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Abstract: A deep learning-based Visual Inertial SLAM technique is proposed in this paper to ensure
accurate autonomous localization of mobile robots in environments with dynamic objects. Addressing
the limitations of real-time performance in deep learning algorithms and the poor robustness of
pure visual geometry algorithms, this paper presents a deep learning-based Visual Inertial SLAM
technique. Firstly, a non-blocking model is designed to extract semantic information from images.
Then, a motion probability hierarchy model is proposed to obtain prior motion probabilities of
feature points. For image frames without semantic information, a motion probability propagation
model is designed to determine the prior motion probabilities of feature points. Furthermore,
considering that the output of inertial measurements is unaffected by dynamic objects, this paper
integrates inertial measurement information to improve the estimation accuracy of feature point
motion probabilities. An adaptive threshold-based motion probability estimation method is proposed,
and finally, the positioning accuracy is enhanced by eliminating feature points with excessively high
motion probabilities. Experimental results demonstrate that the proposed algorithm achieves accurate
localization in dynamic environments while maintaining real-time performance.

Keywords: SLAM; dynamic objects; deep learning; non-blocking model; inertial; real time

1. Introduction

As a foundational research in many emerging technologies, simultaneous localization
and mapping (SLAM) techniques have experienced unprecedented development in recent
years and have found widespread applications in fields such as autonomous driving,
augmented reality, and unmanned aerial vehicles. Considering the advantages of the
low cost and high portability of visual cameras, visual SLAM techniques have received
significant attention over the past few decades. However, most existing SLAM techniques
make a strong assumption of a static environment [1]. In the real world, there are constantly
numerous moving objects present, such as pedestrians in shopping malls and on roads,
fast-moving vehicles, and other potential moving entities. These objects have adverse
effects on pose estimation. Although pure visual methods, such as the epipolar geometry
constraint, RANSAC [2], PROSAC [3], and multi-view geometry, can partially suppress the
influence of dynamic objects, such algorithms can introduce serious errors when a large
number of moving targets or high-motion objects are present in the environment, leading
to the system becoming overwhelmed. Therefore, improving the dynamic robustness of
SLAM systems is of utmost importance. The current mainstream solution for dynamic
environments is to remove dynamic features that affect localization and mapping and only
utilize static points in the environment for positioning and mapping. This paper categorizes
existing visual localization algorithms in dynamic scenes into three major classes.

The first category of methods is based on pure visual geometry constraints for dynamic
SLAM. These algorithms determine the dynamic or static nature of feature points by exam-
ining the consistency of geometric motion between image frames, and subsequently filter
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out dynamic points. VINS-Mono [4] computes the fundamental matrix using the Random
Sample Consensus (RANSAC) algorithm to remove outliers. Sun [5] utilizes RANSAC
for reprojection error measurement to reject dynamic points and enhances motion object
detection using particle filtering. Liu proposes a dynamic object detection algorithm based
on RGB-D cameras, which computes dense optical flow to estimate the pose transformation
between image frames and constructs the reprojection error to estimate the dynamic region.
Wang [6] presents a dynamic SLAM algorithm based on epipolar geometry constraints and
mathematical models, but it suffers from significant localization errors in highly dynamic
scenes due to heavy reliance on transformation matrix estimation. Zhang [7] introduces the
PFD-SLAM algorithm, which utilizes a non-prior semantic segmentation algorithm based
on particle filtering. It computes the discrepancy between grid-based motion statistics
and optical flow calculations as the observation for posterior estimation, then employs
RANSAC to extract dynamic regions based on the homography matrix and, finally, applies
particle filtering. Dai [8] determines the state of feature points based on data association
and uses the Delaunay [9] triangulation method to deploy discrete map points into a
sparse map. This category of methods offers a fast computation speed and high real-time
performance, but cannot eliminate features on potential moving objects.

The second category of methods is based on deep learning for dynamic SLAM tech-
niques. These methods utilize deep learning techniques to obtain per-pixel masks or
bounding boxes of potential moving objects, generating mask information to remove
dynamic features from these objects and improve localization accuracy. Compared to
traditional image processing algorithms and geometry constraint methods, deep learning-
based dynamic SLAM methods can leverage higher level feature information to determine
the dynamic or potential motion attributes of feature points. Moreover, deep learning is
widely applied in backend processing, such as deep learning-based loop-closure-detection
algorithms, greatly improving the efficiency and localization accuracy of backend opti-
mization. Yu [10] proposes DS-SLAM, which is a dynamic SLAM algorithm based on
the integration of ORB-SLAM2 [11] and the SegNet [12] semantic segmentation network.
Bescos [13] introduces DynaSLAM based on the Mask-RCNN network, which not only
provides dynamic–static prior information through semantic segmentation, but also utilizes
multi-view geometry methods for calibration, demonstrating excellent performance in
terms of localization accuracy. However, the complex structure of the Mask-RCNN network
leads to poor real-time performance. To improve computational efficiency, Liu [14] presents
a real-time dynamic SLAM algorithm called RDS-SLAM, which employs a non-blocking
model that performs semantic segmentation only on keyframes, while the remaining im-
age frames are processed using a Bayesian probability model for feature prediction. This
approach significantly enhances real-time performance. However, since only keyframes
are used to determine the corresponding map points, the real-time output results are
not ideal.

