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Abstract: The prediction of parking space availability plays a crucial role in information systems
providing parking guidance. However, controversy persists regarding the efficiency and accuracy
of mainstream time series prediction methods, such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs). In this study, a comparison was made between a temporal
convolutional network (TCN) based on CNNs and a long short-term memory (LSTM) network based
on RNNs to determine an appropriate baseline for predicting parking space availability. Subsequently,
a multi-head attention (MAT) mechanism was incorporated into an LSTM network, attempting to
improve its accuracy. Experiments were conducted on three real and two synthetic datasets. The
results indicated that the TCN achieved the fastest convergence, whereas the MAT-LSTM method
provided the highest average accuracy, namely 0.0330 and 1.102 × 10−6, on the real and synthetic
datasets, respectively. Furthermore, the improved MAT-LSTM model accomplished an increase of up
to 48% in accuracy compared with the classic LSTM model. Consequently, we concluded that RNN-
based networks are better suited for predicting long-time series. In particular, the MAT-LSTM method
proposed in this study holds higher application value for predicting parking space availability with a
higher accuracy.

Keywords: parking space availability; intelligent transportation; long short-term memory; temporal
convolutional network; deep learning

1. Introduction

The prediction of parking space availability plays a crucial role in information systems
providing parking guidance. With the advancement and refinement of smart cities and
intelligent transportation technology, the demand for more accurate and efficient predic-
tions of traffic flow is growing. In response, these predictions are becoming more refined
and specialized. Moreover, the focus of traffic prediction is shifting from flows along main
roads to streams within peripheral networks. Dynamic updates and accurate predictions
on parking space availability enable users and administrators to make rational decisions
regarding traffic flow within parking lots, facilitating efficient and user-friendly parking
and promoting the balanced utilization of parking facilities and adjacent roads [1,2].

To address the demand for short-term predictions of parking space availability, this
study evaluates the effectiveness and practicality of integrating either a temporal convolu-
tional network (TCN) based on convolutional neural networks (CNNs) or a long short-term
memory (LSTM) network based on recurrent neural networks (RNNs) into an intelligent
parking information system. The two main contributions of this study are as follows:

1. The effectiveness and accuracy of two neural network models—TCN and LSTM—were
compared to identify the most suitable method for single-input single-output time
series prediction problems. For the short-term prediction of available parking spaces,
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three real and two synthetic datasets were used to train and test the network models.
While the TCN has a simple structure, is rapidly trained, and provides high efficiency,
the LSTM network can fully leverage its ability to capture longer historical information
features, achieving a greater accuracy in handling long-term series problems.

2. The LSTM network was optimized by implementing a multi-head attention (MAT)
module. The improved MAT-LSTM network effectively models the internal correla-
tions between temporal data and fully explores high-level temporal features. Through
ablation experiments, it was proven that, at the expense of permissible time costs,
the proposed MAT-LSTM network model successfully captured intrinsic correlations
between temporal data and improved the accuracy of short-term parking space avail-
ability predictions.

The remainder of this paper is structured as follows. Section 2 discusses the literature
related to existing prediction methods. Section 3 describes the different architectures of
TCN, LSTM, and the improved MAT-LSTM. Section 4 provides the results and statistics
regarding the predicted number of available parking spaces (NAP) obtained with the three
networks. Additionally, the results are compared and analyzed, and the advantages and
limitations of each approach in this process are described. Section 5 concludes the work,
discusses challenges and knowledge gaps, and presents opportunities for future studies.

2. Related Work

The essence of parking space availability prediction lies in time series prediction,
which forms the basis for constructing predictive models. With the development of machine
learning, neural-network-based models for time series prediction have gained increasing
attention in recent years. Parking space prediction models using fuzzy neural networks,
backpropagation (BP) neural networks [3,4], wavelet neural networks [5], wavelet trans-
forms, and particle swarm wavelet neural networks [6] have outperformed traditional
linear time series prediction methods.

Neural network models are more suitable for predicting parking space information,
owing to their robustness, fault tolerance, and capability to recognize nonlinear complex
systems [7,8]. To date, series modeling against the backdrop of deep learning has involved
RNNs. Some scholars argue [9] that, when modeling series data, CNNs can outperform
RNNs while circumventing the common drawbacks of recursive models, such as exploding
or vanishing gradients and inadequate memory retention.

