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Abstract: El Niño–Southern Oscillation (ENSO) phases and flavors, as well as off-equatorial climate
modes, strongly influence sea surface temperature (SST) patterns in the eastern tropical Pacific and
downstream climate. Prior studies rely on EOFs (which characterize fractional SST variance) to
diagnose climate-scale SST structures, limiting the ability to link individual ENSO flavors with
downstream phenomena. Hierarchical and k-means clustering methods are used to construct Eastern
Pacific patterns from the ERSST dataset spanning 1950 to 2021. Cluster analysis allows for the direct
linkage of individual SST years/seasons to ENSO phase, providing insight into ENSO flavors and
associated downstream impacts. In this study, four clusters are revealed, each depicting unique SST
patterns influenced by ENSO and Pacific Meridional Mode (PMM) phases. A case study demon-
strating the utility of the clusters was also carried out using accumulated cyclone energy (ACE) in
the Atlantic and Eastern Pacific basins. Results showed that Eastern Pacific (EP) El Niño suppresses
Atlantic tropical cyclone (TC) activity, while Central Pacific (CP) La Niña enhances it. Further, EP El
Niño, coupled with positive PMM, amplifies ACE. Ultimately, the methods used herein offer a cleaner
analysis tool for identifying dominant SSTA patterns and employing those patterns to diagnose
downstream climatic effects.

Keywords: clustering; unsupervised machine learning; ENSO; PMM; sea surface temperatures;
eastern tropical Pacific; tropical cyclones

1. Introduction

The El Niño–Southern Oscillation (ENSO), a coupled atmospheric–oceanic phenome-non
in the tropical Pacific, is the dominant source of interannual sea surface temperature (SST) and
global climate variability [1–3]. ENSO produces anomalous atmospheric circulation patterns that
can cause extreme weather events that impact human life and property [4–9]. Though extensive
research has established ENSO influences on large-scale climate (i.e., teleconnections) that
help forecast global temperature and precipitation patterns, and more recent work has
discovered diversity among types of ENSO events (so-called ENSO “flavors”), the impacts
of these ENSO types on downstream weather and climate in regions such as North America
is less established [6,8].

ENSO flavors largely differ by the location of SST anomalies (SSTAs) within the equatorial
Pacific and the patterns of SSTA evolution [6,8]. For example, the two most common El Niño
types are the Eastern Pacific type (EP), also known as the canonical El Niño, and the Central
Pacific type (CP), which is often referred to as CP El Niño or El Niño Modoki [8,10–12]. For
canonical events, peak SSTAs emerge in the eastern equatorial Pacific during boreal spring and
progress toward the Central Pacific in boreal fall. In contrast, Modoki events are linked to large
SSTAs near the dateline, evolve from anomalies in the subtropical North Pacific, and begin to
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emerge during boreal spring or summer [8]. The El Niño Modoki is a more recent discovery that
produces global impacts that differ from the effects of canonical El Niño events [10,13]. Given
that the tropospheric temperature response lags ENSO-related SSTA changes in the order
of a few months [14], the timing of ENSO impacts may depend on ENSO flavor due to
shifted locations of maximum SSTAs [15]. The diverse impacts on wintertime atmospheric
circulation patterns from EP and CP ENSO events are due, in part, to the rising branch of
the Walker Circulation generally being found above the warmest waters in the equatorial
Pacific [11,16–18]. Furthermore, convection over the warmest waters leads to the release of
latent heat, which in turn warms the middle and upper troposphere within the tropics. This
warmer-than-usual air then moves towards the poles as part of the Hadley Circulation [19].
However, this warmer air results in a stronger meridional temperature gradient aloft
between the tropics and midlatitudes, which in turn strengthens the jet stream. This often
results in the jet stream shifting farther south than usual during the boreal winter [20].
This shifted jet stream steers extratropical cyclones toward the southern tier of the U.S.,
leading to increased precipitation in this region. Meanwhile, the northern U.S. and parts of
southern Canada experience relatively dry conditions [7].

Prior research has explored the utility of Empirical Orthogonal Functions (EOFs) [21]
in characterizing Central Pacific SST patterns. For example, Ashok et al. [11] employed
EOF analysis to demonstrate that El Niño Modoki events are represented by the second
mode, explaining 12% of the variance in monthly tropical Pacific SST anomalies. Similarly,
Takahashi et al. [22] suggested that the first two EOF modes of tropical Pacific SST anomalies
describe nonlinear flavors of ENSO. Additionally, Zhao et al. [23] and Vimont et al. [24]
emphasized the role of EOF in classifying ENSO pattern diversity and distinguishing
between different types or flavors of ENSO events based on SST anomalies.

