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Abstract: There has been a growing interest in studying the communication of gut microbial metabo-
lites between the gut and the liver as liver fibrosis progresses. Although 3-Indolepropionic acid
(IPA) is regarded as a clinically valuable gut metabolite for the treatment of certain chronic diseases,
the effects of oral administration of IPA on hepatic fibrosis in different animal models have been
conflicting. While some mechanisms have been proposed to explain these contradictory effects, the
direct impact of IPA on hepatic fibrosis remains unclear. In this study, we found that IPA could di-
rectly activate LX-2 human hepatic stellate cells in vitro. IPA upregulated the expression of fibrogenic
marker genes and promoted the features associated with HSCs activation, including proliferation and
contractility. IPA also increased reactive oxygen species (ROS) in mitochondria and the expression
of inflammation-related genes in LX-2 cells. However, when a ROS-blocking agent was used, these
effects were reduced. p38 and JNK, the downstream signaling cascades of ROS, were found to be
required for the activation of LX-2 induced by IPA. These findings suggest that IPA can directly
activate hepatic stellate cells through ROS-induced JNK and p38 signaling pathways.

Keywords: gut–liver axis; 3-Indolepropionic acid; HSCs; liver fibrosis

1. Introduction

Liver fibrosis is a common pathological process that occurs in chronic liver diseases,
such as chronic viral infection, alcoholic liver disease (ALD), and non-alcoholic steatohep-
atitis (NASH) [1–4]. Late-stage liver fibrosis is irreversible and often leads to cirrhosis or
hepatocellular carcinoma (HCC). The activation of hepatic stellate cells (HSCs) is known to
be a major factor in the development of liver fibrosis in both experimental models and the
human liver [5–9]. HSCs are located in the space between liver sinusoidal endothelial cells
and maintain a non-proliferative, quiescent phenotype in a healthy liver [5–9]. However,
in the injured liver, they become activated and transform into proliferative myofibrob-
lasts [5–9]. Various factors can directly or indirectly activate HSCs during chronic liver
diseases. The mechanism of HSC activation is getting increasingly complex as new path-
ways and mediators are discovered, including autophagy, endoplasmic reticulum stress,
oxidative stress, retinol and cholesterol metabolism, epigenetics, and receptor-mediated
signals [7–16]. Signals from resident hepatic cells and inflammatory cells also play a role in
modulating HSC activation [2,3]. Recent evidence suggests that the interaction between the
gut and the liver, known as the gut–liver axis, plays a significant role in the development
of liver disease [17,18]. Specifically, there is a growing interest in the role of microbial
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metabolites in the bidirectional communication between the gut and the liver during the
progression of liver diseases [19–21], which suggests that signals from gut cells can also
modulate HSC activation and may be a potential target for preventing and treating the
progression of hepatic fibrosis.

3-Indolepropionic acid (IPA) is a natural compound produced by Clostridium Sporo-
genes in the gut and metabolized from tryptophan (Figure 1A) [22–24]. It is considered
to have clinical value in the treatment of chronic kidney disease, Alzheimer’s disease,
and cancer [25–29]. However, conflicting effects of the oral administration of IPA on the
regulation of hepatic fibrosis have been observed in different animal models of liver injury.
In the diet-induced NASH rat model, IPA inhibits the expression of liver fibrogenic and
collagen genes, leading to a reduction in hepatic fibrosis [28]. However, in the mouse model
of liver damage induced by CCl4, IPA combined with CCl4 worsens liver fibrosis [29].
These conflicting results of IPA on liver fibrosis are influenced by various factors, including
diet, genetics, and gut environment, which affect the gut–liver axis [28,29]. Although some
mechanisms have been proposed to explain the contradictory effects of oral IPA on liver
fibrosis, the direct action of IPA on hepatic fibrosis is still unclear. Understanding this
direct action is crucial for the clinical application of IPA in the treatment of liver fibrosis.
Therefore, we aim to use the LX-2 human hepatic stellate cell line to evaluate the direct
effects of IPA on liver fibrosis and elucidate the potential molecular mechanism.
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Figure 1. IPA elevated the mRNA expression of fibrogenic genes in HSCs. (A) The chemical formula
of IPA. (B) LX-2 cells were treated with either 10 or 50 µM of IPA for 24 h, the expression of fibro-
genic genes (COL1A1, COL5A1, COL5A2, CTGF, MMP2, MMP9) was determined using RT-qPCR.
(C) Primary mouse hepatic stellate cells were treated with 50 µM of IPA, and the mRNA expression
of several fibrogenic genes was determined using RT-qPCR. DMSO represented the control group.
Data are shown as mean ± SEM, *: p < 0.05, **: p < 0.01, ***: p < 0.001. Abbreviation: DMSO:
Dimethylsulfoxide; IPA: 3-Indolepropionic acid; DAPI: 4,6-diamino-2-phenylindole.