The third category of methods is based on the fusion of multiple sensor modalities for
dynamic SLAM algorithms. Visual cameras, as active sensors, are susceptible to changes
in the environment, which can affect the quality of the input and, consequently, impact
localization accuracy. However, there are sensors like the Inertial Measurement Unit (IMU),
whose inputs are less affected by environmental changes. By fusing such sensors with
visual cameras, the interference of environmental changes on the localization system can
be mitigated to some extent. Zhao [15] deploys the DeepLabv3 [16] network into the
VINS-Mono system, combining semantic segmentation and motion-consistency detection
algorithms to remove dynamic features. Song [17] proposes a dynamic SLAM algorithm
based on visual–inertial sensors, called DynaVINS. This algorithm does not employ deep
learning theory, but utilizes visual–inertial fusion to make joint judgments on feature infor-
mation, assigning different weights to features based on their dynamic nature, with stronger
dynamics having smaller weights. Liu [18] introduces a dynamic SLAM algorithm based
on RGB-D Inertial, which uses YOLOv5 [19] as the object-detection algorithm and combines
IMU motion consistency detection and epipolar geometry constraint methods to reject
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dynamic features. Sun [20] presents the D-VINS algorithm, which combines deep learning,
IMU consistency detection, and geometric constraints to estimate the probability of feature
point motion and assigns different weights to feature points based on this probability.
Although these algorithms improve robustness by leveraging the advantages of sensor
fusion, determining reasonable ranges for some hyperparameters in the algorithms, such
as the segmentation threshold in IMU consistency detection, can be challenging.

In response to the above-mentioned issues, this paper proposes real-time visual–
inertial odometry for resource-constrained aerial vehicles in dynamic environments. In this
system, semantic information is first extracted from image frames based on a non-blocking
model. Then, motion segmentation is performed using a motion probability grading
model and motion probability propagation model. Inertial measurement information is
introduced to correct errors introduced by the coarse segmentation algorithm, thereby
improving localization accuracy in dynamic environments. The main contributions of this
paper are as follows:

(1) We propose a method for extracting semantic information in a non-blocking manner,
thereby reducing the impact of the deep learning module on real-time system perfor-
mance and improving the algorithm’s execution speed. Furthermore, we design a
mobile probability grading model and a mobile probability propagation model for
performing coarse motion segmentation.

(2) A visual–inertial tightly coupled feature optimization algorithm is proposed, lever-
aging prior semantic information. An adaptive threshold-based motion consistency
detection algorithm is designed to refine the coarse segmentation results.

(3) We conducted experiments on datasets and in real environments. The results
demonstrate that the proposed algorithm achieves good localization accuracy in
highly dynamic environments.

2. System Overview

With the aim of improving the positioning accuracy and algorithmic robustness of
visual localization algorithms in dynamic environments, this paper proposes two key
modules. The first module is the motion probability coarse estimation module, which
utilizes the YOLOv8 network [21] to extract semantic information from images and generate
corresponding semantic masks. Different motion probabilities are assigned to feature points
located in different mask regions.

The module adopts a non-blocking architecture to enhance real-time performance,
meaning that semantic information extraction operations are not performed for every
frame of the image. Instead, when the semantic thread is idle, the system detects the
latest frame in the sliding window and extracts semantic information only for that frame.
For frames without extracted semantic information, feature point motion probabilities
can be estimated using epipolar geometry constraint algorithms and motion probability
propagation models. Considering the weak robustness of pure visual SLAM algorithms and
the unaffected output of IMU sensors by dynamic objects, this paper further investigates
a method that combines visual and IMU information to determine the static or dynamic
nature of feature points. This method is implemented in the second module, the feature
optimization algorithm based on visual–inertial coupling. The module utilizes the prior
information provided by the coarse segmentation module to perform motion consistency
checks in order to correct the erroneous motion probability estimates of feature points from
the coarse segmentation module. This correction process improves the positioning accuracy
of the algorithm. The system framework diagram is shown in Figure 1.
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Figure 1. System framework diagram.

3. Methods
3.1. Deep Learning-Based Motion Coarse Estimation Algorithm

The deep learning-based image segmentation method is a commonly used approach
to improve the accuracy of SLAM localization in dynamic environments. However, most of
these methods are blocking models, meaning that, after extracting feature points from each
frame, the system needs to wait for the results of semantic extraction in order to optimize
the features based on the semantic information. This dependence on the speed of the deep
learning module significantly affects the system’s overall speed, making high demands on
computational resources. Typically, the speed of semantic information extraction is much
slower than that of feature point extraction. This forces the feature-extraction thread to wait
for the results from the semantic thread, greatly reducing the real-time performance of the
localization system. While RDS-SLAM proposes a non-blocking model that only performs
semantic extraction on keyframes, this approach operates on map points, which may be
discarded, and its method of segmenting keyframes and removing dynamic feature points
does not dynamically improve feature matching accuracy in real time, making it a lagging
optimization method.

3.1.1. Non-Blocking Semantic Information-Extraction Algorithm Design

To improve the efficiency of feature point optimization, this paper adopts a parallel
semantic information-extraction thread parallel to the feature-extraction thread, drawing
inspiration from conventional semantic SLAM models [22]. Utilizing the concept of a
sliding window model [4], when extracting features from all frames within the sliding
window, the semantic information of only the most recent frame in the window needs to
be extracted. As shown in Figure 2, assuming the time for feature extraction per frame is
∆t and the time for semantic information extraction per frame is ∆T, if a blocking model
is used, after the feature extraction of frame n is completed, the waiting time required
would be n(∆T − ∆t). As time progresses, the accumulation of the waiting time becomes
significant, leading to a loss of real-time tracking capability. In contrast, when a non-
blocking model is used, only the semantic information of the latest frame in the sliding
window needs to be extracted. Consequently, the waiting time becomes a fixed value,
∆Tg = ∆T − ∆t, and does not accumulate over time. Frames that have not undergone
semantic extraction will be classified based on the semantic information extracted from
the frames within the sliding window. Compared to the blocking model, the non-blocking
model imposes lower performance requirements on the onboard processor. Even if the
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processor fails to perform semantic segmentation, thus affecting the tracking process, it
does not impact the overall system performance.
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Figure 2. Non-blocking semantic information extraction diagram.

