved. Unsupervised algorithm techniques based on clustering
are useful for application within the harness dataset. These techniques can be beneficial for
identifying similarities and differences among harnesses, and therefore, for a more detailed
analysis [27,35].

The algorithm used in this study applies clustering to analyze and to classify datasets.
Figure 5 presents the clustering of data points defined by the risk matrix. Thus, ‘Formboard’
(FB) is represented by cluster 0 (in blue), ‘Technical Instructions’ (IT) by cluster 1 (in orange),
‘Manufacturing Bill of Material’ (MBOM) by cluster 2 (in green), and ‘Electrical Test’ (ET)
by cluster 3 (in red).
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The agglomerative clustering hierarchy uses input data defined as A1 ∪ . . . ∪ Aj for
the set for each observation in each cluster, with the following constraints:

A1 ∪ . . . ∪ Aj represents the number of clusters.Aj ∩ Aj′ = no overlapping j ̸= j′.

The initialization of the clusters and merging process is as follows:

• Calculation of the proximity matrix, which represents the distances between each pair

of data points based on the minimum distance: dmin =
√

Σn
i=1(qi − pi)

2, where pi
and qi are coordinates of the data points.

• Identify two clusters with minimum distance.
• Merge the identified clusters into a new cluster combining the elements A1 ∪ . . . ∪ Aj.
• After merging two clusters, create a new cluster (Anew) represented as Anew = A1 + Aj,

which contains elements of both clusters A1 and Aj.
• Recalculate the distances between the new cluster and the remainder.
• Update the proximity matrix with the new distances.
• Continue this process iteratively.
• Repeat until the stop criterion is met with all elements merged in a cluster.

Figure 6 shows the merging process depicted as a dendrogram, which provides
information about the critical clusters to be considered. Therefore, the dataset is grouped
in families that give information about potential anomalies to be considered in order to
anticipate error creation.
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2.4. Logistic Regression

The best fit for the outcome categorical variable is defined by a logistic regression.
Figure 7 represents the relationship between the probability of error creation and the risk
matrix. The risk matrix function presents different values for each harness within the
dataset. The probability function associated with the logistic regression is used for new
data predictions. The logistic regression passes the input through the logistic/sigmoid
function and then treats the outcome result as a probability [29].
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2.5. Confusion Matrix

The confusion matrix considers the scores for each harness based on the number
of zones (Z), number of wires (H), and number of components (N). The most important
metrics in (2–5) are obtained from the confusion matrix as follows:

• Precision is defined as the ratio of correct positive predictions to the total number of
positive predictions. This is the ratio between the real positive predictions and the
total number of positives as the sum of true and false positives.
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• The recall or sensitivity ratio is defined as the true positive prediction of the total
number of positives. It is the ratio between real positives and real cases indicated as
true positives or false negatives.

• Accuracy is defined as the ratio of the true prediction to the total value. It is the ratio
of the total number of true positives and negatives in relation to the total number of
real positives and real negatives within the dataset.

• The F1 score is the harmonic mean of the precision and recall used to measure test
accuracy. It varies from 1.0, showing perfect values of precision and recall, to 0, where
either precision or recall is zero.

Precision =
TP

TP + FP
(2)

Recall or sensitivity =
TP
P

=
TP

TP + FN
(3)

Accuracy =
TP + TN

P + N
=

TP + TN
TP + TN + FP + FN

(4)

F1 =
2

1
Precision + 1

Recall

=
2 TP

2 TP + FP + FN
(5)

In addition, the machine learning classification report provides some additional values
as outcomes. Category 0 represents the negative class that means ‘no error creation’, and
category 1 represents the positive class, meaning ‘error creation’. The macro-average is
the average of the precision, recall, and F1-score. The weighted average is the weighted
average of the precision, recall, and F1 scores, as shown in Table 3. The performance metrics
are depicted in Figure 8.

Table 3. Classification reports of machine learning metrics such as precision, recall, and F1-score,
with macro- and weighted average.