2. Materials and Methods
2.1. Cell Culture

The LX-2 human HSC line (Sigma, St.Louis, MO, USA, SCC064) was cultured in
Dulbecco’s modified Eagle’s medium-high glucose (DMEM; Gibco, Waltham, MA, USA)
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supplemented with 10% fetal bovine serum (FBS, Sigma, St.Louis, MO, USA, F8318-500Ml)
and 1% penicillin/streptomycin (Gibco, Waltham, MA, USA , 15140-122). The cells were
incubated at 37 ◦C with 5% CO2. For the experiment, LX-2 cells were treated with various
concentrations (10, 50 µM) of 3-Indolepropionic acid (IPA, Sigma, St.Louis, MO, USA,
220027-1G) for 24 h. Dimethylsulfoxide (DMSO, MP Biomedicals, Irvine, CA, USA, 67-
68-5) was used as the control. Additionally, TGFβ1 treatment with a concentration of
5 ng/mL (Peprotech, Rocky Hill, NJ, USA, 100-21) was used as a positive control. In
terms of inhibitors, the ROS inhibitor Acetylcysteine (NAC, Selleck, Houston, TX, USA,
S1623) was pre-incubated at a concentration of 5 mM for 2 h before adding IPA. The p38
pathway inhibitor SB 202190 (p38i, MCE, Monmouth Junction, NJ, USA, HY-10295) was pre-
incubated at a concentration of 20 µM for 2 h before adding IPA. The JNK pathway inhibitor
SP600125 (JNKi, MCE, Monmouth Junction, NJ, USA, HY-12041) was pre-incubated at a
concentration of 10 µM for 2 h before adding IPA.

2.2. MTT Assay

LX-2 cells were placed in 96-well microplates with a density of 8000 cells in 100 µL
of culture medium per well and allowed to grow until they became confluent. Then, the
LX-2 cells were treated with different concentrations (10, 50 µM) of IPA. After 24 h, the cells
were treated with MTT (5 mg/mL, 10 µL per well, Aladdin, T100896-5 g) and incubated at
37 ◦C for 4 h. The medium in each well was then replaced with 110 µL of DMSO, and the
plates were shaken for 10 min. The absorbance was measured at 490 nm. The relative cell
viability was expressed as a ratio compared to the cells in the DMSO group.

2.3. Gel Contraction Assay

Rat-tail tendon collagen type I (RTTC) was purchased from Corning (Corning, NY,
USA, 354,236). Collagen gels were prepared by mixing RTTC, serum-free DMEM, 10 times
concentrated PBS, and 1 M NaOH. Then, 300 µL of the mixed collagen gels were added
to each well of a 24-well plate and incubated at 37 ◦C for 30 min to allow them to solidify.
After solidification, the gels were gently cut from the 24-well plates using a 10 µL pipette
tip. LX-2 cells were detached using 0.25% trypsin, resuspended, and seeded in pretreated
24-well plates. The gels were then treated with IPA for 24 h. Images were captured at 0 h
and 24 h. The area of each gel was outlined with a green line. The level of cell contractility
was calculated using the formula (Area at 0 h—Area at 24 h) divided by Area at 0 h. The
relative cell contractility level was normalized by the DMSO group.

2.4. Measurement of Mitochondrial ROS Generation

The production of mitochondrial reactive oxygen species (ROS) was measured using
a specific dye called MitoSOX™ Red. The cells were treated with IPA at different con-
centrations for 24 h and then incubated with a solution containing MitoSOX™ Red for
10 min at 37 ◦C. After that, the cells were washed with HBSS solution once. Next, the
cells were stained with Hoechst 33,342 and washed with PBS. The fluorescent images were
immediately observed using a fluorescence microscope. The relative level of mitochondrial
ROS was quantified using ImageJ software 1.8.0. nd compared to a control group.