Through object detection algorithms, semantic information can be obtained from
images. Based on this semantic information, initial determinations about the static or
dynamic nature of feature points can be made. For instance, when dynamic objects such as
pedestrians or fast-moving trains are detected in an image, the relationship between the
pixel positions of feature points and the bounding boxes of these objects can be calculated
to determine their static or dynamic nature. If a feature point falls within a bounding
box corresponding to a dynamic object, it is considered a dynamic point; otherwise, it is
considered a static feature.

3.1.2. Motion Probability Grading and Propagation Model

While deep learning algorithms can provide semantic information from images, di-
rectly using this information to determine the static or dynamic nature of objects may not
be entirely reliable. For example, books and tables in a classroom are generally stationary,
but when someone moves them, they become dynamic objects. Similarly, in a shopping
mall, most customers are in motion, but some may be stationary. Therefore, directly as-
signing static or dynamic properties to feature points based on semantic information may
not be applicable in certain scenarios. To address this issue, this section proposes a motion
probability grading model. Drawing from real-world experience, this model assigns dif-
ferent prior motion probabilities to different semantic types of objects, rather than simply
classifying them as static or dynamic. This model is then combined with the previously
mentioned epipolar geometry constraint algorithm to determine the static or dynamic
nature of feature points.

In this paper, based on life experience, we have categorized the labels provided by the
COCO dataset [23] into five major classes, where the higher the probability of movement,
the higher the level, and conversely, the smaller the probability of movement, the lower the
level. As shown in Figure 3, the first category is designated as public facilities, including
objects like traffic lights, signs, and benches. The second category includes household or
office items such as books, desks, chairs, and sofas.

The third category encompasses transportation vehicles like buses and bicycles.
The fourth category includes humans and sports equipment. The final category consists
of animals like birds, cats, and dogs. For feature points in the images, their prior motion
probabilities are assigned based on the different semantic masks they fall into. If a feature
point falls into an area without a semantic mask, that area is considered a background
region, and such feature points are directly classified as static features, which can be used
directly for pose estimation.
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Figure 3. Motion probability grading model.

Generally speaking, if the detected semantic objects are traffic lights or buildings,
the feature points located on them can be considered static feature points and used for visual
pose estimation and map construction. On the other hand, if the detected objects are birds
or livestock, considering that they are often in motion and occupy a small area in the image,
their impact on localization or mapping is relatively small. Therefore, feature points located
on them can be classified as dynamic features. However, under normal circumstances,
the semantic extraction network is unable to determine the semantic attributes of each
feature point. For these feature points, we follow the idea of the ORB-SLAM3 algorithm
and categorize them as background features, that is static features.

3.1.3. Motion Probability Propagation Model

In the non-blocking semantic information extraction model, there are cases where
some image frames do not have extracted semantic information, resulting in feature points
on these frames lacking prior motion probability. To ensure that each image frame has
prior semantic information, this section proposes a motion probability propagation model.
For image frames without extracted semantic information, their own image feature’s motion
probability is estimated based on the feature matching relationships with other frames in the
sliding window and the semantic information from those frames. The motion probability
for the five categories is defined as Equation (1):

st
pi
=



1, pi ∈ Ω(V)

0.75, pi ∈ Ω(IV)

0.5, pi ∈ Ω(III)

0.25, pi ∈ Ω(II)

0, pi ∈ Ω(I)

(1)

In the equation, st
pi

represents the motion probability of feature points at time t;
different semantic categories have different motion probabilities, with higher categories
having higher probabilities and lower categories having lower probabilities. Ω represents
the feature space, so the motion probability of the feature point set at time t can be defined
as St = {st

p1
, st

p2
, . . . . . . , st

pn}.
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In the non-blocking semantic information extraction model, due to the higher speed
of feature extraction compared to semantic information extraction, there will inevitably be
some image frames without extracted semantic information. For these frames, this paper
proposes using their adjacent frames and Bayesian estimation methods [24] to determine
the prior motion probability of feature points in the image, The specific calculation method
is shown in Equation (2):

bel(st
pi
) = p(st

pi
|Z1:t, s0

pi
) ∝ p(Zt|st

pi
, Z1:t−1, s0

pi
)p(st

pi
|Z1:t−1, s0

pi
) (2)

In the equation, s0
pi

represents the initial motion probability of the feature points,
which is obtained through Equation (1) and Z represents inter-frame matching observations.
At this point, the entire state estimation can be transformed into a maximum a posteriori
probability estimation, as shown in Equation (3):

arg max p(st
pi
|Z1:t, s0

pi
) = arg max p(Zt|st

pi
, Z1:t−1, s0

pi
)p(st

pi
|Z1:t−1, s0

pi
)

= arg max p(Zt|st
pi
)p(st

pi
|Z1:t−1, s0

pi
)

= arg max p(Zt|st
pi
)
∫

p(st
pi
|st−1

pi
, Z1:t−1)p(st

pi
|Z1:t−1)dst−1

pi

(3)

By solving the above maximum a posteriori estimation problem, the prior motion
probability of feature points in image frames without extracted semantic information can
be calculated.

