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Abstract: Access to time delay in a projectile-target scattering is a fundamental tool in understanding
their interactions by probing the temporal domain. The present study focuses on computing and
analyzing the Eisenbud-Wigner-Smith (EWS) time delay in low energy elastic e−C60 scattering.
The investigation is carried out in the framework of a non-relativistic partial wave analysis (PWA)
technique. The projectile-target interaction is described in (i) Density Functional Theory (DFT) and
(ii) Annular Square Well (ASW) static model, and their final results are compared in details. The
impact of polarization on resonant and non-resonant time delay is also investigated.

Keywords: Eisenbud-Wigner-Smith (EWS) time delay; average time delay; Density Functional Theory
(DFT) model; Anullar Square Well (ASW) model; resonance

1. Introduction

The unprecedented developments in the field of attosecond chronoscopy have enabled
scientists to follow electron dynamics with very high precision. This is possible due to
the pioneering experimental studies carried out by Pierre Agostini, Ferenc Krausz, and
Anne L’Huillier for which they were awarded the 2023 Nobel prize in Physics. The related
comprehensive developments in research marked the birth of a new sub-field, atto-science,
in the vast landscape of ultrafast science. As a result, many of the fundamental interactions,
initially considered as instantaneous processes are found to be associated with some delay
or acceleration of the order of attoseconds. For example, Krausz and coworkers [1] have
shown that electron emission from the 3p orbital of the Ne atom has a temporal delay of
21 ± 5 attoseconds when compared to the delay from the 3s orbital. This finding instigated
numerous theoretical and experimental investigations in time delay studies that explored
features associated with photoionization dynamics.

Surprisingly, not many studies, in the wake of these developments, were reported
on the particle scattering processes in the temporal domain, with the exception of a few
studies by Amusia et al. [2–4]. The idea of time delay was initially proposed in the context
of electron-scattering by Eisenbud [5], Wigner [6], and Smith [7]. Later, a few notable
studies analyzed temporal dynamics in scattering [2,8,9]. The Eisenbud-Wigner-Smith
(EWS) time delay is defined as the energy derivative of the scattering phase shift and it is an
observable quantum mechanical parameter [1,10–12]. The understanding of the EWS time
delay in a scattering process provides important details. For example, shape resonances
in the scattering cross-section demonstrate how the projectile–target complex interacts to
produce a quasi-bound state, which results in a delay [13]. Studies on shape resonance
have gained a lot of attention because of their widespread application in several fields of
physics, including cold atom physics [14], biological research [15,16], condensed matter
physics [17], quantum transportation [18], etc.
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Over the years, many atomic and molecular targets have been analyzed using scat-
tering techniques. Among these, fullerene-C60 has been the subject of a handful of spec-
troscopic investigations. C60, having 12 pentagonal and 20 hexagonal carbon rings is an
extremely stable molecule with a fascinating symmetry. Another similar class of molecular
compounds, endohedral fullerenes [19,20] are fullerene cages with an atom or a molecule
or an atomic cluster or a smaller fullerene inside them. These are denoted by A@CN where
N denotes the number of carbon atoms in the fullerene and A is the species trapped in the
cage. Fullerene and endofullerene complexes have a wide range of practical applications,
such as in cancer detection and treatment [21], medical imaging [22], organic photovoltaic
devices [23,24], quantum computing [25], Hydrogen storage [26], etc. A rubidium atom
inside a fullerene, commonly known as a Jahn-Teller metal, exhibits superconductivity at
high-temperature [27]. Also, in interstellar environments, the traces of fullerenes and their
ionic complexes have been detected [28–30].

Despite such widespread applications, the majority of the work on fullerenes is
photoionization-based (see articles [10,31] and references therein). Recent studies have
addressed time delays in the photoionization of fullerene [32,33] and endofullerene sys-
tems [34–36]. On the other hand, there are relatively limited theoretical or experimental
studies investigating the elastic scattering of fullerene. A few notable molecular-level
calculations on e−C60 elastic scattering were accomplished by the group of McKoy [37,38]
using Schwinger multichannel (SMC) method and by Gianturco et al. [39] employing
static exchange-correlation polarization (SECP) potential model. On the experimental side,
Tanaka et al. [40,41] performed low-energy elastic e−C60 scattering, whereas Hargreaves
et al. [38] investigated high-energy elastic scattering properties. All of these aforemen-
tioned studies focused on total, partial, and differential cross-sections. No experimental
elastic scattering time delay study of C60 has been reported so far. On the theoretical side, a
study by Amusia et al. [2] used the Dirac bubble potential model of fullerene to analyze
the time delay, taking into account six partial waves. Additionally, a study conducted by
Aiswarya and Jose [9], employing only the annular square well (ASW) model potential
analyzed the EWS and angular delay in e−C60 scattering.