While these studies underscore the utility of EOFs in characterizing variability modes
within the SSTs, individual EOFs describe a percentage of the total variability of SST [21].
Statistical corrections are required to utilize EOFs to make representative composite maps,
and these maps rarely effectively characterize an observed seasonal SST pattern, since each
composite pattern comprises a fraction of the total SST variability. This issue is further
exacerbated when trying to link individual EOFs to observed SST patterns on varying
(seasonal and annual) time scales, since each year/seasonal SST pattern comprises a linear
combination of EOFs. However, such linkages are critical to understanding downstream
impacts effectively. This important limitation is a primary motivation for our study.

Prior EOF methods have revealed additional modes of climate variability in North
Pacific SSTs (those with meridional and off-equatorial components) that interact with
ENSO (such as the Pacific Meridional Mode (PMM)), convoluting the characterization of
downstream impacts [25,26]. The PMM consists of a north–south SST gradient related
to trade wind anomalies in the subtropical North Pacific [27,28]. The fluctuating zonal
distribution of SSTs and atmospheric responses across ENSO phases influence convection
within the tropics as well as temperature and precipitation patterns over North America
through modification of the off-equatorial SST patterns [25,26,29]. Stuecker [30] utilized an
EOF methodology to investigate CP ENSO events influenced by the PMM. Fan et al. [31]
and Kao et al. [32] highlighted the importance of understanding the impact of the PMM on
the North Atlantic and North Pacific using EOF. Messie and Chavez [33] conducted EOF
analysis over 100 years of global SSTs, resulting in two modes identified as ENSO and the
Pacific Decadal Oscillation (PDO).

While EOFs have shown clear benefits in identifying important structures underlying
Pacific SST variability, the resulting patterns are still limited to explaining a fraction of an
actual timestep’s variability. Cluster analysis offers several benefits when compared with
EOFs for identifying and understanding sea surface temperature (SST) patterns and related
impacts on climate [6]. While EOF analysis is proficient in identifying dominant modes of
variability, cluster analysis helps pinpoint coherent spatial patterns and individual events
associated with each pattern, and clusters are directly constructed using observed SST
fields, not fractions of the variability of the SST [21]. This allows for the identification
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of distinct SST regimes and their associated impacts [34]. Further, EOFs are inherently
linearly orthogonal, resulting in a decomposition of variance that assumes linear relation-
ships among the structures. Cluster analysis makes no such assumption, allowing for the
inclusion of nonlinear relationships when constructing composite SST fields [35]. As such,
unsupervised machine learning methods such as cluster analysis treat the atmosphere as a
continuum without enforcing linearity assumptions and can produce patterns that better
align with actual observations when compared with linear techniques such as EOFs [36].

As an example, Schulte et al. [34] found a strong correlation between the EOF-based
East Pacific–North Pacific (EP-NP) pattern and water temperatures near the Long Island
Sound. However, their result was based on rotated principal component analysis (a highly
similar method to EOFs that reveals fractional variance explained per EOF), which limited
their ability to diagnose the specific role of the EP-NP pattern for a given December. That
is, while the method demonstrated overall underlying variability modes, it could not be
readily applied to compare against a specific observational example, which limited its
utility in such an application. More recent work has explored the use of cluster analysis
when exploring ENSO and PMM SST characteristics. Su et al. [37] used cluster analysis to
better understand the pendulum of ENSO phases, and Zhao et al. [38] utilized clustering to
find the diversity of the PMM in the North Pacific. These studies highlight the usefulness
of clustering but do not focus on diagnosing downstream impacts.

According to Stuecker [30] and Vimont [28], subsequent Pacific SST work should focus
on both the PMM and ENSO since they are intrinsically linked at interannual timescales.
While the relationships among the PMM and ENSO are somewhat well defined, SST
patterns that characterize the underlying structures are limited to those patterns derived
from EOFs with the associated limitations discussed above. To date, no study has removed
the assumption of linearity and developed patterns that directly comprise constituent
events (i.e., years) that can be used to diagnose downstream impacts of these ENSO flavors.
As such, the primary objective of this paper is to apply hierarchical and k-means clustering
to identify established off-equatorial and ENSO-related SSTA patterns in the Eastern Pacific
from 1950 to 2021 and link those clusters back to their constituent member years. These
patterns, which strongly align with well-understood ENSO flavors (see below), will have
much greater utility in downstream impact application studies in future work. Given the
recent surge in the popularity of unsupervised learning methods not previously applied
in this research context, such as cluster analysis, employing these methods will reinforce
existing prevalent SST patterns with the flexibility of linking those patterns directly to
constituent years, which is a critical outcome of this work. To demonstrate this utility, we
offer an example application for North America using accumulated cyclone energy (ACE)
by tropical cyclone (TC) season to identify statistically significant differences in ACE by
derived SST pattern/ENSO flavor.

Section 2 will address materials and methods, while Section 3 will provide results. We
summarize the results in Section 4.