3.2. Visual–Inertial Tight-Coupling Feature Optimization Algorithm

Visual information serves as the foundation of VSLAM, providing rich data that, in the
context of a local world coordinate system, allows for real-time output of the camera’s
absolute pose. However, visual data have a lower sampling frequency and are susceptible
to factors such as field of view and environmental conditions. In contrast, IMU sensors
have a higher sampling frequency and are less affected by environmental factors. However,
IMU sensors only provide the carrier’s acceleration and angular velocity information,
requiring continuous integration to output the carrier’s absolute pose. Nevertheless,
prolonged operation inevitably leads to accumulated errors, resulting in the divergence
of the localization result. To address these challenges, VIO algorithms integrate visual
and IMU information to compensate for their respective limitations, thereby achieving
high-precision localization.

3.2.1. IMU Preintegration Model

The IMU measures a moving vehicle’s inertial forces to obtain its own three-axis accel-
eration and three-axis angular velocity. By continuously integrating these measurements,
the IMU can provide the vehicle’s velocity, position, and Euler angles. Typically, an IMU
consists of two main components: an accelerometer for measuring three-axis acceleration
and a gyroscope for measuring three-axis angular velocity. The IMU used in this paper is
a low-cost MEMS IMU, known for its relatively lower measurement accuracy and higher
noise levels, which can lead to error accumulation and drift.

Due to the relatively low speeds of the motion carriers in this paper, effects such as
centripetal acceleration and Coriolis acceleration caused by the Earth’s rotation can be
neglected. Therefore, the output of the IMU is mainly affected by measurement noise and
bias. Assuming that the measurement noises of the accelerometer and gyroscope are ηacc
and ηgyro, respectively, and their biases are bacc and bgyro, the IMU measurement model can
be established as Equation (4):{

âbt = abt − Rbt
w gw + ηacc + bacc

ω̂bt = ωbt + bgyro + ηgyro
(4)
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In the equation, âbt represent the measured values of the accelerometer and gyro-
scope at time t, respectively, while abt and ωbt represent the true acceleration and true
angular velocity of the IMU at time t. The IMU’s bias can be considered a Wiener pro-
cess, also known as a random walk or Brownian motion, with its derivative following a
Gaussian distribution [25].

According to the above measurement model, the continuous-time form of the IMU
motion can be described as Equation (5):

ṗw
bt
= vw

bt

v̇w
bt
= aw

bt

q̇w
bt
=

1
2

qw
bt
⊗ [0, ωbt ]

T

(5)

In the equation, pw
bt

, vw
bt

, aw
bt

, qw
bt

„ ωbt , respectively, represent the position, velocity,
acceleration, quaternion attitude, and angular velocity of the IMU relative to a given world
coordinate system at time. Define the time interval [ti, ti+1]. Based on the above equation,
the motion equation from time ti to time ti+1 can be determined as Equation (6).

pw
bi+1

= pw
bi
+ vw

bi
∆ti +

∫∫
t∈[ti ,ti+1]

[Rw
bt
(âbt − bbt

a − na) + gw]dt2

vw
bi+1

= vw
bi
+

∫
t∈[ti ,ti+1]

[Rw
bt
(âbt − bbt

a − na) + gw]dt

qw
bi+1

=
∫

t∈[ti ,ti+1]
q̇w

bt
dt

(6)

In order to avoid repeated integration during each optimization process, the IMU
preintegration theory was proposed in reference [26]. Based on Equation (6), the inter-frame
IMU pre-integration result can be obtained as Equation (7):

α
bi
bi+1

=
∫∫

t∈[ti ,ti+1]
Rbi

bt
(âbt − bbt

a − na)dt2

β
bi
bi+1

=
∫

t∈[ti ,ti+1]
Rbi

bt
(âbt − bbt

a − na)dt

qbi
bi+1

=
∫

t∈[ti ,ti+1]

1
2

Ω(ω̂bt − bbt
g − ng)q

bi
bt

(7)

Based on the IMU preintegration result, the pose transformation matrix between
adjacent frames can be obtained as Equation (8):

Tbi
bi+1

=

[
Rbi

bi+1
t

0 1

]
(8)

In the equation, Rbi
bi+1

can be obtained by transforming the quaternion qbi
bi+1

and the

translation vector t = pbi
bi+1

.

3.2.2. The Motion-Consistency-Detection Algorithm Based on Visual–Inertial
Measurement Unit

Generally speaking, when a feature point is static, its reprojection error should be close
to zero due to satisfying the epipolar geometric constraint. However, when the feature point
moves, the epipolar geometric constraint is no longer satisfied, and thus, the reprojection
error is no longer zero, increasing with the magnitude of the movement. Assuming the
coordinates of a 3D point in the local world coordinate system are pw

k = [xk, yk, zk]
T ,

and this point is observed by both adjacent frames Fi and Fi+1, the following constraint
exists for the landmark point:
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{
TCi

w pw
k = pCi

k

TCi+1
w pw

k = pCi+1
k

(9)

In the equation, TCi
w and TCi+1

w , respectively, represent the coordinate transformation
matrices from the world coordinate system to the image frame Fi and Fi+1 the corresponding
camera coordinate system. pCi

k and pCi+1
k , respectively, represent the 3D coordinates of the

landmark point k in the corresponding camera coordinate system to the images Fi and Fi+1.
Based on the above equation, the constraint relationship between them can be obtained
as Equation (10):

pCi+1
k = TCi+1

bi+1
Tbi

bi+1
TCi

bi
pCi

k (10)

TCi+1
bi+1

and TCi
bi

, respectively, represent the camera–IMU coordinate transformation
matrix at different times, which is usually considered to remain unchanged with the motion
of the carrier. As shown in Figure 4a, for a 3D point in the world coordinate system, due to
its displacement, it no longer satisfies the epipolar geometric constraint with the projected
points in images Fi and Fi+1 leading to the appearance of reprojection errors (highlighted
in red).
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Figure 4. The reprojection error model for dynamic features. (a) Moving in a non-epipolar direction;
(b) moving in an epipolar direction.