The current work focuses on addressing the partial-wave averaged observable time
delay properties and the effects of polarization on time delay, using more sophisticated
modeling of fullerene based on Density Functional Theory (DFT) [42,43]. In addition, we
use a static ASW model potential [44,45] for comparison purposes. In order to investigate
the resonant delay features of e−C60 scattering, the low-impact energy range is considered.
In this range, the projectile electron wavelength is so large that the electron diffraction
effects can be neglected. Theoretical aspects of the work are covered in Section 2, the results
and associated discussions are presented in Section 3, and Section 4 concludes the report.

2. Theoretical Details

Assessing the suitability of e−C60 interaction potential from the charge density at the
fullerene shell was the main objective of the work of Baltenkov et al. [46]. They pointed
out that the ASW potential has a nonphysical charge density for C60, hence suggesting a
diffused potential with a non-flat bottom and soft-edged walls to be more realistic. The
e−C60 potential simulated in this study using DFT has these attributes [46]. Thus, to capture
the difference we compare and contrast the e−C60 scattering time delay results using (1)
ASW model [44] and (2) DFT potential generated within the local density approximation
(LDA) [42,43]. The ASW potential is expressed as [44,45]:

VASW =

{
−U, rc − ∆

2 ≤ r ≤ rc +
∆
2 ,

0, otherwise
(1)

where the cage thickness ∆ = 2.91 a.u., the mean radius rc and well depth are, respectively,
6.71 a.u. and 0.2599 a.u. The ASW parameters were optimized to reproduce important
physical properties of fullerene closely: ∆ is twice the covalent radius of a carbon atom and
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the well depth is adjusted to correspond with the electron affinity of −2.65 eV for ℓ = 1
state of C60 [44]. In effect, therefore, the ASW potential is static, being oblivious to C60
electrons.

In the DFT model, the ionic core of fullerene is calculated within LDA where the
potential (Vjel) [47] is obtained after considering sixty C+

4 ions to be smeared and homo-
geneously distributed over a jellium shell of an average radius R of 6.70 a.u. A constant
pseudo-potential was added for the quantitative accuracy [47]. The fullerene shell then
optimizes self-consistently (see below) to a thickness ∆ of 2.41 a.u. and a pseudo-potential
value in order to ensure the charge neutrality and reproduce the measured first ionization
threshold. The DFT-LDA potential for the e−C60 interaction can be written as [42,43]:

VDFT(r) = Vjel(r) +
∫

ρ(r′)
r − r′

dr′ + Vxc(ρ(r)), (2)

using which the Kohn–Sham equations [48] for a system of 240 electrons are solved self-
consistently to obtain the ground-state electron density ρ(r) [42]. The second and the
third term on the right-hand side in Equation (2) represent the direct and the exchange-
correlation interaction, respectively. The specific form of exchange-correlation potential
used in the present study is [43]:

Vxc(ρ(r)) = −
(

3ρ(r)
π

)1/3

− 0.0333 ln

[
1 + 11.4

(
4πρ(r)

3

)1/3
]

. (3)

Here, the first and second terms on the right-hand side correspond to exchange and corre-
lation potentials. The exchange term is derived from the Hartree–Fock (HF) formalism [43]
in LDA. Obviously, the DFT potential extends beyond the static model to incorporate the
C60 valence electron density within a mean field.

A realistic evaluation of the e−C60 interaction requires accounting for polarization
effects. As in the work by Dolmatov et al., the current study uses a static dipole polarization
potential of the form [45,49]:

Vpol =
−αC60

2(r2 + b2)
2 . (4)

In Equation (4), the static dipole polarizability α = 850 a.u. and cut-off parameter b = 8 a.u.
approximately includes the fullerene’s radial extent. The final effective potential after the
addition of polarization potential is:

Ve f f
C60

= VDFT/ASW + Vpol . (5)

To illustrate the effect of polarization, Vpol is selectively included and omitted in the
present study. Thus, four case studies are carried out: (1) ASW (ASW without polarization),
(2) ASW-P (ASW with polarization), (3) DFT (DFT without polarization), and (4) DFT-P
(DFT with polarization). All the respective potential shapes are shown in Figure 1. The
ASW potential (Figure 1a) is altered by the introduction of the polarization potential,
especially close to the fullerene center. The form of the DFT potential (Figure 1b) is
innately of a diffused shape, and the addition of the attractive polarization potential
makes the well slightly deeper. It may be emphasized that we have recently performed
a comparison [50] of the e−C60 elastic differential cross-section (DCS) using ASW-P and
DFT-P with measurements and other competitive calculations. This has demonstrated that
DFT is in better agreement with the experimental results than ASW, often performing better
than even other theories. Furthermore, the success of jellium-DFT-based approaches in
agreeing and interpreting experiments in other processes is known [42,51].
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Figure 1. (a) ASW and (b) DFT model potentials with and without polarization effects.