Category Precision Recall F1-Score

0 1.00 0.95 0.98
1 0.91 1.00 0.95

Accuracy - - 0.97
Macro-average 0.95 0.98 0.96

Weighted average 0.97 0.97 0.97
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The algorithm splits the dataset into two subsets: training set and test set. The training
set was used to fit the model, and the test set was used to evaluate the performance of the
model through the confusion matrix as shown in Figure 9.
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Figure 9. Confusion matrix outcome classification in true positives, true negatives, false positives,
and false negatives.

From the confusion matrix, the predictions show the good performance of the algo-
rithm. True positives (TP): Prediction is a value that matches reality. The element at (1,1)
represents the six data samples as true positives classified as ‘error creation’. True negatives
(TN): The prediction value also matches reality. The element at (0,0) represents the 26 data
samples as true negatives classified as ‘no error creation’. The diagonal elements represent
the instances that are correctly classified. False positives (FP) and false negatives (FN) are
off-diagonal elements representing the number of instances incorrectly classified.

3. Results and Discussion
3.1. Statistical Analysis
3.1.1. Time Savings

The time savings are achieved through the automation of electrical harness operations,
such as rotations, rolls, and straightens, and by the assistance provided during drawing
creation, such as label designation, symbols, and manufacturing annotations. The operational
time allocated for data preparation is a constant defined as ε in (6). It is calculated for the
entire dataset in this study as 55.7 h for both general and automatic procedures. However,
the operational time σ(t), used during documentation creation, is defined as a function that
depends on time. In the general procedure, the necessary time to perform these operations is
223.6 h versus the 15.7 h established in the automatic procedure. Thus, a reduction of 93% in
time was estimated. The time calculation values for both procedures are outlined in Table 4.

T(t) = ε+ σ(t) (6)

The graph depicted in Figure 10 shows a comparison between the operational time in
the general procedure and the automatic procedure using a bar representation to visualize
the time savings achieved by the automation process. The time drops from 223.6 h to
15.7 h, shown as a blue bar in Figure 10, which generates a reduction of 93% in the time for
the entire electrical dataset in this military aircraft. ε = 55.9 h shown as an orange bar in
Figure 10 is the sum of all the constant operational times necessary to be performed using
both procedures for the entire dataset.
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Table 4. Time calculation comparison between general procedure and automatic script.

τ(t)

Activity

ε σ(t)

Flattening Model Flattening
Parameters

Data
Extraction

Harness
Flattening

EHF
Operations

Drawing
2D

Branches
Arrangement

Designations
Labels

Branches
Rotation

2D
Annotations

Roll Symbols

Straighten Other

General
Procedure 13.9 13.8 14.3 13.9 223.6

Automatic Script 13.9 13.8 14.3 13.9 15.7
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3.1.2. Sensitivity Analysis

Sensitivity analysis is performed to analyze the influence of variations in the input
parameters on the time prediction of the AI model developed in this study. This approach is
used to evaluate the robustness and reliability of the model [22]. The evaluation is based on
the variation in input parameters across two different scenarios, and the impact generated
on the model outputs. The key parameters identified that are used as inputs are the number
of wires (H), terminations (Z), and electrical components (N). The variation is established
systematically over a range of values in each of the electrical harness datasets varying from
±20% to ±40%. After assessing parameter variation, the next step is to analyze how the
changes affect the outputs. Figure 11 depicts the savings in time achieved on a general
and automatic procedure from baseline to a range of input parameter variations of +20%,
+40%, −20%, and −40%. The assessment of the output changes, with regard to the baseline
of the total time of 279 h defined in the creation of the manufacturing documentation,
establishes a variation from the maximum value of 501 h at a +40% level of sensitivity
to the minimum of 171.5 h at −40% in a general procedure. The automation procedure
shows a baseline of 41.92 h and a variation from 75.15 h at a 40% level of sensitivity to
25.72 h at −40%. The parameter values either increased or decreased after the sensitivity
test was performed, showing consistency in the output changes. This situation provides a
good estimation of the likelihood of the parameter predictions, since an increment in the
percentage of the values means a greater number of wires, more components, more harness
complexity, and therefore a higher risk matrix and higher probability of error creation.
Consequently, the time estimation for both procedures increased following an escalation in
the input parameters. Likewise, the situation presents the opposite effect whether or not
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the values of the parameters decrease. The consistent behavior produces reliable results
and gives evidence of the robustness of the model. Therefore, sensitivity analysis enhances
confidence in the predictions of the model. The quantitative measures show consistency in
model behavior and are evidence to validate model reliability and robustness.
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3.1.3. Correlation Parameters