Within the RNN framework, representative models include LSTM and gated recurrent
units (GRUs). An LSTM, equipped with memory cells and gating functions, models long-
term dependencies and resolves vanishing gradients, offering significant advantages in
time series prediction [10]. It has been widely applied in fields such as stock prediction in
financial markets and short-term traffic flow prediction [11–14]. Nevertheless, standard
LSTM neural networks encounter problems in time series prediction, such as a high time
consumption and complexity [15]. The accuracy of predicting occupancy rates and available
parking spaces reaches a mean absolute error (MAE) of 0.067 [16] on standard RNNs and a
root mean square error (RMSE) of 5.42 [17] on LSTM models.

CNNs, which were initially developed for image processing, have gained popularity
owing to their simple structure and fast computational speed [18]. Recent studies have
explored the application of CNNs to solving time series prediction problems. For instance,
TCN achieved a mean squared error (MSE) of 0.96 in ultra-short-term single-input and
single-output prediction tasks for NAP [19].

After integrating a spatial attention mechanism, the multi-input and single-output A-
TCN network achieved an accuracy of 0.0061 MSE in short-term prediction tasks involving
congestion indices. Moreover, for small-sample datasets (those with fewer than 400 sets of
data), TCN networks can converge very rapidly [19]. Therefore, in tasks requiring network
efficiency, CNN-based TCNs are preferred.

To further enhance the performance of time series prediction, researchers have focused
on enhancing the capacity of neural networks to capture global information by introducing
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attention mechanisms [20]. The attention mechanism, originally proposed for image
recognition, enables models to effectively focus on specific local information and extract
deeper feature information [21]. Similarly, while processing series data, the attention
mechanism allows networks to focus on critical information while ignoring unimportant
parts. This technique can enhance model performance, especially when long series of data
are used. When provided with the same set of queries, keys, and values, models utilizing
attention mechanisms can learn different behaviors based on the same attention mechanism.
These different behaviors are then combined as knowledge, capturing the dependencies of
various ranges within series (e.g., short-range and long-range dependencies). Therefore,
it might be beneficial to allow attention mechanisms to combine different representation
subspaces using queries, keys, and values. Bhosale et al. [22] were the first to combine
an attention mechanism with an RNN. They calculated alignment–probability matrices
for input and output series in an encoder–decoder model, effectively solving machine
translation issues. Yin et al. [23] proposed an effective method for using the attention
mechanism in CNNs to accomplish machine reading comprehension tasks.

Based on the current research, we identified several questions and explained them in
this work:

1. For short-term predictions of NAP, which performs better—RNN with LSTM or the
structurally simple CNN? In previous studies, CNNs and RNNs were usually dis-
cussed independently. When selecting the network baseline, it is a key prerequisite
to discuss the efficiency and accuracy of CNNs and RNNs in comparing these two
network architectures on the same dataset, which is missing in previous studies. More-
over, different articles use different evaluation metrics, such as MAE in [16], RMSE
in [17], and MSE in [19], which makes it difficult to compare the two frameworks in
the same study or through the results of different studies.

2. If an RNN with LSTM outperforms a CNN, what are its advantages over the CNN?
Are there further methods available to enhance its advantages?

To answer the above questions, we conducted the following research:

1. We simultaneously trained and tested the TCN and LSTM networks on three real
datasets and two synthetic datasets and evaluated their characteristics in terms of
training time, accuracy, and convergence rate.

2. We improved the LSTM network by integrating a preceding MAT module to capture
the features and relationships in long-time series and compared the predictive perfor-
mance of the improved MAT-LSTM network with that of the classic LSTM network.

3. Proposed Approach

This section discusses three types of network architectures: the classic TCN, the classic
LSTM, and the improved MAT-LSTM. The research steps and flow chart are illustrated as
Figure 1.
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and residual blocks to capture historical memory. A TCN employs a one-dimensional con-
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where the value at time t for each layer depends solely on the values of the previous layer 
at time t, t−1, etc., revealing the characteristics of causal convolution. Moreover, the infor-
mation extracted from each layer to the preceding layer is skip-connected, and the dilation 
rate increases exponentially by a factor of two per layer, highlighting the attributes of di-
lated convolution. Owing to the adoption of dilated convolutions, padding (typically 
zero-padding) is required for each layer, where the padding size is (kernel size −1) × dilation rate. 
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Figure 1. The research flowchart and content framework of this paper.