A non-relativistic partial wave analysis (PWA) is carried out for all the cases considered.
The scattered wave function of the electron after interacting with the C60 potential will be
the solution of the following radial Schrödinger equation:{

−h̄2

2m
d2

dr2 +

[
Ve f f

C60
+

h̄2ℓ(ℓ+ 1)
2mr2

]}
uℓ(r) = Euℓ(r). (6)

Separate calculations are performed after decoupling the effect of polarization to investigate
its impact. Using Numerov’s method [52], the solution of Equation (6) is computed with
the proper boundary conditions. Care is taken to ensure the continuity of the wave function
and its derivative at the boundary of C60. As in the earlier study [9], the elastic scattering
phase shift (δℓ) of the ℓth partial wave is obtained by considering the asymptotic form of
the wave function [53]:

uℓ(r > rmax) ∝ kr[jℓ(kr)cosδℓ − nℓ(kr)sinδℓ]. (7)

For any energy E of the projectile, the wave vector k =
√

2mE
h̄ . In Equation (7), jℓ and

nℓ represent the Bessel function of the first and second kind, respectively, and rmax = 28 a.u.
is taken as the practical infinity. Let r1 and r2 be the two radial points beyond rmax, using
which phase shift (δℓ) can be computed as [53]:

tanδℓ(k) =
ζ jℓ(kr1)− jℓ(kr2)

ζnℓ(kr1)− nℓ(kr2)
(8)

with

ζ =
r1uℓ(r2)

r2uℓ(r1)
. (9)

The numerical values of jℓ and nℓ are generated using the well-established subroutines
SPHJ and SPHY [54]. The partial waves with ℓ = 0–15 were determined to be sufficient for
both the model potentials up to the energy of E = 0.5 a.u. considered in this study. Since
most of the prominent resonances are observed in this energy range, the low-energy elastic
e−C60 scattering is addressed. Also, the current investigation has not included the inelastic
scattering processes related to the e−C60 interactions, such as the ionization, charge transfer,
excitation, etc., since the energy range considered, 0–0.5 a.u. is much lower. These energies
are also well below the C60 giant plasmon excitation energy (≈20 eV) [55]. Moreover,
with such low projectile energies, and therefore, long enough de Broglie wavelengths, the
electron cannot resolve the atomistic details of the target. This fact bodes well with the
present models that omit the C60 ionic structures. At any rate, the total cross-section (TCS)
of the elastic scattering is then given by [52,53]:

σtotal =
4π

k2

∞

∑
ℓ=0

(2ℓ+ 1)sin2δℓ. (10)
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The analysis of the quasi-bound states arising from distinct resonant partial-wave
interactions with fullerene is performed using the Fano parametrization [56] formula:

σr =
σo(q + ε)2

1 + ε2 , (11)

with
ε =

E − Er

Γ/2
. (12)

In Equation (11), q is the shape parameter, σr and σo are the resonant and background
cross-sections, respectively. Equation (12) provides the parameter ε, where Γ and Er are the
resonant width and energy, respectively. The time delay τℓ of the ℓth partial wave is given
by the EWS time delay formula [7]:

τℓ(E) = 2h̄
∂δℓ
∂E

= 2h̄δ′ℓ. (13)

The average time delay for a given potential is then computed by [2]:

τavg(E) =
∞

∑
ℓ=0

σℓ
σtotal

τℓ(E). (14)

where σℓ and τℓ are, respectively, the partial cross-section (PCS) and time delay of the ℓth

partial wave. We analyze the resonant time delay for all four case studies of the model
potentials (see above). All the calculations are conducted in atomic units (a.u.) unless
specified otherwise.

3. Results and Discussion

This section is divided into four subsections: Section 3.1 deals with the e−C60 TCS
and near-threshold behavior of the phase shift and time delay; Section 3.2 discusses the
Fano parameterization of resonant partial waves. Resonant phase shifts and time delays
are covered in Sections 3.3 and 3.4 presents the average time delay.