Constructing the reprojection error of the co-visible feature points in the image frame
Fi+1, we can obtain Equation (11):

rk =∥ ûpi+1
k − upi+1

k ∥2
2=∥ ûpi+1

k − π(TC
b Tbi+1

bi
Tb

C pCi
k ) ∥2

2 (11)

In the equation, ûpi+1
k represents the observed coordinates of a feature point in the

pixel coordinate system of the image frame Fi+1, upi+1
k represents the theoretical coordinates

of the feature point in the pixel coordinate system of the image frame Fi+1, which is the
inter-frame projection result, and π(∗) represents the forward projection function from
the camera coordinate system to the pixel coordinate system. However, in certain motion
scenarios, using the reprojection error of feature points to determine their static or dynamic
nature may not be effective. As shown in Figure 4b, when a dynamic object moves toward or
away from the optical center of the camera, the reprojection error remains zero regardless of
the direction of motion. To address this issue, this paper proposes a bidirectional projection
method: for the same feature point, it is necessary not only to compute its reprojection error
in the current frame, but also to obtain its reprojection error in the previous frame through
IMU preintegration. The calculation formula in this case is as Equation (12):

rk =∥ ûpi
k − upi

k ∥2
2 + ∥ ûpi−1

k − upi−1
k ∥2

2

=∥ ûpi
k − π(TC

b Tbi
bi−1

Tb
C pCi−1

k ) ∥2
2 + ∥ ûpi

k − π(TC
b Tbi−1

bi
Tb

C pCi
k ) ∥2

2
(12)
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In the equation, ûpi−1
k represents the observed coordinates of a feature point in the pixel

coordinate system of the image frame Fi, and upi−1
k represents the theoretical coordinates of

the feature point k n the pixel coordinate system of the image frame Fi, which corresponds
to the inter-frame projection result.

In computer vision and 3D reconstruction, it is commonly assumed that the reprojec-
tion error follows a Gaussian distribution [27,28]. Based on this assumption, the probability
of a feature point’s movement can be calculated using the reprojection error. Assuming the
Gaussian distribution has a mean of µ0, the movement probability of the feature point can
be described as Equation (13):

p =
1√

2πσ0

∫ r
2

− r
2

e
− (x−µ0)

2

2σ2
0 dx (13)

In the equation, r represents the bidirectional reprojection error of the feature point.
It can be observed that, as the reprojection error increases, the probability of the feature
point’s movement also increases. To avoid the influence of IMU preintegration errors on
the reprojection error, this paper proposes a dynamic adaptive method for determining
the threshold, which includes methods for determining the mean and standard deviation.
In theory, the reprojection error of a completely static feature point should be zero. However,
due to noise in IMU measurements and distortion in the camera, the reprojection error is
not zero. Therefore, this paper designs a dynamic adaptive loss function to determine the
mean and standard deviation of the Gaussian distribution; the calculation method is given
by Equation (14):

l(s( f ), ŝ( f )) = −(s( f ) log(ŝ( f )) + (1 − s( f )) log(1 − ŝ( f ))) (14)

In the equation, s( f ) = {0, 1} represents the label value, where 0 indicates a static
feature point and 1 indicates a dynamic feature point, and ŝ( f ) represents the predicted
probability of the motion state of the feature point, denoted as s( f ) = p(r f ).

Assuming the extracted set of absolutely static points in the image I is denoted
by Ωstatic = { f1, f2, . . . , fm}, the set of features with absolute motion is denoted by
ΩDynamic = { fm+1, fm+2, . . . , fm+n}, and the set of temporarily static features is denoted
by Ωtemporary = { fm+n+1, fm+n+2, . . . , fN}. Since both the absolutely static and absolutely
moving features can obtain accurate probability values using semantic labels, for each
frame of the image, the semantic information can be used to determine the estimated
samples, and the expression is given by Equation (15):

s( f ) =

{
0, f ∈ Ωstatic

1, f ∈ ΩDynamic
(15)

After computing the reprojection error for each feature point, it is necessary to first
utilize the semantic information to provide estimated samples for the aforementioned
binary classification problem. Subsequently, using the sample information, the objective is
to minimize the dynamic adaptive loss function in order to obtain the estimated mean and
standard deviation values. The optimization objective can be described by Equation (16).

min
µ,σ

{−(s( f ) log(
1√
2πσ

∫ r f
2

−
r f
2

e−
(x−µ)2

2σ2 dx) + (1 − s( f ) log(1 − 1√
2πσ

∫ r f
2

−
r f
2

e−
(x−µ)2

2σ2 dx)))} (16)

By solving the above optimization problem, we can obtain the mean and standard
deviation that minimize the cross-entropy loss [29]. Combining Equation (13), we can obtain
the probability of movement for temporary stationary feature points. In some special cases,
such as when the carrier motion environment is stationary or there are no feature points
in absolute motion, the prior semantic information can only provide single-class sample
information. In such cases, it is not possible to obtain a reasonable mean and standard
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deviation by minimizing the loss function. In this case, it is only necessary to estimate
the mean and standard deviation using the absolute static features in the environment.
The reprojection error of absolute static features in the environment can be used as samples,
and the maximum likelihood estimation method can be used to estimate the mean and
variance of the Gaussian distribution. Then, using Equation (13), the movement probability
of other feature points can be calculated. The algorithm framework is shown in Algorithm 1.