3.1. Classic TCN Architecture

As depicted in Figure 2, the TCN model [19] is built upon the CNN architecture and
employs causal convolutions to suit sequential modeling. It employs dilated convolutions
and residual blocks to capture historical memory. A TCN employs a one-dimensional
convolutional network. The TCN architecture employs causal and dilated convolutions,
where the value at time t for each layer depends solely on the values of the previous
layer at time t, t−1, etc., revealing the characteristics of causal convolution. Moreover, the
information extracted from each layer to the preceding layer is skip-connected, and the
dilation rate increases exponentially by a factor of two per layer, highlighting the attributes
of dilated convolution. Owing to the adoption of dilated convolutions, padding (typi-
cally zero-padding) is required for each layer, where the padding size is (kernel size − 1)
× dilationrate.
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3.2. Classic LSTM Network Architecture

The LSTM [12] network is a variant of an RNN, as shown in Figure 3a. Unlike feed-
forward neural networks, RNNs include hidden states that evolve over time. However,
traditional RNNs encounter the vanishing gradient problem when trained using backprop-
agation through time, rendering them inadequate for handling long-term dependencies
within time series data. Thus, an LSTM was introduced to address this issue. As shown in
Figure 3b, the additional gated units in the LSTM network enable the retention of long-term
patterns from historic time series.
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Formally, the LSTM can be represented as follows: At each time step t, xt represents an
input vector, ct signifies the memory-state vector, and ht is the hidden-state vector derived
from ct.

The LSTM neural network model implements three gate computations, namely the
forget gate, input gate, and output gate, to protect and control the cell state. The specific
computational steps and meanings are as follows, where W∗ and U∗ are weight matrices,
b∗ is the bias vector, and sigmoid(·) serves as the activation function for three types of
gates. The input modulation

∼
ct and output ht often use the hyperbolic tangent tanh(·) as

an activation function. “·” denotes the dot-product operation:

1. Forget Gate Computation: The forget gate decides how much of the cell state from
the previous moment is retained in the current cell state, essentially determining
what information to discard from the cell state. This gate reads ht−1 and xt, then after
passing through a sigmoid layer, it outputs a number between 0 and 1, denoted as ft,
which is multiplied element wise by each number in the cell state ct−1. A value of ft
equal to 0 signifies complete discarding, whereas 1 indicates complete retention. The
output of the forget gate is expressed as:

ft = sigmoid(Wfxt + Ufht−1 + bf) (1)

2. Input Gate Computation: The input gate determines how much of the current input is
retained in the current cell state and consists of two parts. The first part is a sigmoid
layer, which decides which values to update, denoted by it; the second part is a tanh
layer, which creates a new candidate cell state vector,

∼
ct, incorporating the information

to be updated into the cell state. The computations for the input gate are expressed as:

it = sigmoid(Wixt + Uiht−1 + bi) (2)

∼
ct = tanh(Wcxt + Ucht−1 + bc) (3)

3. Updating the Old Cell State: After processing through the input gate, the old cell state
ct−1 is updated to ct by multiplying the old state with ft to discard the information
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that is determined to be discarded and then adding it·
∼
ct, thus completing the updating

of the cell state. It is represented as follows:

ct = ft·ct−1+it·
∼
ct (4)

4. Output Gate Computation: The output gate decides how much of the current cell
state to output, with a sigmoid layer determining which part of the cell state will
be outputted. The cell state is processed through a tanh function to yield a value
between −1 and 1, which is then multiplied by the output of the sigmoid gate, thus
only outputting the determined part of the state. This is represented as:

ot = sigmoid(Woxt + Uoht−1 + Voct + bo) (5)

ht = ot·tanh(ct) (6)

When predicting NAP, these three types of gates regulate the information available
from the parking spaces entering and leaving the memory cell. The input gate regulates the
quantity of new information (e.g., new available parking places) allowed into the memory
cell, the forget gate determines how much information to retain in the cell, and the output
gate defines the amount of information that can be outputted. The gate architecture of an
LSTM enables it to strike a balance between short-term and long-term dependencies in
time series data regarding NAP.

3.3. Improved MAT-LSTM Network Architecture

The key to successfully completing long-time series prediction tasks lies in thoroughly
exploring the deep temporal features and abstracting the inherent relationships within the
context. This study proposes an improved MAT-LSTM network that effectively extracts his-
torical temporal features and internal correlations from long-time series and subsequently
leverages these properties to enhance its predictive accuracy.