3.1. TCS and Near-Threshold Behavior of Phase Shift and Time Delay

The TCS of e−C60 elastic scattering contributed by ℓ = 0–15 partial waves is shown in
Figure 2. Cross-sections in the ASW and ASW-P model are shown in Figure 2a. In TCS,
for the ASW case three prominent peaks are noted from the partial waves ℓ = 3, 4, and
5; ℓ = 3 is the sharpest and closer to zero energy, while ℓ = 5 is the weakest. This sharp
resonance corresponding to ℓ = 3 is not observed for the polarization-added ASW potential
case (ASW-P). In this case, resonant peaks are mainly due to the contribution from partial
waves ℓ = 4, 5, and 6. The inset features a magnified view of TCS at the near-zero energy
region which shows the polarization induced ℓ = 0 resonance that occurs right at the
threshold. For the ASW potential, the addition of polarization effects shifts the resonance
to lower energies. Thus, two common resonance peaks (ℓ = 4 and 5) are noticed both in
ASW and ASW-P. The TCS obtained using DFT and DFT-P potential models are shown in
Figure 2b. Since the DFT simulated e−C60 interaction potential has a deeper well depth
than the ASW case, more resonances are formed. A zero-energy resonance is seen for the
DFT potential, followed by a resonance corresponding to ℓ = 3. For the polarization-added
DFT model (DFT-P), a resonance for ℓ = 1 is noted quite close to the threshold. A set
of peaks corresponding to the partial waves ℓ = 4, 7, 8, and 12 is seen both in DFT and
DFT-P. When the polarization is added to the model potentials (ASW/DFT), a consistent
trend is that the resonant partial wave peaks shift toward lower energies. This is because
the presence of the attractive polarization potential results in a minor reduction in the
angular momentum barrier, leading to the attainment of resonant conditions at slightly
lower projectile energies.
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From a physical perspective, the cross-section reveals the effective area offered by the
target for the projectile to scatter off. From Figure 2 it can be noted that the background
(non-resonant) cross-section in the DFT model is three times larger than that in the ASW
model. This can be understood as follows. Firstly, the DFT potential shape is diffused
offering effectively a larger cross-section area for scattering. Secondly, the strength of the
attractive potential in the DFT model is more than in the ASW model.

Figure 2. TCS of e−C60 elastic scattering using (a) ASW (black) and ASW-P (red); (b) DFT (blue)
and DFT-P (magenta). Resonances are labeled with corresponding partial wave numbers. The inset
shows magnified TCS in the low-energy region.

Resonant and non-resonant TCS studies for the e−C60 collision reported in the liter-
ature are aplenty, mostly using static model potentials [44,57,58] and a few others using
molecular level calculations [37,39]. Table 1 presents a comparison between the resonant
energies obtained from the present analysis using DFT-P and ASW-P with the other static
potentials [44,57,58]. In general, an overall agreement for the number of resonances and
the partial waves assigned is seen. On the other hand, Winstead and McKoy [37] and
Gianturco et al. [39] have performed molecular-level investigations of e−C60 scattering,
reporting σ and π type resonances in the cross-section. In SMC calculations by Win-
stead and McKoy, the lowest π− type resonance was obtained in the energy range of
0.0588–0.0955 a.u. with the hu symmetry. A gg resonance of π type is observed within the
interval of 0.0919–0.1286 a.u., followed by a gu resonance in the range of 0.1323–0.1691
a.u. The t2g resonance occurs between 0.1654 a.u. and 0.2021 a.u., while the first and the
second t1u resonances are determined at 0.2279 a.u. and 0.2833 a.u., respectively. Also, a t2u
resonance near 0.2132 a.u. is noted. Two overlapping t1g resonances are noticed at about
0.3565 a.u. In Gianturco et al.’s [39] SECP calculation, π type hu resonance at 0.0797 a.u. was
observed to be the lowest. This was followed by resonances in the order of ag, gg, gu, t2g,
and t1u at 0.1014 a.u., 0.1172 a.u., 0.2139 a.u., 0.2282 a.u., and 0.2102 a.u., respectively. The
second t1u resonance was observed at 0.2833 a.u., followed by a t1g resonance at 0.2998 a.u.
The first hg resonance appeared at 0.2646 a.u., with a subsequent t2u resonance identified at
0.3712 a.u. Interestingly, even though these resonances originate from molecular symmetry,
their energy range of occurrences overlaps with the range of partial wave resonances in
the current study. Furthermore, by the molecular level calculations, more resonances are
obtained in the DFT model versus the ASW case. This is further evidence of the superiority
of the DFT description of e−C60.
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Table 1. Resonant energy in a.u. using different model potentials.

DFT-P ASW-P ASW GASW Lorentzian δ−Shell
[44] [57] [57] [58]

Resonance
1

0.0013
(ℓ = 1)

0.0524
(ℓ = 4)

0.0107
(ℓ = 3)

0.0691
(ℓ = 4)

0.0908
(ℓ = 3)

0.0364
(ℓ = 3)

Resonance
2

0.0258
(ℓ = 4)

0.1380
(ℓ = 5)

0.0815
(ℓ = 4)

0.1628
(ℓ = 5)

0.1988
(ℓ = 4)

0.1301
(ℓ = 4)

Resonance
3

0.0818
(ℓ = 7)

0.2350
(ℓ = 6)

0.1835
(ℓ = 5)

0.3359
(ℓ = 5)

0.2738
(ℓ = 5)

Resonance
4

0.1920
(ℓ = 8)

Resonance
5

0.3109
(ℓ = 12)