The correlation parameter analysis is performed to measure the strength and direction
of the relation between each parameter and the risk matrix. The coefficients indicate that
the closer to one the absolute values of the coefficients are, the stronger the correlation
is. Consequently, an increase in a parameter can lead to an increase in the risk matrix.
Figure 12 quantifies the relationship between input parameters showing that the variables
are highly positively correlated. The correlation of the variables was quantified by cal-
culating the Spearman correlation coefficient, which evaluates the relationship between
the input parameters of the dataset. The parameters that present the highest influence
on the risk matrix are X3 and X4 at 0.98 and 0.97, respectively. The higher the correlation
presented within the parameters is, the greater the likelihood of error creation during
the manufacturing processes is. Thus, variations in these parameters directly affect the
outcomes of the predictive model. The Spearman coefficient provides valuable insights
and can inform about the decision-making process which is related to error prediction. The
existing correlation between parameters X3 and X4 demonstrates the impact on the risk
matrix function, which is fundamental to analyzing the probability of error creation and
defining strategies for risk mitigation. The calculation of each coefficient parameter ‘r’ in
Equation (10) is represented in the correlation matrix, whose values are calculated using
Equations (7)–(9) for each pair of variables.

Cov(x, y) = ∑
[
(Xi − µx)

(
Yi − µy

)]
/n − 1 (7)

σx =

√[
∑(Xi − µx)

2
]
/n − 1 (8)

σy =

√[
∑

(
Yi − µy

)2
]

/n − 1 (9)

r =
cov(x, y)
σxσy

(10)
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Figure 12. The correlation matrix establishes the relation between the input parameters and the
output risk matrix.

Figure 13 represents the highest positive correlation between X3 and X4 and the risk
matrix. It is observed that low scores assigned to these parameters generate a moderate risk
matrix with scores between 8 and 14, which is mostly the situation expected in the dataset
present for this light and medium aircraft. There are only a few scores that strongly impact
the risk matrix, pointing at 18 and 20. It also shows a positive linear tendency between
both parameters and the risk matrix. In summary, X3 and X4 are the parameters that most
affect the outcomes of the model. Therefore, these parameters must be treated as critical
parameters. The interpretation of the correlation parameter impacts the effectiveness of
risk management strategies. Correlation results are valuable in explaining the influence
of the parameters on error prediction and risk mitigation. Understanding the relation-
ships between variables can influence the decision-making process. Identifying variables,
which are significant, can provide effective risk mitigation strategies. Analyzing potential
risks or vulnerabilities from certain variables can help in taking preventive measures and
avoiding errors.
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Figure 13. The graph represents the scores assigned to X3 and X4 and the correlation existing between
them and the risk matrix. Red dots represent the risk matrix function within the dataset associated to
the input parameters X3 and X4.

3.1.4. Error Prediction

Error prediction analysis is performed to understand factors that can contribute to
error creation. Figure 14 compares the distribution of the dataset to a theoretical distribution,
such as a normal distribution. The theoretical quantile is compared against the sample
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quantiles to assess whether the data closely follow a normal distribution. The normal
distribution dataset is represented by the tendency line. The greater the fit to the points
through this line, the closer the fit is to a normal distribution. The dataset was divided into
three groups: small, medium, and large harnesses. The first cluster shows a low impact in
the risk matrix, and the dataset points present a risk matrix below 6, in the case of small
harnesses. The second cluster shows a medium impact on the risk matrix between 8 and 10,
for medium harnesses. The third cluster shows a high impact in the risk matrix between
11 and 20, for large harnesses.