In deep learning models, attention mechanisms are commonly realized by incorpo-
rating additional network layers that can learn how to calculate weights and applying
these weights to the input signals. Common attention mechanisms include self-attention
and MAT, among others. The integration of MAT with neural network models enables the
extraction of internal dependencies among elements at different positions within a feature
series. This study employs MAT to extract crucial information from long-time series.

As shown in Figure 4, by designing an attention mechanism with h heads, we can
independently train h sets of different linear projections to transform the items to be queried
(queries) or stored (keys) in the network, as well as specific pieces of information kept in
the memory (values). Subsequently, these h sets of transformed queries, keys, and values
are concurrently subjected to attention pooling. Finally, the h attention pooling outputs are
concatenated and transformed through another learnable linear projection to generate the
final output.

In the realm of deep learning, the application of MAT enables the computation of a
weighted context vector. This vector is derived by evaluating the similarity between the
present and preceding temporal states. Subsequently, this vector is assimilated into the
present input, harnessing the principles of self-attention mechanisms. This strategy aug-
ments the model’s proficiency in discerning complex patterns through the amalgamation
of information across various representational subspaces. Significantly, MAT enhances the
model’s aptitude for focusing on heterogeneous information sources situated at disparate
spatial locations, thereby ameliorating its pattern recognition and learning efficacy.
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Figure 4. Schematic of MAT structure. FC represents a linear transformation, Attention indicates the
application of attention -pooling to each head and Concat denotes the concatenation of the h attention
pooling outputs.

The procedural phases of the MAT consist of the ensuing steps:

1. The inputs denoted as queries (Q), keys (K), and values (V) undergo linear transfor-
mation, reformulating the matrices Q, K, and V, which possess a dimension of dmodel,
into correspondingly dimensioned spaces Q ∈ Rm×dk , K ∈ Rm×dk , and V ∈ Rm×dv .
This transformation propels the input matrices into more narrowly defined subspaces,
thus permitting diverse attention heads to discern distinct facets of the data.

2. The scaled dot-product attention mechanism is deployed to deduce the outcomes,
as depicted in Figure 5. Initially, the dot product of Q and the transpose of K (KT)
are computed and then scaled by dividing by the square root of dk (

√
dk), a factor

that mitigates against the softmax function’s propensity for vanishing gradients
during training—a common occurrence when dot products are excessively large.
Subsequent to the scaling, the softmax function is applied to each row of the scaled
scores, engendering a matrix of attention weights that reflect the significance of each
corresponding value in relation to each query. Ultimately, the results from the softmax
function are multiplied by V, culminating in the output matrix for each attention head,
which represents a weighted summation of the values, with the weights mirroring the
attention each value receives from the respective queries.

3. These aforementioned stages are reiterated, culminating in the amalgamation of the
respective results. The outputs derived from all attention heads are then concatenated
along the dimension of the features to formulate a unified matrix that embodies the
information accrued from all heads.

4. The assembled matrix from step 3 is subjected to an additional linear transformation.
The matrix resulting from this process serves as the input for the subsequent layers
within the neural network or constitutes the final output in instances where it pertains
to the terminal layer in a sequential processing model.

Furthermore, it is noteworthy that the scaled dot-product attention is tantamount to a
normalized version of the dot-product attention. In essence, given that the input matrices
Q and K are of dimension dk and V is of dimension dv, the operation executes the matrix
multiplication of Q and each K, scales the product by

√
dk, and thereafter applies the

softmax function to ascertain the weights. The output matrix is articulated as follows [22]:

Attention(Q, K, V) = softmax

(
QTK√

dk

)
V (7)
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MAT-LSTM amplifies the model’s capability to process sequences in a manner that
is both efficient and effective, thereby facilitating concurrent concentration on disparate
positions and representational subspaces. This equips the model with an instantaneous
and comprehensive grasp of the input data.

4. Experiments and Results

This section first introduces the parking lot datasets analyzed in this study, then
presents the obtained results, and finally compares the predicted and ground truth values.
Additionally, it evaluates and contrasts the performances of the three methods employed
in the analysis.

4.1. Datasets

In this study, three representative parking lots, labeled D1, D2, and D3, were selected
as research subjects. These parking lots are categorized as small- and medium-sized closed
off-road facilities, with parking capacities of 157, 132, and 151, respectively. As illustrated
in Figure 6, the three parking lots are situated adjacent to each other; however, the data
regarding the NAP vary due to differences in geographical locations and surrounding
public amenities. Consequently, the three datasets can be cross-referenced.