Figure 3 illustrates the near-threshold phase shift and EWS time delay behavior in
ASW and DFT approximations; time delays are presented in attoseconds (as). In the
zero energy limit, the phase shift and time delay follow the Wigner threshold law [59].
Since the s-wave phase shift behaves as δℓ=0(E → 0) ∝ π − E1/2, it approaches π as
E → 0, which is evident in the figure for the case of ℓ = 0. The corresponding time
delay goes to negative infinity τℓ=0(E → 0) ∝ −E−1/2, which is also clear in the bottom
panel for ℓ = 0. According to the Wigner threshold law, the phase shift for other partial
waves ℓ ̸= 0 is δℓ>0(E → 0) ∝ ±Eℓ+1/2. Therefore, in this case, the phase shift should
tend to zero in the zero-energy limit, as shown in the upper panel in Figure 3. The
corresponding time delay must vanish for the partial waves ℓ > 0 in the low energy limit,
since τℓ>0(E → 0) ∝ ±Eℓ−1/2. Hence, the current set of results is consistent with the
Wigner threshold law. Note, that the time delay in the present context is regarding a free
unscattered electron. A positive time delay refers to a delay of scattered electrons reaching
the detector compared to unscattered ones as if it feels like a transient attraction. Likewise,
a negative time delay suggests the scattered electron is reaching the detector earlier than
the reference electron. The latter is indicative of the electron receiving a repulsive push
during the scattering.

Figure 3. Phase shift (upper panel) and corresponding time delay (lower panel) in the near-zero
energy range using ASW (black), ASW-P(red), DFT (blue) and DFT-P (magenta) model potentials.
Inset shows the magnified view of the time delay for ℓ = 1 and 3.

We now investigate the low-energy behavior of phase shifts and time delays in the
presence of the polarization effect. For each of ℓ = 1 and 2, the phase shift is positive in the
low-energy region in ASW-P and DFT-P compared to the unpolarized target approximation.
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Consequently, there is a positive hump in the time delay for both these cases. We note that
the polarization induces an attractive potential (Figure 1). Let us model the polarization
effect parametrically by λ, which can be tuned to adjust the polarization potential. In the
limit δℓ → 0, the relation between the phase shift and the potential can be approximated
as [53]:

dδℓ
dλ

= −k
∫ ∞

0
[uℓ(λ, r)]2

∂VC60

∂λ
dr, (15)

where uℓ(λ, r) is the asymptotic radial wave function for the wave vector k. The rate
of change of the strength of C60 potential upon the addition of the polarization effect is

expressed by
∂VC60

∂λ , which is negative in the present case. From Equation (15), it is evident
that the associated phase shift variation has the opposite sign if the potential variation,
∂VC60

∂λ , has the same sign for all values of r [53]. Analyzing the phase shift behavior for
ℓ = 1 and 2, we find that phase shifts from all four model potentials approach zero at very
low energies, validating the Wigner threshold law. Furthermore, for model potentials where
polarization is considered (ASW-P/DFT-P), the phase shift attains positive values, while
for the bare cases (ASW/DFT) it grows in negative values. The reason for this behavior can

be made clear from Equation (15). For the polarized target case, the value of
∂VC60

∂λ is more
negative compared to the non-polarized case; hence, at a given k value, the scattering phase
shift of the P case will be relatively more positive compared to the non-P case. Coming to
the behavior of the time delay, we recall that τℓ is obtained as the energy derivative of the
δℓ. As a result, for ℓ = 1 and 2, the time delay is negative for the non-P case and positive for
the P case. As k increases, however, the Equation (15) ceases to be valid and the evolution
of the phase shift begins to depend numerically on the strength and relative difference of
the potentials. A peak in time delay is noticed as a result of the inclusion of polarization in
the low-energy region. For the partial wave ℓ = 3, a completely different behavior of phase
shift and time delay is obtained: The resonance condition is satisfied for both the ASW
and DFT models. In addition, an abrupt phase leap through π/2 and an overall shift by π
are noticed. Thus, a sharp peak in time delay is found. However, for ASW-P and DFT-P,
the corresponding resonances have moved below the threshold as ascertained earlier, and
hence no abrupt change in phase shift is observed. Consequently, the time delay profile has
no sharp resonance peaks. A detailed analysis of the resonant cross-section is presented
in Section 3.3. As the ℓ value increases, the angular momentum barrier increases, which
prohibits the access of scattered waves in the region close to the origin. Consequently, the
difference in the potential for the P and non-P cases will be less conspicuous.

3.2. Fano Parameterization of Resonances

Fano parametrization is employed for all model potentials to determine the resonant
energy Er and other parameters of the resonances [56]. The shape parameter q (from
Equation (11)) characterizes the asymmetry of the resonance profile. It describes the
interference between a pure resonant channel (with a Lorentzian shape profile) and a non-
resonant background. Resonances are of different shapes based on the altering strength of
this interference.