Aerospace 2024, 11, x FOR PEER REVIEW 16 of 23 
 

 

3.1.4. Error Prediction 
Error prediction analysis is performed to understand factors that can contribute to 

error creation. Figure 14 compares the distribution of the dataset to a theoretical distribu-
tion, such as a normal distribution. The theoretical quantile is compared against the sam-
ple quantiles to assess whether the data closely follow a normal distribution. The normal 
distribution dataset is represented by the tendency line. The greater the fit to the points 
through this line, the closer the fit is to a normal distribution. The dataset was divided into 
three groups: small, medium, and large harnesses. The first cluster shows a low impact in 
the risk matrix, and the dataset points present a risk matrix below 6, in the case of small 
harnesses. The second cluster shows a medium impact on the risk matrix between 8 and 
10, for medium harnesses. The third cluster shows a high impact in the risk matrix be-
tween 11 and 20, for large harnesses. 

 
Figure 14. Quantile–quantile plot (Q-Q plot) which compares the theoretical quartiles against the 
sample quartiles in a large, medium, and small harnesses. 

The comparison of the dataset with a normal distribution is used to make decisions 
about the process. After data representation, the distribution of the dataset in clusters, and 
the fitting to the theoretical standard normal distribution, the maximum deviation occurs 
at cluster 3 with 3.85 units from the center of the data distribution above the tendency line, 
as shown in Figure 14. The vertical red line evaluates how the dataset deviates from the 
expected theoretical behavior represented by the tendency line. 

Figure 15 represented by the box-plots show how close the distribution of a dataset 
is to an ideal distribution using quartiles. 
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The comparison of the dataset with a normal distribution is used to make decisions
about the process. After data representation, the distribution of the dataset in clusters, and
the fitting to the theoretical standard normal distribution, the maximum deviation occurs
at cluster 3 with 3.85 units from the center of the data distribution above the tendency line,
as shown in Figure 14. The vertical red line evaluates how the dataset deviates from the
expected theoretical behavior represented by the tendency line.

Figure 15 represented by the box-plots show how close the distribution of a dataset is
to an ideal distribution using quartiles.
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Figure 15. The first box-plot shows a dataset within a small harness group (cluster 1) where the value
of the median equals Q1 and Q3. The second box-plot shows a positive skew of the dataset within the
medium harness group (cluster 2). The third box-plot shows a negative skew of the dataset within
the large harness group (cluster 3).
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In the first cluster, the first quartile Q1 and third quartile Q3 match together, showing
the same risk matrix outcome from the data points within this group. In the second cluster,
the median is represented at a risk matrix value of 9.0, showing a positive skew slightly
deviated from the normal distribution. The median of the second cluster is 0.25 above
the median of the ideal normal standard distribution. In the third cluster, the median is
represented at a risk matrix value of 14, which shows a negative skew. The median of the
third cluster is 1.5 below the median of the ideal normal standard distribution.

Box-plot results show the data distribution which is crucial for predicting error creation
and establishing risk mitigation strategies. Skewed data distributions may require special
attention to ensure robust modeling and data prediction. Cluster 3 presents more skew
data than cluster 2. The accuracy of the statistical analysis and predictions can be affected
depending on the skewness due to loss of symmetry of the data distribution. The highest
deviation occurs in cluster 3, generating the highest impact in the risk matrix and therefore
in the evaluation of error creation with 3.85 units above the tendency line of a normal
distribution. Additionally, for reliability purposes, the proposed methodology developed
in this study was validated using a Monte Carlo simulation as an effective approach to
assess the reliability of the model [36].

3.2. Proposal Method Comparison with AI Existing Techniques

This study used the logistic regression (LR) for predictions since it indicates good
performance between precision and recall, as shown in Table 5. The efficiency of this
method is proved by comparison with the existing techniques such as SVM, RF, KNN,
and XGBoost.