Among the selected lots, D1 stands out as the busiest, primarily due to its proximity
to the subway, resulting in more pronounced fluctuations in NAP, as depicted in Table 1
and Figure A1. D2, located adjacent to D1, shares similar geographical features and
transportation accessibility, resulting in minimal variance in the data when D1 diverts
the traffic flow. Meanwhile, D3, positioned at a distance from the first two, ranks second
in business, owing to its essential function within its locale. Typically, each parking lot
operates from 08:00 to 23:59 and closes from 00:00 to 07:59 for maintenance, a period during
which no vehicular access is permitted, except on special occasions.

Table 1. Data validations and errors.

Parking Slot Np,True Np,Cal Error

D1 152 152 0
D2 132 132 0
D3 150 150 0
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Cameras located at the entrance and exit of each parking lot accurately recorded the
arrival and departure times of each vehicle, which were saved as parking records in the
parking management system. The original records of the parking lot management system
were processed to calculate the NAP in real time by determining the net increase in traffic
flow as follows. If the numbers of vehicles passing through the entrance and exit during
an interval ∆t from t0 to t1 are represented by qin,∆t and qout,∆t, respectively, then the net
increment in vehicles in the parking lot during such a period is:

q∆t = qin,∆t − qout,∆t (8)

Given the NAP Nt0 in the field at time t0, the NAP Nt1 at time t1 can be determined as:

Nt1 = Nt0 − q∆t (9)

The entrance and exit records analyzed in this study from the three parking lots
spanned the entirety of 2021. For each parking lot, indexed as p, the initial NAP at time t0,
denoted as Np,t0

, corresponds to the total capacity of the parking lot Qp minus the count of
vehicles in the parking lot upon its closure on 1 January 2021, represented as np,t0 , i.e.,

Np,t0
= Qp − np,t0 (10)

To verify the accuracy of the collected data, a verification point was established on
2 October 2021. The actual and the calculated values of NAP, denoted as Np,True and Np,Cal,
respectively, were compared. Np,True was counted manually in the field during the closure
of the parking lot to ensure that the number did not change during the fieldwork. The
results of this comparison are presented in Table 1. All NAP data of D1, 2, and 3 in 2021 are
shown in Appendix A.

Table 1 indicates that the calculated NAP aligned well with the actual value, demon-
strating the accuracy of the preprocessing method. The original data from parking lots D1,
D2, and D3 were processed using the proposed algorithm to derive time series data repre-
senting the NAP per minute for each parking lot throughout 2021. This process resulted
in the formation of datasets D1, D2, and D3, each with a sequence length of 525,600, as
depicted in Figure A1. The analysis revealed that, due to the similar geographical locations,
attributes, and scales of the three parking lots, the trends, extreme values, and variances
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of the datasets were also similar. Therefore, these datasets are representative and able to
characterize the overall trend of the NAP in the same types of parking lots in the area. To
assess the scalability and applicability of the algorithm, synthetic datasets S5 and S10 were
generated as multiples of the summation of the values from the three real datasets plus a
set of random numbers, as follows:

S5i = (D1 i + D2i + D3i)× 5 + rand(0, 10) (11)

S10i = (D1 i + D2i + D3i)× 10 + rand(0, 50) (12)

where rand(a, b) is a random integer between a and b.
The expanded dynamic range of the synthetic datasets allows for the evaluation of

the model’s performance with larger sample values, considering its potential extension to
medium and large parking lots. By incorporating random numbers with varying dynamic
ranges into the equation, the model’s ability to produce stable outputs across datasets with
different degrees of variation is assessed.

The sample standard deviation (SD) is computed as:

S =

√
∑n

i=1(xi − x)2

n − 1
(13)

where xi, i = 1, 2, . . . , n is the sample sequence and x is the average of the sequence. SD
indicates the degree of dispersion of the data. A larger SD implies a more widely spread
distribution of data points and a greater variability within the dataset.

The main characteristics of the datasets are provided in Table 2. An analysis of the
table reveals that the dispersion of the real dataset D2 is the lowest, indicating relatively
stable data changes. Moreover, the ranges and dynamic ranges of D1, D2, and D3, along
with the order of magnitude of the sample values, exhibit similarities, enabling repeated
verification to assess the stability of the prediction model. Synthetic dataset S5 exhibits
the largest dispersion, whereas synthetic dataset S10 has the largest range. Additionally,
the sample values in both synthetic datasets are one order of magnitude higher than those
of the real datasets. Consequently, the prediction model can be validated from various
perspectives using real and synthetic datasets, facilitating a discussion on its usability in
parking prediction tasks.