2. Materials and Methods
2.1. Data

This study explores data from the 2◦ × 2◦ NOAA Extended Reconstructed Sea Surface
Temperature (ERSST) Version 5 dataset, available monthly, beginning in January 1854 [39].
Due to large spatial gaps in SST data during the 1800s and early 1900s as well as changes
in measuring SSTs in the 1940s, the most reliable SST data span from 1950 to present [39].
To reduce the effects of the long-term SST trend from 1950 to 2021, this study computes
SSTAs using 30-year centered means following the Climate Prediction Center’s (CPC) latest
approach for calculating the Oceanic Niño Index (ONI) [40–42]. The ONI, computed as
the 3-month average of SSTAs in the Niño 3.4 region (5◦ S–5◦ N, 120–170◦ W), supports
ENSO classification later in this study. The 30-year centered means are centered on 5-year
periods and computed over a span starting 14 years prior and 11 years after a given 5-year
period [42]. For example, during 1950–1954, the 30-year base period is 1936 (14 years before
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1950) to 1965 (11 years after 1954). Then, from 1955 to 1959, the 30-year base period is 1941
to 1970, and so on. This technique enables improved classifications of ENSO episodes in
the earlier part of the period (i.e., the 1950s) by eliminating the use of more recent, higher
SST averages for assessing older ENSO events.

Note that although this approach incorporates SST data before 1950, Huang et al. [39]
improved data quality for the 1930s and 1940s through spatial filtering and cross-validation
with independent data sources, an update that has been referenced in the literature (e.g., [41,43]).
Furthermore, an analysis of variance during 1936–2021 at each grid point within the study
area utilizing 30-year periods as the means indicated only 1 to 2% contribution to variance
from any changes in the dataset, instead depicting the most variable regions being linked
to ENSO and the PMM.

The study domain spans 30◦ N to 20◦ S and 180◦ W to 80◦ W, encompassing an area
beyond off-equatorial SSTs (10◦ N to 20◦ N) in the North Pacific to include the equatorial
Pacific and off-equatorial South Pacific, following the latitudinal extent used to identify the
PMM [27]. In this study, SSTAs are evaluated over three-month periods associated with
boreal spring (MAM), summer (JJA), fall (SON), and winter (DJF). These periods facilitate
analysis of the seasonal evolution of SSTs (e.g., the PMM, which typically peaks in boreal
spring, and ENSO, which is usually dominant in the boreal winter).

Indices based on SST data are also used in this study. The ONI, as defined above, is
calculated using the three-month average of SSTs in the tropical Pacific between 120◦ and
170◦ W [41]. The phase and strength of an ENSO event are measured using this metric.
The Pacific Meridional Mode (PMM) index is computed using the approach developed
by Chiang and Vimont [27]. This involves applying a maximum covariance analysis
(MCA) [44] to SSTs and 10 m winds from 1950 to 2005 between 175◦ E and 95◦ W and
between 21◦ N and 32◦ N, which is the area that the PMM covers. MCA uses a singular
value decomposition of the covariance matrix of the SST and wind fields, with seasonal
and linear trends removed [45]. Additionally, the Pacific Cold Tongue index is removed
to ensure that the PMM index has limited covariability with ENSO. The final PMM index
used in this study is derived by projecting the MCA-derived PMM spatial pattern onto the
SST values [27].

Since the cluster analysis method discussed above can link SST seasons to given
underlying SST patterns, we included 10 m winds to establish near-surface momentum
structure for the SST seasons. Wind data were obtained from the European Center for
Medium-Range Weather Forecasts (ECMWF) ERA5 Reanalysis [46]. The ERA5 data are
provided on a 0.25◦ × 0.25◦ grid (approximately 31 km) using 137 levels from the surface
up to about 0.01 hPa (about 80 km). These data are based on hourly estimates for a wide
range of climate variables, including atmospheric, land, and ocean, starting in 1940, though
we retained 10 m winds exclusively for this study.

Finally, to provide an example application of the SST analysis to a downstream research
problem, we obtained accumulated cyclone energy (ACE) for the Eastern Pacific and
Atlantic basins. In ACE studies, the Atlantic basin stretches eastward to the Cape Verde
islands, encompassing the Gulf of Mexico and the Caribbean, while the Eastern Pacific basin
covers all Pacific locations north of the equator and east of the international dateline [47].
ACE is a widely accepted metric used to quantify the overall activity and intensity of TCs
within a specific basin over a given time period [48]. ACE is based on the HURDAT2
data [49] and calculated by summing the squares of the maximum sustained wind speeds
of TCs at 6 h intervals throughout their lifetimes [47]. ACE is calculated for all named
storms (tropical storm strength or higher) within a particular basin [47,48]. This index
takes into account both the duration and intensity of each system [47,48]. This metric
provides an accurate representation of the total energy released by TCs rather than simply
counting the number of storms or their wind speeds [50] and is thus a useful TC measure
for climatological analysis.
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2.2. Cluster Analysis