Algorithm 1 Motion consistency detection algorithm based on visual–inertial coupling

Input: current frame Fi, previous adjacent frame Fi−1, set of absolute static points in
the current frame Ωstatic, set of absolute motion feature points in the current frame
ΩDynamic, set of temporarily static feature points in the current frame Ωtemporary,
IMU pre-integration results between consecutive frames Ii−1,i.

Output: probability of feature point set movement in the current frame
P = {p f1 , p f2 , . . . , p fN};

1: for f ∈ Ωstatic
⋃

Ωtemporary
⋃

ΩDynamic do
2: r( f ) = Calculatereprojection( fi−1, fi, Ii−1,i);
3: end for
4: if ΩDynamic = ⊘ then
5: (µ, σ) = MLE(Ωstatic, r fstatic

);
6: for fi ∈ Ωtemporary do

7: p fi
= 1√

2πσ

∫ r fi
2

−
r fi
2

e−
(x−µ)2

2σ2 dx

8: end for
9: else

10: for fi ∈ Ωstatic
⋃

ΩDynamic do
11: dict.insert({s( fi), p fi

(r fi
, µ, σ)});

12: end for
13: (µ̄, σ̄) = arg min(loss(s( f ), ŝ( f )), dict)
14: for f ∈ Ωtemporary do

15: p fi
= 1√

2πσ̄

∫ r fi
2

−
r fi
2

e−
(x−µ̄)2

2σ̄2 dx

16: end for
17: end if

Figures 5 and 6 compare the results of the coarse segmentation algorithm with the
feature-extraction results after IMU correction.

In test image 1, there are three individuals, with only one customer in motion, while the
other two individuals are in a stationary position with minimal movement. However, in the
motion coarse segmentation algorithm based on deep learning, the prior probability of
motion assigned to the “person” feature attribute is high, resulting in misclassification of fea-
ture points falling on stationary individuals as dynamic points (see Figure 5a). In contrast,
due to the introduced IMU-assisted correction method in the motion-consistency-detection
algorithm, some of the misclassifications caused by coarse segmentation are corrected.
As shown in Figure 5b, the number of dynamic features on the stationary customer is
significantly reduced. As shown in Figure 6a, the YOLOv8 network detects four human
objects, but the leftmost individual is not a real human, but a billboard, and the rightmost
individual is just a mannequin. However, in the motion-coarse-segmentation algorithm,
the feature points falling on these two objects are labeled as dynamic features. In com-
parison, the proposed algorithm in this section has fewer misclassifications. The number
of dynamic features mentioned on the billboard and mannequin is significantly reduced,
almost zero. As shown in Figure 6b, two customers in the middle, who did not undergo sig-
nificant movement, should also have a corresponding reduction in the number of dynamic
features on them.
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(a) (b)

Figure 5. Shows the comparison of feature selection results for different algorithms on test image 1.
(a) The coarse segmentation algorithm; (b) the corrected results.

(a) (b)

Figure 6. Shows the comparison of feature selection results for different algorithms on test image 2.
(a) The coarse segmentation algorithm; (b) the corrected results.

4. Results

In the previous sections, the fundamental theory of the VSLAM localization algorithm
proposed in this paper was introduced. In this section, experiments will be designed to
validate the performance of the proposed algorithm. The experiments are divided into
three main parts. Firstly, the performance of the deep learning-based coarse segmentation
algorithm will be validated using the TUM dataset. Since this dataset does not include IMU
measurements, the OpenLORIS [30] dataset will be used to validate the performance of the
feature optimization algorithm based on visual–inertial coupling. Finally, the feasibility of
the proposed algorithm will be verified through real-world environment experiments.

4.1. TUM Dataset Testing Experiment

The TUM RGB-D dataset provides several image sequences containing dynamic ob-
jects in indoor environments. In this paper, we selected the high dynamic range dataset,
specifically the fr3/walking sequence, to evaluate the performance of our coarse segmen-
tation algorithm. The semantic information extraction algorithm we used is based on the
YOLOv8 network for object detection. The experiments were conducted on a Lenovo
laptop, which has an Intel Core i7 CPU processor with a clock speed of 5.0 GHz. It has
14 cores and 20 threads, along with 16 GB of DDR5 memory operating at a frequency of
5200 MHz. The GPU is an NVIDIA GeForce RTX 4060 with 8 GB of VRAM. With Ten-
sorRT acceleration on this device, the semantic information extraction time per frame is
approximately 33.3 ms.

The algorithm proposed in this paper is an improvement over the ORB-SLAM3
algorithm [31]. To validate the performance of the improved algorithm, we compared it
with the ORB-SLAM3 algorithm in terms of localization accuracy on the dataset. The results
are shown in Figure 7. Additionally, we also calculated the root-mean-squared error (RMSE)
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for both algorithms in terms of the absolute trajectory error (APE) and relative trajectory
error (RPE) [32], and the results are summarized in Tables 1–3.

From the above table, it can be observed that the algorithm proposed in this paper
demonstrates improvements over the ORB-SLAM3 algorithm in all four performance eval-
uation metrics, including the ATE, RPE rotation, and RPE translation. In terms of the ATE,
the RMSE improvement rates for the four image sequences are 88.5%, 78.93%, 61.54%,
and 95.31%, respectively, all exceeding 60%. This indicates a significant enhancement in
performance. Therefore, we can conclude that dynamic objects significantly degrade the
localization accuracy of ORB-SLAM3, while the proposed algorithm effectively identifies
and removes dynamic objects in the environment, thereby improving the pose estima-
tion accuracy.