The shape parameters for the resonances in the ASW (ℓ = 3, 4, 5) and ASW-P
(ℓ = 4, 5, 6) cross-section are shown in Table 2. The corresponding resonant partial wave
cross-sections calculated are compared with the fitted cross-section in Figure 4. The q
parameter value is large (q = 28) and positive for ℓ = 3, which has a lower background
cross-section (σo = 8.00 a2

0) for the ASW potential. A high q value suggests that the in-
terference between the resonant and direct (background) scattering is weak, leading to a
Lorentzian shape of the cross-section. Furthermore, a weak coupling between the back-
ground and the resonant channel is found in the low σo. Relative to other resonances
(ℓ = 4 and 5), the ℓ = 3 resonance shape is narrower ( Γ

2 = 0.08 × 10−3 a.u.) and more
resembles the Lorentzian profile in ASW, as seen in Figure 4 (upper panel). Additionally, a
small resonance width for ℓ = 3 indicates a longer resonance lifetime. The q value remains
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positive for ℓ = 4 and 5 cases also; however, the values are found to approach zero. A lower
value of q indicates a strong interference between resonant and direct scattering channels
leading to asymmetric shape profiles, as is clear from Figure 4 (upper panel; ℓ = 4 and 5).
Furthermore, the ℓ = 4 and ℓ = 5 resonances are weak, indicating their shorter lifetimes.

For ASW-P (Figure 4 (lower panel)), no resonance is obtained for ℓ = 3. From Table 2,
it can be seen that when polarization is introduced to the ASW potential, the q value for
ℓ = 4 partial wave decreases from 2.69 to −19.30. Also, a considerable lowering of σo and
resonance width values is noted. This indicates that the ℓ = 4 resonance becomes sharper
with the addition of polarization. For ℓ = 5, the q value goes from 1.19 to 3.90 when the
polarization is added and a decrease in the σo and Γ value is also observed. The resonance
for ℓ = 6 in ASW-P yields a q value of 1.69. Also, among the ASW-P resonances, the
maximum σo and minimum Γ values are determined for ℓ = 6, indicating an asymmetric
and weaker resonance.

Table 2. Fano parameters of resonances using ASW and ASW-P model potential.

Fano Parameters
Model

Potential ℓ Er q Γ
2 σo

a.u. ×10−3 a.u. a2
0

ASW 3 0.0092 28.00 0.08 8.00
4 0.0795 2.69 10.40 82.00
5 0.1620 1.19 31.00 148.00

ASW-P 4 0.0524 −419.30 4.40 2.90
5 0.1380 3.90 26.00 29.00
6 0.2350 1.69 60.00 76.00

Figure 4. Comparison of e−C60 elastic scattering resonant cross-sections calculated using PWA (black)
for ASW (upper panel) and ASW-P (lower panel) with their Fano fitting profiles (orange). Vertical
lines indicate the resonant energies Er.

We also perform the Fano fitting analysis of the resonances obtained from the DFT
and DFT-P model potential and the resulting values of the Fano parameters are listed in
Table 3. In Figure 5, the fitted profiles for DFT (upper panel) and DFT-P (lower panel)
are shown. The parametric values evolve very differently from DFT to DFT-P. In DFT, a
resonance is noted for the partial wave ℓ = 3, which yields q = 6.23 and a considerably large
background cross-section σo = 135a2

0. Consequently, the resonant shape is asymmetric. A
resonance exists for ℓ = 1 in DFT-P with energy Er = 0.0013 a.u., q = 2.48, σo = 920a2

0, and
its asymmetry suggests a larger background cross-section. A common set of resonances for
partial waves (ℓ = 4, 7, 8, and 12) is shown in DFT and DFT-P. The q value increases from
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1.65 to 2.79 for ℓ = 4 when the polarization effect is added. Furthermore, decreases both
in the resonant width and background cross-section imply that for ℓ = 4 the polarization
effect sharpens the resonance. When polarization effects are taken into account, the q value
for ℓ = 7 rises from −21.20 to −9.30, while for ℓ = 8, the q value falls from 12.45 to −15.25.
From Table 3, one notes that the resonance width is the narrowest for ℓ = 12 in both DFT
and DFT-P implying a prolonged lifetime. The corresponding q values for DFT and DFT-P
are −5.60 and −4.53, respectively.

We remark that the lifetimes of these resonances, as derivable from their line widths,
will affect the scattering time delay in general, since the electron will be transiently captured
in these resonance states before arriving at the detector.

Table 3. Fano parameters of resonances using DFT and DFT-P model potential.