To characterize SSTA patterns in the study area, hierarchical and k-means cluster
analyses are used [21]. Cluster analysis is an unsupervised learning method that groups
data (clusters) based on statistical similarities and differences within that dataset [21]. A
distance metric is used to cluster data—here, the Euclidean distance:

dij = ((xi − xj)(xi − xj)T)1/2, (1)

where xi and xj in our study represent individual SST patterns in our study region. Cluster
analysis groups patterns based on their statistical proximity, such that those events grouped
together have similar data structures. An advantage (and challenge) with cluster analysis
is the lack of a priori knowledge of groups/clusters, which can reveal previously unseen
patterns in some instances when compared with other approaches [21]. Hierarchical
cluster analysis groups events (here, SST patterns) by identifying elements whose statistical
distance is smallest and pairing them. The method then repeats until all points are paired or
begins linking up groups of these pairs using a linkage method. This method is then built
into a cluster hierarchy that shows how the underlying events group together. Visually,
this hierarchy is known as a dendrogram (Figure 1). K-means clustering uses a similar
approach, but instead utilizes Euclidean distance relative to a randomly generated cluster
center (based on a first guess number of clusters). From here, cluster centers adjusted as
points are added to each cluster until the solution converges on a final set of cluster centers
(no hierarchy is created).
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Climate 2024, 12, 71 6 of 18

For our study, we used a blended hierarchical and k-means clustering methodology.
First, we utilize hierarchical clustering (Figure 1) to provide a first guess of the correct
number of clusters to retain for the full SST database (e.g., all seasons). We then apply
k-means cluster analysis across both time and spatial dimensions to ensure the coherency of
the resulting patterns in both time and space. That is, regardless of season, a given cluster
will comprise the same subset of SST years.

As stated previously, k-means clustering requires a first guess of the number of
clusters. Since centers are generated randomly, we repeated the k-means procedure 25
times to ensure that the results were not sensitive to the random initialization. However, the
resulting clusters were not sensitive to the random initialization (the algorithm converged
consistently on the same solution). K-means clustering is repeated for different numbers of
clusters [21,51] because the underlying cluster structure is often not known.

The silhouette coefficient (Equation (2); [21]), which measures both the intra-cluster
spread and inter-cluster spread, is used to evaluate the quality of the resulting clusters:

S(i) =
b(i)-a(i)

max{a (i), b(i)} , (2)

where b(i) represents the smallest average distance of a point (SST field in our study) to
points in other clusters, and a(i) represents the average distance of a point from the other
points in the cluster or group to which it belongs [21]. If the average of (2) is close to 1, then
most, if not all, points are correctly assigned, and the clusters are well separated [51]. If the
average coefficient is close to 0, then clusters may overlap, and some points may be between
clusters. If the value is negative, then many points are likely incorrectly assigned [21,51].

The silhouette metric S* (Equation (3)) captures the global average of silhouette co-
efficients and the number of misclustered events (those events with a negative silhouette
coefficient) for each period [52].

S∗ =

(
N - ms

N

)
S, (3)

where S is the average silhouette coefficient for all members (the average of S(i)), ms is
the number of misclustered members, and N is the sample size. This metric modifies the
average silhouette coefficient (S) by using the percentage of negative S values. If ms is 0,
then S* is the same as S. In addition to S*, the Pearson correlation is calculated between
the composite map for each cluster and each member of the cluster [52]. Each of these
correlations is then averaged to assess the degree of representativeness of the constituent
members for each cluster. This correlation also helps to identify the ideal cluster number,
where the weighted mean is used to give less weight to clusters that have a small number
of cases (and more weight to the clusters with a larger number of cases). Multiple numbers
of clusters (two to nine clusters) are assessed to determine the optimal cluster number. In
this study, using two clusters resulted in one cluster simply representing the mean of SSTs
for the associated three-month period, while nine or more resulted in clusters with only
one or two samples. The optimal cluster number for each period is found to be four by
exploring the dendrograms, weighted mean S*, and Pearson correlation. The four groups
of clusters with N = 24, 22, 12, and 14 members have a weighted mean Pearson correlation
of 0.46 and a weighted mean S* of 0.12 with no misclustered members.

Once the clusters were identified and cases were sorted into each group, the members
of each cluster/group were averaged at each grid point, yielding seasonal composite SST
fields for each cluster from which we could begin exploring the resulting SST patterns
and downstream effects. To better understand the interannual variability of each cluster,
a time series was created for each cluster. We kept only 1950 to 2019 to cleanly analyze
decadal frequency. To demonstrate the utility of these patterns in describing downstream
effects, we also conducted a simple application study exploring how ACE relates to each
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SST cluster. We used 10,000-iteration bootstrap mean ACE values for each year to establish
the statistical significance of ACE across clusters.