(a) (b)

(c) (d)

Figure 7. Results of the (a) fr3/walking/xyz, (b) fr3/walking/halfsphere, (c) fr3/walking/rpy, and
(d) fr3/walking/static sequences for the TUM dynamic RGB-D datasets. We compared the trajectories
estimated by our methods and by the original ORB-SLAM3 with the ground truth.

Table 1. ATE (in meters) for our method and the original ORB-SLAM3.

Algorithms
Sequences

fr3/w/halfsphere fr3/w/rpy fr3/w/static fr3/w/xyz

ORB-SLAM3 0.1831 0.1552 0.0229 0.2793

Ours 0.0206 0.0327 0.0088 0.0131

Improvement (100%) 88.75 78.93 61.57 95.31
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Table 2. Translational drift of RPE (in meters) for our method and the original ORB-SLAM3.

Algorithms
Sequences

fr3/w/halfsphere fr3/w/rpy fr3/w/static fr3/w/xyz

ORB-SLAM3 0.0147 0.0199 0.0062 0.0118

Ours 0.0130 0.0056 0.0023 0.0095

Improvement (100%) 11.56 71.85 62.90 19.49

Table 3. Rotational drift of RPE (in meters) for our method and the original ORB-SLAM3

Algorithms
Sequences

fr3/w/halfsphere fr3/w/rpy fr3/w/static fr3/w/xyz

ORB-SLAM3 0.0126 0.0169 0.0091 0.0140

Ours 0.0105 0.0134 0.0045 0.0097

Improvement (100%) 16.67 20.71 50.55 30.71

4.2. OpenLORIS Dataset Experiment

To validate the performance of the proposed visual–inertial tightly coupled motion
segmentation algorithm, in this section, the OpenLORIS-Scene-market sequence is utilized
to assess the localization accuracy of our algorithm. This sequence was captured using an
Intel Realsense D400 camera in a supermarket environment. The scene contains a significant
number of pedestrians, including some who are stationary or have minimal movement.
This provides an opportunity to evaluate the localization precision of our algorithm. Due to
the disparate sampling rates of the accelerometer and gyroscope data in this dataset, linear
interpolation is employed to align the accelerometer and gyroscope data to a consistent
frequency for convenient testing of our algorithm in this study.

To validate the feasibility of the algorithm, this section conducts experiments based on
the market dataset and compares the localization results of three algorithms: ORB-SLAM3,
Coarse Segment SLAM (CS-SLAM) based on deep learning for motion coarse segmentation,
and our method (VIS-SLAM) based on visual–inertial tightly coupled feature optimization.
Figure 8 illustrates the localization results of the three algorithms on the market dataset.

To facilitate a clear comparison of the localization accuracy of the three algorithms,
Figure 9 illustrates the absolute errors in the XYZ directions (in the local world coordinate
system) for each algorithm. In order to provide a qualitative description of the errors, Table 4
presents the root-mean-squared errors (RMSEs) for each algorithm in different directions.

From the experimental results, it can be observed that, compared to ORB-SLAM3 and
the motion coarse segmentation algorithm based on YOLOv8, the proposed algorithm
demonstrates improved localization accuracy in all three directions. This is because the
presence of numerous pedestrians in the supermarket scene breaks the assumption of a
static environment, leading to a decrease in the accuracy of the ORB-SLAM3 algorithm.
However, the motion coarse segmentation algorithm may mistakenly classify some static
features as dynamic features and remove them, resulting in a decrease in the number of
features and, subsequently, reducing the localization accuracy. In contrast, the proposed
algorithm effectively corrects the misclassifications introduced by the coarse segmentation
algorithm, thereby improving the localization accuracy.



ISPRS Int. J. Geo-Inf. 2024, 13, 163 15 of 20

Table 4. Root mean squared errors (RMSEs) of different algorithms in different directions.

Algorithms
Direction

x y z

ORB-SLAM3 1.6713 1.2933 2.8324

CS-SLAM 1.1088 0.7695 1.2876

VIS-SLAM 0.7768 0.7616 0.9048

(a) (b)

(c)

Figure 8. Comparison of localization trajectory results for (a) ORB-SLAM3, (b) CS-SLAM, and
(c) VIS-SLAM.

(a) (b) (c)

Figure 9. Error comparison of different algorithms in different directions. (a) x-direction;
(b) y-direction; (c) z-direction.
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4.3. Real-World Experiment

To ensure a dynamic experimental environment, a campus with high pedestrian traffic
was selected as the experimental scene for this study. The mobile experimental setup
traversed areas of high foot traffic, including student dormitories, cafeterias, supermarkets,
and laboratory buildings. This choice of locations allows for a better validation of the
proposed algorithm in this paper. Figure 10 shows some scenes from the experiments.

Figure 10. Partial scenes from the experimental environment.

As shown in Figure 11a,b, the hardware devices and deployment framework for the
experimental setup are illustrated. In this experiment, all sensor data were communicated
and shared through the Robot Operating System (ROS) [33]. The image data were acquired
using a camera sensor, specifically the Realsense D435i camera, in monocular mode. The left-
eye image information was utilized, with an image resolution of 640 × 480 and an input
frequency of 30 Hz. The IMU information was provided by the built-in IMU module of the
Realsense D435i camera. The output frequencies of the accelerometer and gyroscope were
both set to 200 Hz. The u-blox module, in combination with the NTRIP module, provided
corrected latitude, longitude, and altitude information.