Table 5. Performance metrics comparison between proposed LR and other AI methods.

Model Accuracy Precision Recall F1-Score

SVM 0.98 1.00 0.85 0.92
RF 0.97 1.00 0.82 0.90
LR 0.97 1.00 0.95 0.98

KNN 0.95 0.76 1.00 0.86
XGBoost 0.96 1.00 0.80 0.88

Figure 16 represents the performance metrics such as accuracy, precision, recall, and
F1-score obtained using different techniques. The highest accuracy is obtained using SVM.
The highest precision is achieved using SVM, RF, LR, and XGBoost. The highest recall is
obtained using KNN and the highest F1-score is obtained using LR.
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different AI techniques.
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The LR has shown very good performance in comparison to other proposed, existing
techniques in terms of F1-score. It may not have the highest accuracy but its overall
performance suggests that it can be the best choice. SVM may be a good choice since it has
achieved the highest accuracy and precision; however, the recall is lower than LR.

3.3. Experimental Verification

In order to verify the accuracy of the proposed methodology, we have compared the
performance of AI methods using model data of this study and experimental data presented
by ElDali and Kumar 2021 [37]. The experimental datasets used the Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS) and Prognostics and Health Monitoring
(PHM08) generated by NASA Ames Research Center (Mountain View, CA, USA). The
datasets contain features related to a total of 435 aircraft engines from sensor measurements.
The sensor values were selected according to the metrics presenting the highest suitability
to define failure patterns. The measurements were used for predictions of the remaining
useful lifetime of the aircraft engines and their fault estimation. To verify the performance
of our model, we have applied AI methods including SVM, RF, LR, KNN, and XGBoost
to the measurement datasets of the sensors. Each AI algorithm is used to determine its
effectiveness using technical data (TD) from input parameters of this study and measured
data from the sensors (SM). The performance metrics are represented in Table 6.

Table 6. Performance metrics comparison obtained using different AI methods between technical
dataset (TD) and sensor measurement (SM).

Metrics
AI Methods

Accuracy Precision Recall F1-Score
TD SM TD SM TD SM TD SM

SVM 0.98 0.95 1.00 1.00 0.85 0.88 0.92 0.94
RF 0.97 1.00 1.00 1.00 0.82 1.00 0.90 1.00
LR 0.97 1.00 1.00 1.00 0.95 1.00 0.98 1.00

KNN 0.95 0.95 0.76 1.00 1.00 0.88 0.86 0.94
XGBoost 0.96 1.00 1.00 1.00 0.80 1.00 0.88 1.00

The difference between SM and TD in accuracy is up to 4% for SVM, RF, LR, and
XGBoost. The accuracy obtained using KNN is the same on the measured and model
values. The measured and modeled precision is the same for all the methods, except for
KNN, which shows a difference of 24%. The recall shows a difference up to 18% between
SM and TD. The F1-score presents a difference up to 12%. The analysis reveals that SVM
and LR have consistently performed, showing the smallest deviation between measured
and model values for all metrics. Overall, the experimental values are aligned with the
modeled ones, which proves the good performance of the developed model in this study.

