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Supplementary Material S1 

 

Pharmacokinetic Data Analysis Methods 
 

Structural Models 
The structural models tested in this analysis were 1, 2, and 3-compartment models with 
either linear or nonlinear elimination.  

General Pharmacokinetic Modeling Considerations 

Modeling was performed using the First Order Conditional Estimation Method (FOCE). A log-
transform both sides (LTBS) approach for the residual error model was implemented. 
Interaction is unnecessary because the residual error model is homoscedastic, and the 
interaction method is only relevant for proportional error models [Error! Reference source 
not found.]. 

The asymptotic standard errors (SEs) and nonparametric bootstrapped confidence intervals 
(CIs) estimated the parameter precision. Other model statistics were evaluated, such as 
etabar and associated p values.   

The final basic structural model was selected based on the goodness-of-fit as judged by the 
change in the objective function (OBJ) and various diagnostic plots [predicted 
(PRED)/individual predicted (IPRED) versus observed concentrations, conditional weighted 
residuals [(C)WRES] /individual WRES (IWRES) versus time, CWRES /IWRES versus 
PRED/IPRED).  

Statistical Model for Pharmacokinetic Inter-Individual Variation 

Unexplained inter-individual variability (IIV) in structural model parameters was estimated 
using the following error model: 

j
j eTVPP η⋅=  

In this equation, Pj is the individual value for the PK parameter [i.e., clearance (CL)] in the jth 
individual, and ηj is an independent random variable with a mean of zero and variance ωP

2. 
This error model assumes a log-normal distribution for the Pj values. Estimates of inter-
individual variance in P are presented as the square root of ωP

2, which approximates the 
coefficient of variation for a log-normally distributed quantity.   

Skewness and kurtosis of the eta distributions were evaluated graphically and did not show 
substantial skewness or kurtosis; therefore, transforms were not evaluated. 

The highest feasible number of variance terms was included in the OMEGA matrix.  
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Statistical Model for Pharmacokinetic Residual Variation 

Plasma concentration data were evaluated using an LTBS approach. In this case, the 
difference between model-predicted concentrations and observed concentrations was 
modeled with a proportional error model (additive on the log scale): 

C ij = ?C ij + ε 2 ij  

This approach allows simulations without the model producing negative concentration 
values and stabilizes model performance. Examples of potential sources of residual 
variability include assay error, incorrect model specification, and incorrect dose and/or 
sample records; however, procedural errors such as the latter two examples above may also 
be reflected in ωP

2. 

Covariate Models 
The covariate models used in this analysis were defined to represent covariate influences 
as "shifts" in the parameter of interest from the parameter value observed in a hypothetical 
"reference" subject. The reference subject was defined as a subject with demographic 
factors equal to the median (weight, age, etc.) or most prevalent (sex, race, etc.) 
demographics in the dataset. Covariates were not centered due to the known issues with 
this procedure (e.g., the ability for parameter values to become negative when a subject 
covariate value is substantially lower than the reference value, generally less numerical 
instability than normalizing provides). However, covariates were normalized to the 
approximate median or a reference value (e.g., weight of 70 kg) as this avoids the issues 
associated with centering. 

Continuous covariates, such as body surface area (BSA), were modeled using the general 
equation: 

i
i

n
ipopP θcovTVP 1=Π•=       

Where TVP represents the model predicted PK parameter [apparent CL (CL/F), apparent 
central volume (V1/F), apparent intercompartmental clearance (Q/F), apparent peripheral 
volume (V2/F)] for the "typical" individual with covariate value(s) covi, Ppop represents the 
population central tendency for the PK parameter TVP, covi represents the individual value 
for the covariate normalized for the population means, and θi represents a scale factor. With 
this model type, if θi=0, the covariate's influence is dropped from the model; if θi=1, a directly 
proportional relationship is specified; and if θi is less than or greater than 1, a non-linear 
relationship is specified. Negative θi values specify a non-linear inverse relationship. 
Diagnostic plots were examined during the development of the model to assess the 
appropriateness of covariate models. 

Categorical covariates, such as sex, were modeled using the general equation: 

i
i

n
ipopP cov
1TVP θ=Π•=       
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In this equation, θi is a direct proportionality constant. With this model type, θi is fixed to 1 
for the reference subgroup (i.e., males) and estimated for the test subgroup (i.e., females) 
since the values of the covariates will be 1 for reference and 0 for the test.  

Covariates Assessed 
The covariates listed in Table S1 were assessed for influence on the PK variability of 
posiphen. 
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Table S1 Planned Covariate Evaluations 
Parameter Covariates 

Clearance 

Age, Height, Bodyweight, Body Mass Index, Body Surface Area, Albumin, 
Alkaline Phosphatase, Alanine Aminotransferase, Aspartate 

Aminotransferase, Bilirubin, Creatinine Concentration, Creatinine 
Clearance, 

Hemoglobin, Platelets, Dose, Sex, Race, Subject Type, Ethnicity 
Absorption Rate Constant Fed State, Dose level, Race, Sex, Bodyweight 

Relative Bioavailability Fed State, Dose level 
Inter-compartmental clearances 

(Q) Age, Bodyweight, Body Mass Index, Body Surface Area, Sex, Subject Type 

Volumes of Distributions Age, Bodyweight, Body Mass Index, Body Surface Area, Sex, Subject Type 
 

Model Selection Criteria 
Decision-making during model building was guided by evaluating the change in the OBJ 
between model runs, evaluating the magnitude of inter-individual and residual variance, and 
examining residual diagnostic plots. The chi-squared test (p<0.01) for the log-likelihood 
difference in OBJ between nested models with degrees of freedom equal to the difference in 
the number of parameters between models was used to declare the superiority of one 
model over another. The p<0.01 corresponds to a reduction in OBJ of  ≥ 6.64 when 
comparing models that differ by one parameter. The Akaike Information Criteria (AIC) was 
used to compare non-nested models and models with the same number of parameters. 