Table 2. Characteristics of the datasets.

Datasets Attribute Min Max SD

D1 Real 0 157 58.68
D2 Real 0 132 29.00
D3 Real 0 151 42.22
S5 Synthetic 1 2210 1245.83
S10 Synthetic 1 4450 622.89

In this study, 4/5 lengths of the total data set were allocated to the training set and the
last 1/5 length time series was allocated to the test set, corresponding to days 1–292 and
293–365 of 2021, respectively.

4.2. Network Evaluation Method

Employing a unified evaluation metric is essential to ensure the comparability of
different methods. In moments of extreme congestion, the NAP may reach zero, rendering
proportional functions unsuitable due to the potential for a null denominator. Hence, this
study utilizes the mean-squared error (MSE), a widely employed evaluation metric in deep
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learning tasks, as the loss function to train and assess the models. The MSE, also referred to
as the L2 loss, can be mathematically expressed as:

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (14)

where yi is the input data, i.e., the training set time series; ŷi is the output data, i.e., the
network’s predictions; and m is the series length.

4.3. Training and Results

The computer utilized for training featured a six-core AMD Ryzen 5 3600 CPU clocked
at 3.59 GHz and an RTX 3060 GPU with 12 GB of memory. The software employed included
Python 3.8.16, PyTorch 1.8.1, and Cuda 11.1. The model hyperparameters were specified,
as shown in Table 3. To mitigate memory consumption during training, particularly due to
the large values in the S5 and S10 datasets, the datasets underwent normalization, scaling
the time series to values within a range of [0, 1].

Table 3. Network hyperparameters.

Model

Hyperparameter

Batch Size Epochs Layers Hidden
Units/Layer

Kernel
Size

Learning
Rate

TCN 128 300/120 8 30 13 0.004

LSTM 128 300/120 8 30 13 0.0001–
0.001

MAT-
LSTM 128 300/120 8 30 13 0.0001

Figure 7 illustrates the NAP predicted by the TCN, LSTM, and MAT-LSTM models,
employing the D1 dataset as a case study. All three methods provided accurate NAP predic-
tions, demonstrating similar trends and closely resembling the ground truth. The prediction
accuracies and training times across various datasets are listed in Tables 4 and 5, respectively.
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Table 4. Prediction accuracies of TCN, LSTM, and MAT-LSTM on different datasets.

Model

MSE of the Real Dataset MSE of Synthetic Dataset

D1 D2 D3 Mean of
D1&D2 S5 S10 Mean

TCN 0.7903 0.3321 0.3424 0.5612 0.0046 0.0067 0.0057
LSTM 0.0279 0.0592 0.0005 0.0436 2.922 × 10−6 0.198 × 10−6 1.560 × 10−6

MAT-LSTM 0.0145 0.0526 0.0321 0.0336 2.043×10−6 0.161×10−6 1.102×10−6

Table 5. Training times of TCN, LSTM, and MAT-LSTM on different datasets.

Model
Training Time on Real Dataset (300 Epochs) Training Time on Synthetic Dataset (120 Epochs)

D1 D2 D3 Mean S5 S10 Mean

TCN 02:11:49 02:12:06 02:12:19 02:12:05 00:53:12 00:53:26 00:53:19
LSTM 01:56:44 01:59:01 01:57:10 01:57:38 00:47:57 00:47:59 00:47:58

MAT-LSTM 02:15:14 02:18:04 02:17:05 02:16:48 00:55:54 00:56:07 00:56:01

4.4. Accuracy and Efficiency Comparison between LSTM and TCN

As indicated in Table 4, both the TCN and LSTM networks attained a high accuracy on
both the real and synthetic datasets. The MSE convergence curves for TCN and LSTM are
illustrated in Figure 8. Both methods converged rapidly within 50 epochs and stabilized
after 100 epochs. This observation suggests the efficacy of both approaches for datasets
exhibiting changing trends, similar characteristics, and varying sample sizes.
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Upon a detailed comparison between the accuracy and efficiency of the TCN and
LSTM, the following observations were made:

1. LSTM exhibited instability. As previously mentioned, datasets D1, D2, and D3 serve
as repeated validations to assess the network stability. If a method performs similarly
across these datasets, it has a good stability and repeatability. However, Table 4 reveals
a two-order-of-magnitude difference in the MSE of LSTM between the D3 data and
D1 and D2 data, suggesting a weak stability. Therefore, the accuracy comparisons
below focus solely on the D1 and D2 results, excluding D3.