3. Results
3.1. Resulting SST Cluster Patterns

A composite of seasonal SSTA patterns per cluster, along with each cluster’s decadal
frequency, is depicted in Figures 2–5. Cluster 1 (Figure 2) is characterized by a horse-
shoe pattern of positive anomalies in the subtropical North Pacific, Central Pacific, and
central and eastern South Pacific coupled with weak anomalies in the Eastern Pacific.
This pattern closely resembles a positive PMM, which typically consists of positive SSTAs
that extend from Baja California to the central equatorial Pacific and into the subtropi-
cal South Pacific [27]. This pattern is most prominent during MAM, which commonly
evolves into a CP El Niño event by DJF. The seasonal evolution of this cluster highlights
the PMM during MAM as a precursor to CP El Niño conditions during DJF in a subset
of cases (9 out 24 cases) [53]. Wind anomalies over the subtropical and equatorial Pacific
are predominately westerly (albeit weak), indicative of the Wind–Evaporation–SST (WES)
feedback that affects low-level winds and subsequently facilitates the migration of warm
water in the subtropical North Pacific to the Central Pacific [27]. The decadal frequency
of years (Figure 2E) within cluster 1 increased over the time period. The overall average
increase in frequency corresponds to an increase in positive PMM events. Approximately
78% of cluster 1 member years had a positive PMM.
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1 (E) from 1950 to 2019.
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Figure 3. Composite patterns of standard anomalies of SST for cluster 2 for (A) March–April–May
(MAM); (B) June–July–August (JJA); (C) September–October–November (SON); (D) December–
January–February (DJF). The arrows represent wind anomalies in ms−1. Decadal frequency of cluster
1 (E) from 1950 to 2019.

Cluster 2 (Figure 3) is dominated by weakly negative anomalies across the equatorial
Eastern and Central Pacific, accompanied by small pockets of negative values off the
coast of Mexico. This pattern signifies an EP La Niña event, which evolves from an
intensification of negative anomalies primarily situated along the equator during the spring
to a more expansive area of negative anomalies extending from the equatorial region to
the subtropical Southern Hemisphere [53]. Weak wind anomalies in the subtropical North
Pacific and easterly wind anomalies along the equator further corroborate EP La Niña
conditions. The frequency of cluster 2 has seen a minor increase over the time period
(Figure 3E). However, when you exclude the decade from 1980 to 1989, which has an
unusually high number of cases, there is no pronounced decadal trend.

Cluster 3 (Figure 4) is characterized by below-normal values spanning most of the
Eastern and Central Pacific. The most pronounced anomalies are observed in the Central
Pacific near the equator and in subtropical areas (approximately between 15◦ N and 10◦ S)
east of the dateline (approximately between 130◦ W and 180◦ W). This pattern indicates
a negative PMM event during all periods, which can evolve into a robust CP La Niña in
the subsequent winter [25,53]. The seasonal evolution in this cluster shows that a negative
PMM during MAM often precedes a CP La Niña during DJF in 11 out of the 12 cases. The
patterns and evolution of negative PMM events are similar to positive PMM events but
with negative SSTAs [27]. Wind anomalies are northeasterly in the subtropical regions
of the North Pacific during MAM, which helps force cooler waters from the subtropical
North Pacific to move towards the central equatorial Pacific. Subsequently, strong easterly
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wind anomalies develop near the equator in the Central Pacific during DJF, reinforcing a
CP La Niña event [53]. Cluster 3 exhibits a slight decrease across the period (Figure 4E).
The occurrence of negative PMM events has been decreasing during this period [54,55],
implying that this decrease has an impact on the decline of the frequency of cluster 3.
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Figure 4. Composite patterns of standard anomalies of SST for cluster 3 for (A) March–April–May
(MAM); (B) June–July–August (JJA); (C) September–October–November (SON); (D) December–
January–February (DJF). The arrows represent wind anomalies in ms−1. Decadal frequency of cluster
1 (E) from 1950 to 2019.

Cluster 4 (Figure 5) is dominated by positive anomalies across much of the equatorial
Eastern Pacific, with the largest anomalies between 10◦ N and 10◦ S. Predominantly weakly
positive anomalies are evident across the equator during MAM. Similarly, weak anomalies
are noticeable in the subtropical North Pacific during JJA and SON. However, by DJF, a
more robust EP El Niño emerges. A strongly positive PMM signature is absent during the
spring, which further substantiates an EP El Niño [53]. Wind anomalies in the subtropical
North Pacific are predominately easterly during JJA and SON. However, particularly during
DJF, the wind anomalies are westerly over the equatorial Pacific. The frequency of cluster 4
(Figure 5E) has decreased slightly. The decreasing frequency may be due to the negative
PMM, since 73% of events in cluster 4 are associated with a negative PMM. This is despite
the prevalence of an El Niño signature in this cluster, and the overall number of El Niño
events is increasing based on the ONI.
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3.2. Analysis of the Oceanic Niño Index (ONI) and PMM