The covariance step was implemented with each NONMEM run, and standard errors for 
parameter estimates and the correlation between parameters were evaluated. Base models 
that resulted in parameter estimates with high associated standard error (> 35% of the 
parameter estimate) and models with a high degree of correlation between parameters 
(>90%) were carefully evaluated and re-parameterized or possibly rejected. The superior 
model should have also had an associated reduction in the magnitude of inter-individual 
and/or residual variance estimates and improved residual plots. 

Covariate analysis proceeded by separately examining the influence of each covariate alone 
on the base model. The p-value was used to rank the resulting covariate models for the 
likelihood ratio test (LRT) comparison with the base model (adjusted for the number of 
additional parameters in the covariate model). Those with a p-value less than 0.01 were 
considered in more detail. Those covariates that were identified singly were pooled in 
various combinations. The model with all candidate covariate relationships was declared 
the "full" model and subjected to a backward elimination process using a p-value of 0.005 
for the LRT comparison. Therefore, a covariate was considered significant if the p-value for 
removing the covariate from the full model is less than 0.005, corresponding to a decrease 
in the OBJ by >7.9 points. 

The final covariate model was chosen based on models with a statistically significant 
improvement in the objective function value after forward addition and backward deletion. 
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The model passed the covariance step and had a condition number less than 20, had 
precise estimates of the covariate parameter (asymptotic se% < 50%), and reduced the 
between-subject variability (BSV) of the associated population parameters to a clinically 
important extent (> 5% reduction in BSV).  
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Preliminary Evaluation of Final Model 
The preliminary evaluation of model performance was based on the parameter estimate 
reliability and the stability of the model. The evaluations described below were conducted 
on the base (i.e., no covariates) and the final model (i.e., including covariates). 

Model Stability 
Where feasible, model stability was tested by evaluating the condition number. The 
condition number is calculated as the square root of the ratio of the largest to the smallest 
eigenvalue of the correlation matrix of the parameter estimates. Consequently, condition 
numbers can be calculated if the $COV step is completed successfully. The condition 
number is acceptable if it indicates that the omega matrix is well-conditioned. The condition 
number was used to ascertain the stability of parameter estimates. A condition number of 
less than 20 suggests that the degree of collinearity of the parameter estimates is 
acceptable. A condition number over 100 indicates that the model may be unstable due to 
high collinearity [Error! Reference source not found.]. In such cases, the model was 
simplified, the condition number re-computed, and the model re-evaluated. 

The estimates of eta-bar and the associated p-values from the model output were recorded. 
An etabar value should be near 0, and the p-value should be near 1. 

Finally, where feasible, symmetric 95% CIs were computed based on the asymptotic 
standard errors of the parameter estimates.  

Parameter Shrinkage 
One potential problem with population analysis is the tendency of the individual parameter 
estimates to "shrink" toward the mean value. This shrinkage is usually associated with too 
little data from each individual to provide a robust individual parameter estimate. When the 
individual parameter estimates exhibit substantial shrinkage, they no longer reflect the 
individual PK behavior, affecting derived parameter estimates such as the area under the 
concentration-time curve (AUC). Therefore, the extent of Bayesian shrinkage was assessed 
to evaluate the current database's ability to provide adequate individual parameter 
estimates for further derived parameter values. Inter-individual parameter shrinkage was 
evaluated before the inclusion of covariates into the model. Parameter shrinkage is a 
standard output from NONMEM. Small values for shrinkage (i.e., less than 30%) indicate 
good individual estimates of a parameter of interest, while large values would indicate poor 
individual estimates of a parameter of interest [Error! Reference source not found.]. In 
addition to the computation of shrinkage, frequency histograms or quantile-quantile (QQ) 
plots were constructed to visually assess the distribution of Bayesian estimates of the 
random effects. 

Final Model Predictive Performance 
Bootstrap Methods 
If possible, the CIs of the parameters were taken from the asymptotic standard errors of the 
model. Bootstrapping was also used to evaluate parameter precision for final models. 
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Bootstrap methods are re-sampling techniques for assessing uncertainty. They are useful 
when inference is based on a complex procedure for which theoretical results are 
unavailable or to verify the usefulness of standard approximations for parametric models 
[Error! Reference source not found.]. Because bootstrapping allows the parameter values 
to converge independently, a reasonable estimate of the confidence intervals is generated. 
While asymptotic normality is a property of large sample analyses, the sample size is 
generally insufficient to justify this assumption in population pharmacometrics. Therefore, 
confidence intervals based on the standard errors of the typical values of parameter 
estimates can underestimate the uncertainties of these parameter estimates. 

Five hundred bootstrap datasets were generated and run using the final model. The 
percentile bootstrap confidence intervals were constructed by taking the lower 5% and the 
upper 95% value of each parameter estimate from runs that converge successfully, as this 
interval should cover the true value of the parameter estimate approximately 90% of the 
time without imposing an assumption of symmetry on the distribution. 

Visual Predictive Check 
A VPC [Error! Reference source not found.] was conducted. Stratified VPCs based on dose 
level were constructed. For the final model evaluation, the 2.5th and 97.5th prediction 
intervals were constructed by simulating replicates of the dataset from which the model was 
developed. The observed data were then overlaid and compared to the prediction intervals. 
For the model to be acceptable, approximately 2.5% of the observed data should lie above 
the 97.5th prediction interval and 2.5% below the 2.5th prediction interval. 
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Figure S1. (a) Final model parameters; (b) between patient variability and model diagnostic; 
(c) Basic Goodness of Fit plots; (d) Visual Predictive Check. 
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