2.5. Immunofluorescence (IF)

Immunofluorescence was used to study LX-2 cells. The cells were seeded on chamber
slides at a density of 20,000 cells per well in 24-well plates with 1% FBS/DMEM. After
12 h, the cells were treated with IPA (50 µM) and incubated for 24 h. The cells were then
fixed with 4% PFA for 10 min at room temperature and permeabilized with 0.1% Triton
X-100 in PBS for 10 min. They were then blocked with 3% horse serum for 1 h at room
temperature. Primary antibodies (COL1A1, 1:200, Abclonal, Wuhan, China, A1352; Ki67,
1:100, Thermo, Waltham, MA, USA, 11-5698-80) were diluted in 3% horse serum and applied
to the chamber slides, which were then incubated overnight at 4 ◦C. Secondary antibodies
were applied for 2 h at room temperature. Coverslips were mounted with Prolong Gold
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antifade reagent with DAPI (Solarbio, Beijing, China, S2110), and images were captured
using a fluorescent microscope. The relative fluorescence level was quantified using ImageJ
and normalized to the control group.

2.6. Reverse-Transcription-Quantitative PCR (RT-qPCR)

Total RNA was extracted from cells using TRIzol Reagent (Invitrogen, Life Technolo-
gies, Tokyo, Japan) following the manufacturer’s instructions. Subsequently, cDNA was
synthesized from the total RNA using an RT kit (Promega, Madison, WI, USA). The gene
primer sequences were synthesized by Hongxun (Suzhou, China), and qPCR was per-
formed using SYBR Green Supermix (Bio-rad, Hercules, CA, USA). HPRT1 was utilized as
the endogenous control gene to account for variations in the total RNA amount in each sam-
ple. The expression levels, normalized to HPRT1 levels in each sample, were determined
by calculating ∆∆Ct. The primer sequences for RT-qPCR can be found in Supplemental
Table S1.

2.7. Western Blotting

The cells were lysed using NP-40 buffer containing the protease inhibitor PMSF for
30 min on ice. Then, the cells were centrifuged at 12,000 rpm for 15 min at 4 ◦C. The
protein concentration of the supernatant above the sediment was determined using the
BCA assay. After all protein samples were mixed with loading buffer and boiled for
10 min, equal amounts of protein (10 µg per well) were subjected to SDS polyacrylamide gel
electrophoresis and transferred onto an NC membrane. The membranes were then blocked
with 5% non-fat dry skim milk for 1 h at room temperature. After that, the membranes
were incubated overnight at 4 ◦C with the indicated antibodies diluted in TBS-T (Tris-
buffered saline containing 0.1% Tween20). The membranes were washed with TBS-T and
then incubated for 1 h at room temperature with HRP-conjugated secondary IgGs (CST,
Danvers, MA, USA,7074S). The protein bands were visualized using chemiluminescence
(ECL blotting reagents, Bio-Rad, Hercules, CA, USA, 1705061). The density of the protein
bands was quantified using ImageJ software and normalized to the level of β-tubulin. The
following antibodies were used for Western blotting: COL1A1 (1:1000, Abclonal, Wuhan,
China, A1352), MMP-2 (1:2000, Proteintech, Wuhan, China, 10373-2-AP), β-tubulin (1:2000,
CST, Danvers, MA, USA, 2146S), p38 (1:1000, Abmart, Shanghai, China, T55600), p-p38
(1:1000, Abmart, Shanghai, China, T40076), JNK (1:1000, CST, Danvers, MA, USA, 9252S)
and p-JNK (1:1000, CST, Danvers, MA, USA, 9255S).