Figure 6 represents a scatterplot of all members of each cluster, with ONI values along
the x-axis and PMM index values along the y-axis. Table 1 includes the number of ENSO
and PMM events broken down into phases (i.e., La Niña, neutral, El Niño, negative PMM,
and positive PMM). This analysis is a direct result of having the years/members of the
clusters and further supports the SSTA patterns identified within each cluster. The majority
of the cluster members in Figure 6 are relatively well separated, especially during fall and
winter, where cluster 1 (4) has positive ONI and positive (negative) PMM values, and
cluster 2 (3) has negative ONI and positive (negative) PMM values.

In cluster 1, the majority of members are characterized by positive ONI and PMM
values, especially during summer (Figure 6B), fall (Figure 6C), and winter (Figure 6D).
These results are consistent with the dominant neutral ENSO conditions and positive PMM
events found in Table 1, with a notable shift towards El Niño in the winter. The average
ONI for cluster 1 ranges from 0 to 0.5, indicative of neutral ENSO events with a tendency
toward weak El Niño conditions [56]. The mean PMM values are strongly positive, ranging
from 1.59 during spring to 1.93 during fall and winter. Cluster 2 predominantly exhibits
negative ONI but positive PMM values during fall (Figure 6C) and winter (Figure 6D).
Table 1 shows a high proportion of positive PMM events and neutral ENSO conditions,
with La Niña events becoming more frequent in the winter. The mean ONI for cluster 2 for
each period falls between 0 and −0.5, implying neutral ENSO conditions with a tendency
toward weak La Niña conditions [56]. Mean PMM values are negative for MAM and
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weakly positive for all other periods, which suggests this cluster is also influenced by weak
PMM events.
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For cluster 3, both ONI and PMM values are mostly negative for all seasons (Figure 6).
This corresponds with the majority of events classified as La Niña and negative PMM in
Table 1. The mean ONI is negative for all periods, indicating strong La Niña conditions,
with the largest values during fall and winter. The mean PMM index is negative for all
seasons, with spring having the most negative mean value of −3.28. This result is consistent
with the peak of the PMM generally occurring during boreal spring [21]. For cluster 4, most
ONI values are positive but the PMM values are mixed in the spring (Figure 6A). However,
during summer, fall, and winter, the majority of PMM values are negative (Figure 6B–D).
All periods except spring have mean ONI values above 0.5, indicating a robust El Niño.
These results are supported by Table 1, which shows a majority of events characterized by
El Niño and negative PMM conditions.

Table 1. The number of ENSO events (La Niña, neutral, El Niño) and PMM events for each season
and cluster. ENSO and PMM phases are based on the ONI and PMM index, respectively.

Cluster Number N Season La Niña Neutral El Niño Negative PMM Positive PMM

1 24 MAM 1 17 6 7 17

JJA 0 21 3 4 20

SON 3 12 9 5 19
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Table 1. Cont.

Cluster Number N Season La Niña Neutral El Niño Negative PMM Positive PMM

DJF 2 10 12 5 19

2 22 MAM 9 12 1 11 11

JJA 7 15 0 7 15

SON 10 12 0 4 18

DJF 14 8 0 11 11

3 12 MAM 5 6 1 11 1

JJA 11 1 0 10 2

SON 9 3 0 12 0

DJF 11 1 0 11 1

4 14 MAM 0 8 6 8 6

JJA 0 1 13 12 2

SON 0 0 14 10 4

DJF 0 0 14 11 3

3.3. Accumulated Cyclone Energy (ACE) Case Study

This study also examines ACE to demonstrate the effectiveness of cluster analysis
in evaluating downstream climatic impacts for North America. ACE has been utilized to
study the relationship between TC activity and climate phenomena, such as El Niño and La
Niña events, providing insights into the influence of large-scale climate patterns on cyclone
intensity [57]. Importantly, in our study, ACE can be directly linked to the SST patterns via
the cluster member years, allowing for a cleaner investigation of the behavior of ACE in
both the Atlantic (Figure 7) and Eastern Pacific (Figure 8) basins across our study period.
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Figure 7. The 95% bootstrap confidence intervals of mean ACE for each cluster in the Atlantic basin
for JJA (A) and SON (B). When the upper or lower confidence interval (outer bars) does not overlap
the median (central point) of a given pairing, the pairing shows statistical significance.
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Figure 8. The 95% bootstrap confidence intervals of mean ACE for each cluster in the Eastern Pacific
basin for JJA (A) and SON (B). When the upper or lower confidence interval (outer bars) does not
overlap the median (central point) of a given pairing, the pairing shows statistical significance.