Fano Parameters
Model

Potential ℓ Er q Γ
2 σo

a.u. ×10−3 a.u. a2
0

DFT 3 0.0080 6.23 0.60 135.00
4 0.0340 1.65 11.40 359.00
7 0.1050 −21.20 2.50 2.00
8 0.2120 12.45 28.20 3.20
12 0.3414 −5.60 0.09 12.00

DFT-P 1 0.0013 2.48 1.35 920.00
4 0.0258 2.79 5.50 228.00
7 0.0818 −9.30 0.75 13.10
8 0.1920 −15.25 20.60 2.40
12 0.3109 −4.53 0.50 16.70

Figure 5. Comparison of e−C60 elastic scattering resonant cross-sections calculated using PWA
(black) in DFT (upper panel) and DFT-P (lower panel) with their Fano profiles (orange). Vertical
lines indicate the resonant energies Er.

3.3. Resonant Phase Shift and Time Delay

In Figure 6, the scattering phase shift and EWS time delay (using Equation (13)) are
plotted for the resonant partial waves of ASW (upper panel) and ASW-P (lower panel)
model potentials. The vertical lines indicate the corresponding resonant energies, which are
obtained from the Fano analysis. First, we discuss the Non-P case (Figure 6, upper panel).
The phase shift for ℓ = 3 partial wave shows an abrupt π/2 jump and a sweep by π radian
within a short energy range. As a result, the time delay sharply peaks as shown in Figure 6
(upper panel for ℓ = 3). Subsequent partial waves (ℓ = 4 and 5) also meet the resonant
condition but comparatively weakly. For these weaker resonances, the magnitude of the
phase shift is less than π across the resonance. The resonant time delay for the ℓ = 3 partial
wave is 410.45 femtoseconds (fs). This indicates that at this resonance, the electron stays in
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the vicinity of the scatterer for quite a while. Resonant energy and the corresponding time
delay values for the resonant partial waves are listed in Table 4. According to Table 4, the
resonant time delay drops gradually for partial waves having higher angular momentum
quantum numbers. A study by Amusia et al. [2], using the Dirac bubble potential model
to describe fullerene, reported a similar trend in the time delay profile. In the ASW-P
case (Figure 6, lower panel), ℓ = 3 partial wave is non-resonant, but ℓ = 4, 5, and 6 are
resonant. The strongest resonance is observed for ℓ = 4, having a delay value of 11.09 fs at
the resonant energy Er = 0.0524 a.u. This is followed by a smaller resonant time delay of
1.89 fs for ℓ = 5 and 0.75 fs for ℓ = 6. A progressive reduction in the resonant time delay is
observed for larger angular momentum partial waves, similar to the trend in the ASW case.

As analyzed in Section 3.1, a small hump appears in the phase shift near zero energy
due to the polarization effect. Consequent to this, a smaller peak in the time delay is seen
in the ASW-P case, which is absent in the ASW case. For the ℓ = 4 partial wave, the peak
in time delay due to polarization is at 0.0524 a.u., and for ℓ = 5 and ℓ = 6, respectively, at
0.1380 a.u. and at 0.2350 a.u. Noticeably, although the phase shift is less sensitive to the
polarization effect, an amplified feature is noted in time delay. This suggests that the time
delay is more sensitive to changes in the potential compared to other scattering parameters.

Figure 6. Resonant partial wave scattering phase shift (solid black) and EWS time delay (dashed red)
plotted for ASW (upper panel) and ASW-P (lower panel) potentials. The phase shift is linked to the
left axis and the time delay is linked to the right axis. Vertical line indicates the resonant energies Er.

Table 4. Resonant energy and time delay for ASW and ASW-P case.

Resonant Partial
Wave ASW ASW-P

ℓ Energy (a.u.) Time Delay (fs) Energy (a.u.) Time Delay (fs)

3 0.0092 410.45 – –
4 0.0795 4.73 0.0524 11.09
5 0.1620 1.32 0.1380 1.89
6 – – 0.2350 0.75

For the e−C60 interaction modeled by DFT, more resonances are seen. This is, as noted
before, because of the intrinsic diffused shape and a deeper well in the DFT model. Phase
shifts and the corresponding time delay profiles of resonant partial waves are shown in
Figure 7. We first analyze the DFT case without polarization (Figure 7, upper panel). Here,
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the resonance condition is satisfied for the partial waves ℓ = 3, 4, 7, 8, and 12. As seen,
ℓ = 12 exhibits the sharpest resonance, followed by ℓ =3, 7, 4, and 8. The longest resonant
delay is noted at Er = 0.3414 a.u. for ℓ = 12 with τℓ=12 = 227.29 fs. At Er = 0.2120 a.u.,
the shortest resonant time delay of 1.63 fs is observed for ℓ = 8 partial wave. Details of
resonant energy and time delay values are given in Table 5. From Figure 7 (lower panel),
the polarization-added DFT model (DFT-P) exhibits five notable resonances, just as in the
DFT case. Here, a near-threshold resonance is obtained for ℓ = 1, for which the resonant
energy and time delay values are 0.0013 a.u. and 29.68 fs, respectively. Next, the resonance
condition is attained for partial wave ℓ = 4, followed by ℓ = 7, 8, and 12. Similar to the DFT
case, a steep jump in phase shift is obtained for ℓ = 12, producing the maximum resonant
delay value of 237.53 fs at the energy Er = 0.3109 a.u. A steady jump in the phase is seen for
the partial wave with ℓ = 7 which induces a time delay value of 65.48 fs, while for ℓ = 4 the
resonant time delay is 8.49 fs. In comparison, the phase shift change is relatively small for
ℓ = 8 resulting in the lowest resonant time delay of 2.26 fs. For the case with polarization,
however, there is a slight decrease in the resonant energy compared to the non-P case.
This is because, as previously mentioned, the attractive polarization potential lowers the
potential barrier. Similar to the ASW analysis, a very small bump in time delay in DFT-P for
ℓ = 8 is found which is likely induced by the polarization effect of C60. For the remaining
partial waves, since the resonances dominate changes due to the polarization effect, the
humps in the phase shift and corresponding smaller peaks in the delay are masked.