2.8. IPA Treatment of Mouse Primary Hepatic Stellate Cells

Briefly, after in situ perfusion of EDTA, pronase, and collagenase solutions in the
anesthetized mouse liver, all cells in the mouse liver were placed in a DNase I, pronase, and
collagenase composite solution and subjected to secondary digestion at 125 rpm for 25 min
using a constant temperature shaker at 37 ◦C. Subsequently, density gradient centrifugation
was performed using a Nycodenz gradient, and primary mouse hepatic stellate cells were
isolated at 4 ◦C and 1380 g for 17 min. Then, harvest HSCs from the gradient. After the
final centrifugation, HSCs were cultured in DMEM supplemented with 10% FBS and 1%
penicillin/streptomycin. Three days after the isolation of mouse primary HSCs, cells were
treated with IPA (50 µM in DMEM-1% FBS) for 24 h. Subsequently, RT-qPCR was used to
detect mRNA expressions of related genes.

2.9. Statistical Analysis

The data were analyzed using GraphPad Prism 8.0. Statistical significance was deter-
mined using an unpaired Student’s t-test. The data are presented as the mean ± standard
error of the mean (SEM). A p-value less than 0.05 was considered significant.
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3. Results
3.1. IPA Elevated the mRNA Expression of Fibrogenic Markers of HSCs Activation

We investigated the effect of IPA on the expression of fibrogenic markers in activated
HSCs using LX-2 cells. LX-2 cells were treated with IPA at concentrations of 10 µM and
50 µM for 24 h. We then measured the mRNA levels of six fibrogenic genes (COL1A1,
COL5A1, COL5A2, CTGF, MMP2, MMP9) in LX-2 cells using RT-qPCR and found the
expression of these genes was increased compared to the control group treated with DMSO
(Figure 1B), suggesting IPA can directly activate LX-2 cells. Next, we tested whether IPA
can also activate primary hepatic stellate cells. Using primary mouse hepatic stellate cells,
we found that IPA markedly increased mRNA expression of several hallmark genes of HSC
activation, such as Col1a2, αSma, Pdgfr, Ctgf, Mmp9, and Mmp13. These results demonstrate
that IPA can activate HSCs from different sources.

3.2. IPA Increased the Protein Expression of Hallmark Genes of HSCs

The protein expression levels of COL1A1 and MMP2 were also significantly increased
as tested by Western blot (Figure 2A,B). Immunostaining further confirmed the increased
expression of the key fibrogenic gene COL1A1 in LX-2 cells after treatment with IPA
(Figure 2C,D). Additionally, MTT results showed that IPA at concentrations of 10 and
50 µM did not cause toxicity to LX-2 cells (Supplementary Figure S1). Overall, the increased
expression of these fibrogenic genes suggests that IPA directly activates HSCs.
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Figure 2. IPA increased the Protein Expression of hallmark genes in LX-2 cells. (A) LX-2 cells
were treated with 50 µM of IPA for 24 h, the protein expression of COL1A1 and MMP2 was
determined using Western blots. B-tubulin was used as a reference protein (original images
can be found in Supplementary Material). (B) The quantitative analysis of protein was per-
formed using ImageJ software, and the result was normalized to β-tubulin. (C) LX-2 cells were
treated with 50 µM of IPA for 24 h, and the expression of COL1A1 protein was determined
using immunofluorescence. Green represents COL1A1, blue represents the nuclear. Scale bar,
10 µM. (D) The quantitative analysis of fluorescence intensity using ImageJ software and the result
was normalized to the control group. Data are shown as mean ± SEM, **: p < 0.01, ***: p < 0.001.
Abbreviation: DAPI: 4,6-diamino-2-phenylindole.
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3.3. IPA Promoted the Proliferation of HSCs

Having seen increased fibrogenic gene expression stimulated by IPA, we further
checked whether other features associated with HSC activation were also elevated, such
as proliferation. The proliferation of LX-2 was measured using a Ki67 assay. After 24
h of treatment, the percentage of Ki67 positive cells in the IPA-treated LX-2 cells was
significantly higher than that of the negative control group treated with DMSO and was
comparable to that of the positive control group treated with TGFβ1 (Figure 3A,B). This
result demonstrated that IPA could directly promote the proliferation of LX-2, similar
to TGFβ1.
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Figure 3. Effects of IPA on the proliferation of LX-2 cells. (A) LX-2 cells were incubated with either 10
or 50 µM of IPA for 24 h, and the levels of cell proliferation were determined using the Ki67 staining.
TGFβ treatment at 5 ng/mL was used as a positive control. The red represents Ki67 protein, blue
represents the nuclear. Scale bar, 100 µM. (B) The relative proliferation rate is calculated by dividing
Ki67 positive cell numbers by total cell numbers, and the result was normalized to the DMSO-treated
group. Data are shown as mean ± SEM, **: p < 0.01, ***: p < 0.001.