In the Atlantic basin, ACE during JJA is statistically significantly lower in cluster 4
than for all other clusters and is significantly higher in cluster 3 (Figure 7A). These findings
indicate that the prevalence of EP El Niño tends to suppress TC activity in the Atlantic,
while strong CP La Niña events greatly enhance TC activity. These results are in alignment
with prior research on the role of ENSO phase in TC frequency [58]. They suggest that the
impact of El Niño on the Walker Circulation results in increased vertical wind shear and
decreased hurricane activity in the North Atlantic.

However, CP El Niño events, represented in cluster 1, exert a lesser influence compared
to EP El Niño events in reducing TC activity in the Atlantic [59]. This difference may be
attributed, in part, to the insufficient strength of these events in warming the tropical
atmosphere, a crucial factor contributing to increased wind shear in the Atlantic basin [59].
Patricola et al. [60] found CP El Niño events to significantly hinder TC development in
the Atlantic, but only compared to EP El Niño events of similar SST magnitudes. This is
attributed to the lesser warming needed near the equatorial Central Pacific’s warm pool to
impact the Walker Circulation’s strength, consequently amplifying vertical wind shear in
the Atlantic basin. Thus, the smaller SSTAs in cluster 1 (CP El Niño) compared to cluster
4 (EP El Niño) may be the primary reason for the statistically significant decrease in TC
activity associated with cluster 4.

La Niña events are associated with reduced wind shear in the Atlantic, creating
favorable conditions for TC development [59]. Interestingly, cluster 3 (CP La Niña) has
statistically significantly higher ACE than cluster 2 (EP La Niña), suggesting that CP La
Niña events have a more pronounced influence on increasing ACE in the Atlantic than
EP La Niña events. This is a novel result, as minimal research has explicitly delved into
the influence of different La Niña flavors on TC activity in the Atlantic. Future research is
needed to explore the physical mechanisms of La Niña flavors on TCs in the Atlantic basin.

For SON, cluster 4 again demonstrates a statistically significant decrease in ACE
relative to all other clusters, while clusters 2 and 3 showed statistically significant increases
in ACE relative to cluster 4 (Figure 7B). Expectedly, higher magnitudes of accumulated
ACE in the later TC season (SON) express higher variability (noted by the spreads in the
bootstrap confidence intervals in Figure 7B). The SON period tends to experience more
and stronger TCs, resulting in larger ACE values compared to those observed during JJA.
Additionally, the statistical distinction in EP and CP La Niña events (clusters 2 and 3) is
lost when extending to SON, which suggests that CP La Niña events tend to result in



Climate 2024, 12, 71 14 of 18

earlier accumulations of ACE during the TC season (a higher frequency of early-season
TCs during CP La Niña years).

For Eastern Pacific ACE during JJA, the results show considerably higher variability
than in the Atlantic, limiting the statistical significance of the JJA results (Figure 8). How-
ever, cluster 4 exhibits statistically significantly higher ACE compared to clusters 2 and
3, indicating the impact of EP El Niño conditions in contributing to higher TC activity
compared to La Niña in clusters 2 and 3 [61] (Figure 8A). Unlike the Atlantic, CP and EP
El Niño are statistically indistinguishable, though both show elevated ACE relative to La
Niña conditions in the East Pacific. During SON, both clusters 1 and 4 (CP and EP El Niño)
show statistically significant increases over clusters 2 and 3 (Figure 8B). Additionally, all
clusters but cluster 3 show reduced ACE variability, suggesting that ACE predictability
via these SST patterns may be increasing across the duration of the TC season. Cluster
1, characterized by weak El Niño conditions and a positive PMM, may synergistically
enhance TC activity in the Pacific compared to clusters 2 and 3 [62].

4. Discussion and Conclusions

This paper utilizes hierarchical and k-means clustering techniques to identify estab-
lished off-equatorial and ENSO-related SST patterns in the Eastern Pacific spanning from
1950 to 2021. A summary of the SSTA patterns, dominant climate drivers, and frequency
trends is presented in Table 2. While previous research heavily relies on EOFs to understand
tropical Pacific SST variability [11,22–24,30–33], this study highlights the use of cluster
analysis as advantageous over EOFs for identifying SST patterns and understanding their
climatic impacts. Cluster analysis directly constructs spatial patterns and events from ob-
served SST fields without relying on variability fractions, and it does not assume linearity,
allowing for the inclusion of nonlinear relationships [35,36]. This approach, rarely em-
ployed in this context, proves advantageous in identifying prevalent SST patterns aligned
with ENSO flavors, offering greater utility in downstream climatic impact studies. This
paper demonstrates this utility through an example application using ACE to identify
statistically significant differences in ACE by the clusters’ SST patterns and ENSO flavors.