Table 5. Resonant energy and time delay for DFT and DFT-P case.

Resonant Partial
Wave DFT DFT-P

ℓ Energy (a.u.) Time Delay (fs) Energy (a.u.) Time Delay (fs)

1 – – 0.0013 29.68
3 0.0080 81.60 – –
4 0.0340 4.12 0.0258 8.49
7 0.1050 18.79 0.0818 65.48
8 0.2120 1.63 0.1920 2.26
12 0.3414 227.29 0.3109 237.53

Figure 7. Resonant partial wave scattering phase shift (solid black) and EWS time delay (dashed blue)
are plotted for DFT (upper panel) and DFT-P (lower panel) potentials. The phase shift is linked to the
left axis and the time delay is linked to the right axis. Vertical lines indicate the resonant energies Er.



Atoms 2024, 12, 18 13 of 16

3.4. Average Time Delay

The time delay results presented above are for individual partial waves, which can
not be experimentally observed. However, the average time delay is the quantity that can
be measured in principle. Figure 8 shows the average delay, computed using Equation (14),
of the e−C60 elastic process in (a) ASW, ASW-P and (b) DFT, DFT-P. The average time delay
profiles exhibit all of the resonant peaks that are seen in TCS, as expected. For ASW and
ASW-P cases (Figure 8a), while energy E → 0, the average time delay tends to negative
infinity. The s−wave time delay profile dominates the average delay behavior in the low
energy limit since the low energy collision is dominated by the s-wave scattering. For both
the ASW and ASW-P cases, a progressive decline in the delay peak value is noted. The
contribution of partial wave ℓ = 1 is responsible for a very small hump in the ASW-P
profile that is observed in the energy limit to zero. The average time delay in DFT also
contains all of the resonant partial wave peaks (Figure 8b), much like in the ASW case.
Because of the dominant influence of the ℓ = 0 partial wave, the average time delay here
also approaches negative infinity in the low energy limit, in accordance with the Wigner
threshold law. We recall the partial wave ℓ = 12 yielded the largest EWS delay value in
both the DFT and DFT-P cases. Accordingly, the average delay also shows very steep peaks
for the same partial wave. Structures from a common set of partial waves are observed in
both the DFT and DFT-P frames where the polarization effect causes an enhancement of
the time delay and an energy-dependent red-shift of the peak position is noted.

Figure 8. Average time delay of e−C60 elastic scattering using model potentials (a) ASW (black) and
ASW-P (red) (b) DFT (blue) and DFT-P (magenta). The average time delay behavior magnified in the
low energy limit is shown in the inset for the DFT case. The resonant time delays are labeled with the
corresponding partial wave’s angular momentum quantum number.

4. Conclusions

The present study focuses on investigating electron elastic scattering from a C60
molecule using the DFT and ASW model potentials. This study reports, for the first time,
positive humps in the EWS time delay for resonant partial wave channels, which are
attributed to the polarization effect. Furthermore, the sensitivity of the time delay versus
other scattering parameters, and changes in the interaction potential are revealed in the
study. A similar observation was made earlier for photoionization, where the angular
distribution asymmetry parameter (β) was found to be less sensitive to the interaction
model used compared to the ionization time delay [60,61]. The present work reaffirms such
peculiar delicateness of the time delay as observable but in the context of electron scattering.

Using ultrafast two-photon pump-probe laser pulses, measurements of time delay
in photoionization is now possible [1]. If experimental technology allows, it may also be
possible to employ similar approaches to measure the time delay in electron scattering.
An electron pulse can be sent to the target to scatter in a spherical pulse (scattering pulse),
which can be followed by a probe laser pulse time-delayed from the original pulse in a
controllable manner. This general technique can be realized either on an interferometric
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or a streaking track, as routinely conducted nowadays in photoelectron chronoscopy. The
current study may generate a preliminary impetus to this goal.
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