3.4. IPA Increased Contractility of HSCs

Enhanced contractility is an important feature of activating hepatic stellate cells. Gel
contraction assay was used to measure the contractility of LX-2 cells after IPA treatment. As
shown in Figure 4A,B, after 24 h of IPA treatment, the gel surface area in the IPA and TGFβ1
treated groups was much smaller than that of the DMSO-treated group, indicating that IPA
enhanced the contractility of LX-2 cells similar to the treatment with TGFβ1 (Figure 4C). A
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similar result was obtained with IPA treatment for 12 h (Supplementary Figure S2). These
findings further confirmed that IPA can directly activate HSCs.
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or 50 µM of IPA for 24 h. The levels of cell contractility were determined using gel contraction assay.
Treatment with TGFβ1 (5 ng/mL) was used as a positive control. The green line shows the edge
of the gel. Scale bar, 1 cm. (B) The quantitative analysis of gel surface area at 0 h and 24 h. (C)The
quantitative analysis of the cell contractility in (A). The level of cell contractility was calculated by
(Area (0 h)-Area (24 h))/Area (0 h), and the result was normalized to DMSO-treated group. Data are
shown as mean ± SEM, ***: p < 0.001, ns means no significant differences.

3.5. IPA Increased Mitochondrial ROS in Activated HSCs

The generation of reactive oxygen species (ROS) has been found to be closely linked
to the activation of hepatic stellate cells (HSCs) [8]. Previous studies have reported that IPA
has different effects on oxidative stress depending on the conditions [23,26]. In order to
investigate the direct effect of IPA on oxidative stress in HSCs, the levels of mitochondrial
ROS in LX-2 cells were measured after treatment with IPA at concentrations of 10 and
50 µM using MitoSOX red (Figure 5A). The results showed that IPA increased the produc-
tion of mitochondrial ROS by almost three folds (Figure 5B). The expression of inflammatory
genes associated with oxidative stress in LX-2 cells was also determined using RT-PCR
after treatment with IPA. The mRNA levels of MCP-1, IL-6, and IL1b were increased dose-
dependently when treated with IPA (Figure 5C).

3.6. ROS Scavenger Blocked the Activation of HSCs Induced by IPA

Next, we used NAC, a ROS-blocking agent, to determine the impact of IPA on HSC
activation. LX-2 cells were incubated with NAC for 2 h before being treated with IPA for 24 h.
The expression of five fibrogenic genes that were previously upregulated was significantly
inhibited (Figure 6A, Supplementary Figure S3), and the expression of the oxidative stress-
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related genes triggered by IPA (Figure 5C) was also downregulated (Figure 6B). These
results indicate that IPA directly activates HSCs via the ROS pathway.
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associated with ROS were determined using RT-qPCR. Data are shown as mean ± SEM, *: p < 0.05,
**: p < 0.01, ***: p < 0.001, ns means no significant differences.

3.7. IPA Treatment Activates p38 and JNK Signaling Pathways in HSCs

Next, we investigated the impact of p38 and JNK activation, two classic signaling
cascades downstream of ROS, on the activation of LX-2 cells induced by IPA. As shown in
Figure 7, treatment with 50 µM of IPA for 24 h markedly increased the phosphorylation
levels of both p38 and JNK in LX-2 cells. These results indicate that IPA activates p38 and
JNK signaling pathways in HSCs.
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mean ± SEM, *: p < 0.05, **: p < 0.01, ***: p < 0.001.
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Figure 7. IPA activated p38 and JNK pathways in LX-2 cells. (A) LX-2 cells were treated with 50 µM
IPA for 24 h, the phosphorylation status and the expression levels of p38 and JNK were determined
using Western blots. Tubulin was used as a reference protein. (B) The quantitative analysis of protein
was performed using ImageJ software, and the result was normalized to Tubulin. n = 4. Data are
shown as mean ± SEM, *: p < 0.05, **: p < 0.01.