2. LSTM demonstrated a higher NAP prediction accuracy than the TCN. On the real
datasets, LSTM achieved an average MSE of 0.0436, surpassing the TCN’s average of
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0.5612. On the synthetic datasets, LSTM’s average MSE of 1.560 × 10−6 exceeded the
TCN’s 0.0057.

3. Regarding the average training time per epoch, LSTM required less training time
than the TCN. Table 5 illustrates that, for datasets comprising 525,600 data points and
300 training epochs, the average training time for LSTM was 01:57:38 compared to
that of TCN, which was 02:12:05.

4. LSTM initially exhibited larger errors than the TCN. As depicted in Figure 8, for
identical data, the initial MSE of LSTM was two orders of magnitude greater than that
of the TCN. Particularly within 10 epochs, the MSE curve of the TCN significantly
outperformed that of LSTM. However, after 30 epochs, the slopes of both curves
gradually decreased, and the curves converged.

For the data analyzed in this study, it is evident that LSTM achieved a significantly
better prediction accuracy than the TCN. However, LSTM needed more training epochs,
consistent with the inherent characteristics of RNN and CNN networks. Given that the TCN
could develop a model with a certain level of accuracy in a shorter duration, it is suitable
for prediction tasks that prioritize time efficiency over stringent accuracy requirements.
Examples include rapid training and prediction scenarios involving real-time data analysis.

4.5. Improvement of MAT-LSTM

The effect of MAT on the LSTM network was evaluated, and the results of MAT-LSTM
were compared with those of LSTM. Based on the preceding analysis, this comparison was
not conducted on D3 owing to the unstable LSTM output in this dataset.

1. MAT-LSTM enhanced the prediction accuracy. Table 4 shows that, when comparing
the test set MSE of the two networks, MAT-LSTM achieved a significantly higher
prediction accuracy on D1 and D2 compared to LSTM. Overall, MAT-LSTM exhibited
a 23% reduction in the average MSE compared to the traditional LSTM, indicating
a substantial accuracy improvement owing to the network enhancement. In the D1
dataset, MAT-LSTM even achieved a 48% higher accuracy than LSTM. While the
accuracy of LSTM was marginally higher than that of MAT-LSTM in the initial stages
of training on the S5 and S10 synthetic datasets, after multiple training rounds, MAT-
LSTM achieved a final average precision of 1.102 × 10−6, surpassing that of LSTM of
1.560 × 10−6 by 29%.

2. The convergence speed of MAT-LSTM was accelerated. As depicted in Figure 9,
MAT-LSTM attained a lower MSE within the first five epochs and reached a steady
state earlier than LSTM on datasets D1, D2, and D3. In contrast, the MSE of the
conventional LSTM required 10–40 runs to decrease to a similar level as that of MAT-
LSTM. However, on the S5 and S10 synthetic datasets, both networks essentially
converged simultaneously, possibly because the normalization process expedited the
decline of the loss function. Both networks exhibited a significant downward trend
on the S5 and S10 datasets within five epochs and stabilized thereafter.

3. MAT-LSTM required more computational time. The addition of MAT increased the
computational workload, increasing the time for each training cycle. As indicated in
Table 5, MAT-LSTM consumed 16% more training time per cycle than LSTM for the
D1, D2, and D3 datasets, and 20% more for the S5 and S10 datasets.

In conclusion, the enhanced MAT-LSTM model significantly improved the prediction
accuracy and compensated for the slow convergence speed of LSTM. However, the intro-
duction of the MAT mechanism entailed increased computational requirements, potentially
elevating both time and hardware costs.
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5. Discussion

In this study, we investigated the performances of two representative neural network
architectures, CNN and RNN, in NAP prediction tasks. For long-time series prediction
tasks, minimizing the prediction error at each timestep, which may propagate to future
timesteps, is crucial.

While RNN-based LSTM demonstrated a higher prediction accuracy, it needed more
computational time and resources. Consequently, it is well-suited for periodic system main-
tenance and error correction. In contrast, the CNN-based TCN model offered high training
efficiency and a small memory footprint, making it advantageous for tasks requiring swift
qualitative and quantitative predictions, such as dynamic traffic- low prediction, short-term
forecasts, and early disaster warnings. The operation of the TCN places less strain on
hardware, enabling the completion of training and prediction tasks even on a personal
computer with the necessary hardware.