3.4. Advancements in Machine Learning

The process involved in the simulation of the AI algorithms includes the necessary
steps to ensure optimal model performance and accurate predictions. Data preprocessing
is necessary to ensure that the input data are appropriate for model training. Additionally,
the most suitable AI techniques need to be selected, which depend on the characteristics of
the dataset. Also, it is crucial to optimize selected hyperparameters in order to establish
an appropriate set up for the AI model proposed. Moreover, visualizations of the model
performance metrics are necessary to assess the model accuracy and effectiveness. Thus,
Automated Machine Learning (AutoML) can be a valuable tool to perform the entire
process automatically. To assess the effectiveness and suitability of the selected AI methods,
we have compared the traditional machine learning approach with AutoML. We have used
the same input data for both traditional and AutoML models. The AutoML frameworks
include tools such as H2O-AutoML, DataRobot, Cloud AutoML, the Tree-based Pipeline
Optimization Tool (TPOT), Auto-Keras, Auto-Weka, ML BOX, AutoSklearn, and Auto-
Pytorch [38–41]. In this study, we have used the TPOT, which uses a Genetic Algorithm (GA)
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to automatically find which AI methods present the best performance for the dataset [42].
We have compared performance metrics of the AI methods including SVM, RF, LR, KNN,
and XGBoost for both AutoML and traditional approaches. The results are presented in
Figure 17.
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Figure 17 shows the performance metrics obtained using AutoML and traditional ML
for each of the AI methods proposed. In each graph, the darker-colored bars represent the
metrics obtained using AutoML and the lighter-colored bars represent the metrics using
manual ML. The highest deviation appears in recall in KNN, showing a difference of 15%
between AutoML and the manual approach. LR presents the highest difference of 12% in
recall. The methods SVM, RF, and XGBoost show a difference up to 3% in recall and F1.
The results show that leveraging AutoML can find the best classifier while reducing the
time invested in manual ML.

We use the k-fold cross technique to validate the performance of the AI methods
proposed. Such a technique splits the dataset into k-folds. The TPOT evaluates the model
on each fold in order to estimate the performance more accurately. The TPOT also uses the
value of k = 5, splitting the dataset into five equal parts. Each fold is used as a validation
set while the remaining four are used for training. It evaluates the model five times in order
to assess the performance of the different AI methods. This value balances the performance
accuracy and the computational effort. Table 7 presents the metrics of the best pipelines
using a 10-fold cross-validation. These metrics indicate that the best pipelines proposed by
the TPOT provide an average accuracy, recall, and F1-score of 95%, while the average for
precision is 96%.

Table 7. Performance metrics of the best pipelines using k-fold cross-validation.

K-Folds Accuracy Precision Recall F1-Score

1st-fold 97 97 97 97
2nd-fold 96 96 96 95
3rd-fold 96 96 96 95
4th-fold 95 95 95 94
5th-fold 96 97 97 97
6th-fold 96 96 96 96
7th-fold 95 96 95 95
8th-fold 95 96 95 95
9th-fold 94 95 94 94

10th-fold 93 94 93 93

Average 95 96 95 95
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3.5. Discussion

Logistic regression is used for classification of the dataset and the evaluation of model
performance by a confusion matrix. The logistic regression can evaluate the significance
of the input parameters and the potential impact in the output model. Thus, a powerful
predictive algorithm can forecast error creation in order to avoid errors. Simultaneously,
errors in engineering documentation are mitigated. Therefore, validation of the results can
provide evidence to enhance process efficiency and reliability at electrical manufacturing
in aerospace and overall safety in aviation.

The dataset from the statistical analysis shows a Spearman coefficient of 0.98, which
demonstrates that the variables are highly positive correlated. The box-plot representation
shows that the dataset outcomes present a deviation above the tendency line compared to
an ideal normal distribution of 3.85 in a large harness cluster, 1.65 in a medium one, and
0.65 in a small one. AI results based on failure anticipation methods show that the highest
probability within the dataset to create errors in engineering processes are presented by
the high-risk matrix. A 90% reduction in error creation has been achieved by the AI model
developed in this study. The highest correlation is presented between X3 and X4 parameters
with the ‘risk matrix’ at values of 0.98 and 0.97, respectively. Additionally, a sensitivity
analysis shows good prediction results, proving the robustness and reliability of the model.
The parameter variation shows consistency in the model outputs and are proved to validate
model reliability and robustness of the model.

Furthermore, the flexibility presented by the risk matrix can accommodate other types
of risk. The proposed approach can be generalized to other disciplines such as healthcare,
energy, and automotives. Healthcare can gain the benefit of using the risk matrix, which
offers real-time information to the surgeons about the level of risk they will face during
the surgical procedure. This approach can provide the detection and prevention of failures.
Additionally, it can also provide prioritization on which patient to act on in terms of
mortality, in order to save their lives. In the energy sector, the risk matrix can be used
to analyze the hazards associated with equipment failures to enhance safety strategies or
mitigate losses by implementing more efficient processes. Furthermore, the risk matrix
can play a key role in product safety in the automotive industry. The assessment of the
risks can be useful in reducing the accident rate and decreasing production time. With
the increasing digitalization of automotives, the risk matrix can also be useful in assessing
cybersecurity threats.