(1)Multi-

constellation, Full-

band GNSS Antenna 

(2) Ublox

(3) Camera

(4) TTL-USB

(1)Multi-

constellation, Full-

band GNSS Antenna 

(2) Ublox

(3) Camera

(4) TTL-USB

Connect to the Processor

(a)

Our-SLAM：System node

Image

30Hz

IMU

200Hz

YOLOv8

33Hz
NTRIP node

Ublox_driver node

HF-Net

15Hz

ROS bag

Semantic 

topic
RTCM topic

IMU 

topic

KeyFrame topic

Descriptor topic

Localization 

results topic

PVT topic

Image topic

Our-SLAM：System node

Image

30Hz

IMU

200Hz

YOLOv8

33Hz
NTRIP node

Ublox_driver node

HF-Net

15Hz

ROS bag

Semantic 

topic
RTCM topic

IMU 

topic

KeyFrame topic

Descriptor topic

Localization 

results topic

PVT topic

Image topic

PVT topic

IMU 

topic

(b)

Figure 11. Diagram of experimental hardware platform and software framework. (a) Hardware
device; (b) software framework.

In this paper, real-time RTK data were used as the ground truth for comparing the
localization accuracy between ORB-SLAM3 and the proposed algorithm. Figures 12 and 13
present the localization results of the two algorithms and the error comparison in the three-
axis directions. Table 5 presents the root-mean-squared errors (RMSEs) for each algorithm
in different directions.
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(a) (b)

Figure 12. Comparison of localization results between the two algorithms. (a) ORB-SLAM3;
(b) VIS-SLAM.

(a) (b) (c)

Figure 13. Error comparison of different algorithms in different directions. (a) x-direction;
(b) y-direction; (c) z-direction.

Table 5. Root mean squared errors (RMSEs) of different algorithms in different directions.

Algorithms
Direction

x y z

ORB-SLAM3 2.0080 1.2287 1.6232

VIS-SLAM 1.0456 0.5610 0.7076

Improvement (100%) 47.93 54.34 56.40

From the experimental results, it can be observed that the proposed algorithm ex-
hibits significant improvements in localization accuracy compared to the ORB-SLAM3
algorithm. This indicates that the proposed algorithm effectively suppresses the inter-
ference of dynamic objects in the environment. The errors in all three directions for the
proposed algorithm are less than 1.0 m, with accuracy improvement rates of 47.93%, 54.34%,
and 56.40% compared to the ORB-SLAM3 algorithm in the respective directions. Com-
paring the 3D localization trajectories of the two algorithms, it can be seen that, in certain
sections, the ORB-SLAM3 algorithm exhibits larger drift. This is due to the presence of
numerous pedestrians and vehicles in these sections, which disrupts the assumption of
a static environment and leads to a decrease in localization accuracy. However, the pro-
posed algorithm effectively removes dynamic features, resulting in significantly improved
accuracy and reduced drift in such sections.

To validate the operational efficiency of the non-blocking model proposed in the paper,
a comparison was made between the processing time per frame of image in the semantic
information-extraction thread for both the blocking and non-blocking models, under the
condition that the hardware devices and the semantic information extraction network are
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identical. The unit of measurement is milliseconds (ms), and the comparison results are
presented in Table 6.

Table 6. Comparison of running times of different algorithms in various stages.

Feature Semantic Average Latency

ORB-SLAM3 12.21 ± 4.65 / /

blocking Model 12.21 ± 4.65 33.36 ± 2.18 21.15

Non-blocking Model 12.21 ± 4.65 33.36 ± 2.18 7.74

From the experimental results, it can be observed that the feature extraction time
is consistent across the original ORB-SLAM3 algorithm, the version with the blocking
model added, and the version with the non-blocking model added. For both models, since
the YOLOv8 network is used to extract semantic information, the semantic information
extraction time per frame is the same. However, under the blocking model, each frame
of the image has to wait for the semantic result, resulting in an average extension time of
21.15 ms. In contrast, under the non-blocking model, only the latest frame in the sliding
window needs to wait for the semantic information after feature extraction, which means
approximately one frame out of every three needs to wait. Therefore, the average extension
time is shorter, only requiring 7.74 ms. It can be seen that the non-blocking model can
greatly improve the efficiency of pose estimation calculation.

5. Conclusions

This paper proposes a real-time dynamic SLAM technique based on deep learning
and visual–inertial sensing. To improve system real-time performance, a non-blocking
semantic information extraction method is designed. Under this framework, YOLOv8
object detection is utilized to extract semantic information from image frames. Based
on a hierarchical probabilistic motion model, feature points are assigned different prior
motion probabilities. Additionally, a motion probability propagation model is employed
to compensate for the inability to extract semantic information from all image frames.
To avoid misclassifying static features as dynamic features and removing them, a feature-
optimization algorithm based on visual–inertial coupling is introduced. By calculating
inter-frame pose transformations using IMU preintegration results, the reprojection errors
of feature points are obtained. Furthermore, an adaptive threshold-based feature-selection
algorithm is designed to further enhance the localization accuracy. The experimental results
demonstrate that the proposed algorithm achieves good localization accuracy in dynamic
environments while ensuring real-time performance of the system.

In future work, due to the coarse semantic information extracted by the object-
detection network from images, we hope to introduce a lightweight semantic segmentation
network to improve the accuracy of the prior probabilities of feature points. At the same
time, the motion-probability-grading model proposed in this paper is given based on life
experience, and it may not be applicable in some special scenarios. Therefore, we hope to
propose a visual–semantic–inertial tightly coupled feature optimization method in future
work, which will perform bidirectional screening of features to enhance the robustness of
the algorithm.
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