Therefore, considering different application scenarios and target requirements, these
two network models, each with their unique strengths, have great potential in the field of
traffic flow prediction.

Efforts are ongoing to improve the prediction of parking availability. In future work,
the applicability of the algorithm can be explored across various practical aspects, including
the impact of time resolution on prediction accuracy. While the dataset used in this
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study comprised minute-by-minute time steps, yielding satisfactory prediction results, it is
essential to assess the predictive efficacy when applied to datasets with different time step
resolutions. For a given time series, a longer step size results in shorter sequence lengths
within the same period, capturing more low-frequency information and less high-frequency
information. Conversely, shorter time steps lead to denser sampling, capturing more high-
frequency information but consuming more storage and computing resources. Thus, in
practical applications, time step size is a critical factor influencing system performance,
closely tied to the characteristics of the actual data.

Future research can delve into these points:

1. Within a reasonable range, more universal algorithm models should be explored. The
algorithm proposed in this study only relies on historical parking availability time
series, which limits the universality of the algorithm model. Specifically, it needs to
be trained on the dataset of each parking lot to obtain targeted models. In practical
application, our ultimate expectation is a more universal unified model, whose algo-
rithm is applicable to the prediction of parking space availability in different regions
and different types of parking lots.

2. Optimizing the prediction length should be aimed for. Prediction errors tend to ac-
cumulate over time, with long-term predictions generally being less accurate than
short-term ones. While short-term predictions offer higher confidence in their accu-
racy, they require more intensive training and computation, potentially leading to
redundant computation and resource wastage. By using the same historical data to
predict different time lengths, comparing their accuracies and weighing computational
requirements, an optimal prediction period can be determined.

3. Studying a multi-input, single/multi-output network model to explore the impacts of
multiple explanatory variables on response variables should be conducted, which can
be used to predict the number of highway accidents [24] and incidents of exceeding
the bridge design traffic load [25]. In this example, the response variable can be the
average availability of a parking lot within a specific time window, and the explana-
tory variables can include time patterns (hours of the day, days of the week, and
holidays [26,27]) and contextual factors (weather conditions [28–30], characteristics of
the parking lot in the area, characteristics of the building/enterprise served by the
parking lot [31], and so on). This method will simultaneously improve the generaliza-
tion of predictive models in multiple parking lots, thereby promoting their practical
applicability to stakeholders.

4. Although ANNs are considered “black box” models, the method of using feature
importance indicators can effectively rank predictive variables based on their sig-
nificance, thereby revealing the impact of each predictive variable on the response
variable. However, owing to the complexity and variability of transportation, research
in this area remains challenging, as the differences in the attributes, user behavior
characteristics, and other aspects of each parking lot are significant and may change
over time. Therefore, research on this issue should be both targeted and universal,
combining the individual attributes of parking lots for analysis and summarizing
statistical patterns based on a large number of datasets.

6. Conclusions

With the advancement and enhancement of intelligent transportation systems, the de-
mand for NAP prediction is increasing. Effective NAP prediction optimizes the use of urban
transportation infrastructure, reducing ineffective and disorderly traffic flow. This study
evaluated the accuracy and efficiency of two mainstream neural network models for time-
series prediction: the RNN-based TCN and CNN-based LSTM for NAP prediction tasks.

The training and testing results on real and synthetic datasets demonstrated that the
RNN-based LSTM network could memorize and use historical time series, achieving a
higher accuracy in long-time series prediction tasks. Building upon this foundation, MAT
was incorporated into the LSTM network to create MAT-LSTM. This improved network
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effectively modeled internal temporal correlations and fully explored high-level temporal
features. It achieved an average prediction accuracy of MSE = 0.0336 and 1.102 × 10−6

on real and synthetic datasets, respectively. Additionally, it realized average accuracy
improvements of 23% and up to 48% (dataset D1) on real datasets and converged faster
than LSTM. These results thoroughly illustrate the effectiveness and application potential
of the enhanced method.
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Appendix A

The NAP curves of D1, D2, and D3 are depicted in Figure A1. Remarkably, the curves
from July 21 to 23 exhibit differences compared to those of other periods due to a severe
meteorological disaster. Its adverse impact persisted, affecting travel volume into August,
thereby resulting in a notable discrepancy between the curves during this period and those
of other times.

https://github.com/sallyshangke/MAT-LSTM.git
https://github.com/sallyshangke/MAT-LSTM.git
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