The use of AutoML can play a key role in automatically finding an appropriate model
which provides reliable forecasts for data prediction. The accuracy and effectiveness of the
predictive models used can be improved without the need of extensive human intervention.
For future directions, in spacecraft systems, considering existing constraints related to
limited data availability, uncertainty in values, and the need for real-time decisions can be
very beneficial to use. However, continuous research and innovation will be necessary to
apply AutoML to aerospace applications and reach the highest accuracy.

4. Conclusions

In this study, AI techniques are applied to design predictive algorithms capable of
predicting and mitigating potential failures in the aerospace manufacturing processes.
The decision-making aspect implies the assessment of the risk of error creation by a risk
matrix function. This approach has the potential to enhance efficiency, reduce errors, and
contribute to overall improvements in the aerospace manufacturing domain.

The integration of AI techniques into the manufacturing design process for electrical
harnesses enhances systems reliability, improves the performance of electrical systems, and
improves error mitigation, making it well suited for aerospace. The AI results can be used
to identify nonlinear data behavior and complex patterns within the dataset, enhancing
confidence in the models’ outputs. After comparing different AI techniques, such as SVM,
RF, LR, KNN, and XGBoost, the best performance is obtained from logistic regression (LR).
Therefore, LR is used for output predictions. Integrating AI techniques, logistic regression
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provides a rigorous analysis of the model behavior and enhances the reliability of the
proposed approach.

The experimental verification analysis demonstrated that LR, RF, and XGBoost show
high performance. These AI methods are feasible for predicting errors and mitigating risks
of aerospace systems. The experimental values are aligned with the modeled ones, which
provides evidence of the good performance of the model approach in this study. This
analysis indicates that SVM and LR have shown the smallest deviation up to 5% between
measured and model values for all metrics.

The use of AutoML has also provided evidence to obtain the best metrics of the
selected AI methods. The results have shown that the performance metrics obtained using
AutoML and traditional ML are comparable. However, leveraging AutoML can enhance
the choice of the best classifier, while reducing the time used in manual ML.
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Katowice, Poland, 2020.

8. Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768.
[CrossRef] [PubMed]

9. Casado, R.S.G.R.; Alencar, M.H.; de Almeida, A.T. Combining a multidimensional risk evaluation with an implicit enumeration
algorithm to tackle the portfolio selection problem of a natural gas pipeline. Reliab. Eng. Syst. Saf. 2022, 221, 108332. [CrossRef]

10. Reason, J.; Hollnagel, E.; Paries, J. Revisiting the Swiss cheese model of accidents. J. Clin. Eng. 2006, 27, 110–115.
11. Velásquez, R.M.A. Root cause analysis for inverters in solar photo-voltaic plants. Eng. Fail. Anal. 2020, 118, 104856. [CrossRef]
12. Atak, A.; Kingma, S. Safety culture in an aircraft maintenance organisation: A view from the inside. Saf. Sci. 2011, 49, 268–278.

[CrossRef]
13. Kelly, D.; Efthymiou, M. An analysis of human factors in fifty controlled flight into terrain aviation accidents from 2007 to 2017.

J. Saf. Res. 2019, 69, 155–165. [CrossRef] [PubMed]
14. Ladkin, P.B.; Schepper, W. EMI, TWA 800 and Swissair 111. In The Resks Digist; University of Bielefeld: Bielefeld, Germany, 2000;

Volume 21.
15. Yang, J.; Kim, J. Accident diagnosis algorithm with untrained accident identification during power-increasing operation. Reliab.

Eng. Syst. Saf. 2020, 202, 107032. [CrossRef]
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