3.8. Both p38 and JNK Are Required for IPA-Induced ROS Production in Activated HSCs

Next, we investigated the impact of p38 and JNK activation, two classic signaling
cascades downstream of ROS, on the activation of LX-2 cells induced by IPA. To investigate
whether the activation of p38 and JNK are crucial to the HSC activation stimulated by
IPA, inhibitors of these two pathways were added together with IPA. The p38 inhibitor
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prevented the increase in the expression of inflammatory genes, IL-6 and MCP1 (Figure 8A).
Similarly, the JNK inhibitor prevented the increase in the expression of inflammatory genes,
MCP1 and IL-1b (Figure 8B). Additionally, both inhibitors were able to downregulate the
expression of fibrogenic genes, COL1A1 and MMP2, and MMP9 in LX-2 cells treated with
IPA. These results suggest that both p38 and JNK are required to activate HSCs induced
by IPA.
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Figure 8. Both p38 and JNK are required for IPA-induced ROS production in LX-2 cells. LX-2 cells
were pre-incubated with either (A) p38 inhibitor SB 202190 (20 µM) or (B) JNK inhibitor SP600125
(10 µM) for 2 h, and then treated with IPA (50 µM) for 24 h, the RNA levels of the fibrogenic genes
(COL1A1, MMP2, MMP9) and inflammatory genes (MCP1, IL6, IL1b) were determined using RT-qPCR.
Data are shown as mean ± SEM, *: p < 0.05, **: p < 0.01, ***: p < 0.001.
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4. Discussion

The gut–liver axis has been found to play a significant role in liver fibrosis modulation.
The metabolites produced by the gut microbiota act as signaling molecules between the
gut and liver, exerting bidirectional effects on the gut–liver axis [17,18]. Understanding
how these metabolites affect the gut and liver is crucial for the treatment of liver fibrosis by
targeting the gut–liver axis [17–21]. IPA, a metabolite of tryptophan by intestinal microbiota,
was reported to have various effects in different chronic diseases [22–29]. However, its
effects on liver illnesses, such as liver fibrosis, have only lately been reported [28,29]. While
IPA attenuates NASH-induced fibrosis [28], it exacerbates CCl4-induced fibrosis [29]. Both
studies were conducted on animals given IPA orally without examining the direct effect
of IPA on hepatic stellate cells, the master cells that drive liver fibrosis development. It
is critical to explore the direct effects of IPA on hepatic stellate cells and elucidate the
underlying mechanisms in order to guide future proper use of IPA in treating liver fibrosis.
A previous study reported that IPA combined with TGF-β group exhibited a reduction in
the expression of fibrosis-related genes compared to the TGF-β group, but it is important to
note that this is not a direct effect of IPA on HSC activation [30]. In our study, using LX-2, a
commonly used human hepatic stellate cell lines [31], we find that IPA directly activates LX-
2 through the ROS/JNK/p38 signaling pathway. We observed that IPA, even at a relatively
low concentration (10 µM), was able to activate LX-2 cells, as shown by increased fibrogenic
gene expression, gel contraction capacity, and proliferation rate. Our findings support
the previous study that IPA oral administration can deteriorate CCl4-induced fibrosis [29]
and provide another conceivable explanation for how IPA might directly stimulate hepatic
stellate cells and cause liver fibrosis in vivo. Regarding the opposite effects observed in
NASH animals, as reported previously [21], there are several possible explanations. Firstly,
IPA can directly act on hepatocytes and attenuate lipid accumulation [32], thus mitigating
lipotoxicity-triggered liver inflammation and fibrosis, as observed in IPA NASH study.
Secondly, IPA was found to augment GLP-1 secretion from intestinal L cells [33]. GLP-1 can
attenuate liver steatosis, inflammation, and fibrosis through multiple mechanisms, such as
reducing appetite and body weight [34], as it is observed in the NASH study. Therefore, our
findings are important, which agree with CCl4 induced-fibrosis study, providing guidance
for the further clinical application of IPA for the treatment of liver fibrosis. Since IPA may
only improve NASH-induced liver fibrosis and may exacerbate liver fibrosis from other
etiologies, such as HBV or HCV, it is important to take these etiologies into consideration
while using IPA.