Cluster 1 is characterized by a horseshoe pattern of positive anomalies in the sub-
tropical North Pacific, Central Pacific, and central and eastern South Pacific. A strong
influence from the positive PMM phase is observed during MAM, which is a precursor to
CP El Niño in DJF for 38% of cases. The frequency of cluster 1 events increased during
the study period, likely attributed to a general upward trend in positive PMM events.
Cluster 2 is characterized by negative anomalies in the eastern equatorial Pacific that extend
into the South Pacific and to the central equatorial Pacific in the winter. This cluster is
predominately influenced by EP La Niña and easterly wind anomalies. The frequency of
cluster 2 events exhibited an increasing trend during the study period. Cluster 3 exhibits
negative anomalies in the eastern and Central Pacific, with the strongest cooling along
the equator in the Central Pacific and within the subtropical regions of the Eastern Pacific.
This cooling is likely due to a combination of La Niña, which is prevalent during fall and
winter, and negative PMM events, which are prevalent for all three-month periods. A CP
La Nina during DJF that follows a negative PMM during the spring is observed in 92%
of the cases. The transition of a negative PMM during spring into a CP La Niña in the
subsequent winter is supported by the strong presence of northeasterly wind anomalies
across the majority of the subtropical North Pacific and equatorial Central Pacific, which
are associated with the WES feedback. The decline of negative PMM events is likely the
primary factor contributing to the decrease in this cluster over the study period. Cluster 4 is
characterized by a large area of positive anomalies in the Eastern Pacific, with the strongest
warming near the equator. This cluster is strongly influenced by EP El Niño with an absence
of a strongly positive PMM during the spring. Wind anomalies are predominately easterly
in the subtropical North Pacific, while strong westerly anomalies dominate the equatorial
Pacific during the winter. Over the study period, cluster 4 events slightly decreased likely
due to the slight decline in negative PMM events [54].
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Table 2. Summary of the spatial patterns of the SSTAs, the dominant climate drivers, and the
frequency trend from 1950 to 2019.

Cluster SSTA Pattern Dominant Climate Drivers Trend (1950–2019)

1

Anomalous warming in the
subtropical North Pacific,

Central Pacific, and central
and eastern South Pacific.

Positive PMM and CP El Niño Increased

2

Anomalous cooling in the
eastern and central equatorial
Pacific with small regions of
anomalous cooling off the

coast of Mexico.

EP La Niña Increased

3

Anomalous cooling in the
Eastern and Central Pacific,

with the most intense cooling
in the equatorial Central and

subtropical Central and
Eastern Pacific.

Negative PMM and CP La Niña Decreased

4

Anomalous warming in the
Central and Eastern Pacific,

with significant warming near
the equator in the Central and

Eastern Pacific.

EP El Niño Decreased

This study also investigates connections between ACE in the Atlantic and Eastern
Pacific basins and SST patterns using cluster member years. In the Atlantic basin throughout
JJA, EP El Niño tends to suppress tropical cyclone (TC) activity, whereas CP La Niña events
have an enhancing effect. La Niña occurrences in clusters 2 and 3 contribute to an increased
ACE during SON, with CP La Niña in cluster 3 demonstrating a notably higher ACE
compared to EP La Niña in cluster 2. This specific result needs further investigation into
the underlying physical mechanisms governing the diverse impacts of various La Niña
flavors on TCs in the Atlantic basin. In the Eastern Pacific during JJA, ACE exhibits greater
variability, and cluster 4 exhibits a statistically significantly higher ACE than clusters 2 and
3, underscoring the influence of EP El Niño conditions on increased TC activity. During
SON, both clusters 1 and 4 indicate statistically significant increases in ACE over clusters 2
and 3, indicating heightened TC activity. Both the weak El Niño event and positive PMM
in cluster 1 could contribute to intensifying TC activity in the Eastern Pacific [62].

Overall, clusters 1–4 present an objective set of SSTA patterns that encompass both
equatorial and off-equatorial regions in the eastern tropical Pacific found via unsupervised
machine learning methods. However, this study has some limitations. One factor to
consider is the relatively small sizes of certain clusters, which could influence the spatial
distribution of the SSTAs. This issue can be resolved as a larger SST dataset becomes
available over time since the most reliable record of SST data began in 1950. This time
frame also limits the sample size of ENSO events, as Ren et al. [63] suggest there have only
been 19 El Niño events and 14 La Niña events since 1950. This limitation, as with the SST
data, can be overcome with additional years of data.

While some limitations exist, this study utilizes a multi-decadal SSTA dataset to iden-
tify dominant observational structures that can be directly linked to individual years and
downstream climate factors such as TC ACE. We show that the application of these patterns
for different downstream effect studies (e.g., precipitation studies, severe weather stud-
ies) can provide new insights into the links between Pacific SSTAs and these phenomena.
The methods used in this study provide more streamlined analysis tools for identifying
the most prevalent SSTA patterns and utilizing these patterns to diagnose subsequent
climatic impacts.
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