According to our findings, IPA increases hepatic stellate cell activation via the ROS-
induced MAPK pathway. ROS is an essential signaling transmitter in hepatic stellate cells,
promoting activation, migration, and proliferation [8,35,36]. IPA has been shown to have
varying effects on oxidative stress depending on the circumstance [22–24]. In this study,
we found that a low concentration of 10 µM of IPA increased mitochondrial ROS in LX-2
cells. A similar result was observed in 4T1 breast cancer cells, where IPA enhanced the
production of mitochondrial reactive species [26]. However, when IPA was used at a high
concentration of more than 1 mM, it showed a protective effect against lipid oxidative stress
in hepatic microsomes, preventing iron-induced oxidative damage to cell membranes [37].
These results suggest that the various effects of IPA on oxidative stress may be dependent
on the dosage as well as its location inside cells. In particular, IPA protects against lipid
oxidative stress in microsomes at high concentrations while largely increasing ROS in
mitochondria at low doses. In this study, we selected two concentrations of IPA, namely
10 and 50 µM, strategically chosen to align with the range of IPA blood concentrations
observed in clinical trials (NCT01898884). The concentration of 50 µM closely approximates
the average serum concentration of IPA, while the 10 µM concentration surpasses the
fundamental physiological serum level of approximately 1 µM [38]. By including data from
these two concentrations, our study aims to provide valuable insights and constructive
information relevant to the clinical application of IPA.
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The MAP kinases p38 and JNK are known to be the key signaling pathways acti-
vated by oxidative stress [39]. ROS activates p38 and JNK in different ways in different
cells [40–43]. Our study showed that blocking p38 and JNK individually could prevent
IPA from activating LX-2 cells. This finding implies that p38 and JNK are both required
for IPA-induced stress. Inhibiting p38 and JNK also reduced inflammation caused by ROS,
as shown by reduced mRNA expression of inflammatory genes, such as IL1b, IL6, MCP-1,
etc. This prevents further activation of hepatic stellate cells by these inflammatory cy-
tokines. Targeting both p38 and JNK could thereby counteract IPA-induced hepatic stellate
cell activation.

5. Conclusions

This study demonstrates that IPA can directly activate fibrogenic processes in LX-2
human hepatic stellate cells at a relatively low concentration. The ROS-induced p38/JNK
signaling pathway is responsible for this activation. The in vitro findings can contribute to
our understanding of how oral IPA can modulate liver fibrosis through the gut–liver axis
and provide insights into potential applications for IPA in preclinical and clinical settings
in the future. It should also be concluded that results demonstrate a potential profibrogenic
effect of IPA at supra-physiological concentrations after exogenous administration but not
at physiological concentrations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13101464/s1, Figure S1: Effects of IPA on the cell viability of
LX-2. LX-2 cells were treated with either 10 or 50 µM IPA for 24 h, the cell viability was determined
using MTT assay. DMSO as the control group. n = 4. Data are shown as mean ± SEM, ns means no
significant differences.; Figure S2: Effects of IPA on the contractility of LX-2 cells. (A) LX-2 cells were
incubated with either 10 µM or 50 µM of IPA for 12 h. The levels of cell contractility were determined
using gel contraction assay. Treatment with TGFβ1 (5 ng/ml) was used as a positive control. The
green line shows the edge of the gel. Scale bar, 1cm. (B) The quantitative analysis of gel surface area at
0 h and 24 h. (C) The quantitative analysis of the cell contractility in (A). The level of cell contractility
was calculated by (Area(0 h)-Area(12 h))/Area(0 h) and the result was normalized to DMSO treated
group. Data are shown as mean ± SEM, **: p < 0.01, ***: p < 0.001. ns means no significant differences.
Figure S3: Inhibition of ROS pathway downregulated fibrogenic genes CTGF and MMP9. LX-2 cells
were pre-incubated with NAC(Acetylcysteine) for 2 h, and then treated with IPA for 24 h, the RNA
levels of CTGF and MMP9 were detected using RT-qPCR. n = 3. Data are shown as mean ± SEM,
*: p < 0.05, **: p < 0.01. Table S1. Primers for RT-qPCR.
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