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Abstract: With new artificial intelligence (AI) technologies and application scenarios constantly
emerging, AI technology has become widely used in astronomy and has promoted notable progress in
related fields. A large number of papers have reviewed the application of AI technology in astronomy.
However, relevant articles seldom mention telescope intelligence separately, and it is difficult to
understand the current development status of and research hotspots in telescope intelligence from
these papers. This paper combines the development history of AI technology and difficulties with
critical telescope technologies, comprehensively introduces the development of and research hotspots
in telescope intelligence, conducts a statistical analysis of various research directions in telescope
intelligence, and defines the merits of these research directions. A variety of research directions are
evaluated, and research trends in each type of telescope intelligence are indicated. Finally, according
to the advantages of AI technology and trends in telescope development, potential future research
hotspots in the field of telescope intelligence are given.

Keywords: telescope intelligence; artificial intelligence; site selection; observation schedule;
database intelligence

1. Introduction

Sites with potential for excellent astronomical observations are limited to high-altitude
areas, Antarctica, and outer space, making on-site operations challenging. The use of
artificial intelligence (AI) to assist astronomers in harsh environments can alleviate burdens
on them. AI can also enable the realization of functions that can only be achieved by
complex equipment, thereby reducing equipment procurement and transportation costs
and significantly alleviating the load on space telescopes. Additionally, AI can facilitate the
scheduling of telescope missions and the diagnosis of faults, enhancing imaging quality
and data output.

Since John McCarthy proposed the concept of artificial intelligence in 1956 [1], the field
has undergone various stages of development. In the early 1970s, rule-based expert systems
provided decision support in specific domains [2]. Neural networks developed rapidly
during the 1980s due to the application of the backpropagation algorithm [3]. In the 1990s,
statistical learning methods, such as support vector machines [4] and decision trees [5],
gained prominence. The need to process massive amounts of data has led to the application
of feature dimensionality reduction technologies in feature engineering [6]. Simultaneously,
the concept of deep learning emerged in 2006 [7]. After 2010, deep learning demonstrated
its remarkable capabilities, with deep neural networks excelling in fields such as image
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recognition, speech recognition, and natural language processing. And more complex deep
learning models like recurrent neural networks [8] and convolutional neural networks [9]
have been further developed. In recent years, large language models based on AI tech-
nologies, such as GPT-3, have attracted significant interest and been widely discussed. AI
technologies are generally divided into connectionist and symbolist approaches. Connec-
tionism, represented by deep learning, utilizes neurons for information processing, while
symbolism is represented by the use of knowledge graphs which represent information
using symbols and use rules to operate. As early as the 1990s, neural networks were ap-
plied in the observation planning of the Hubble Space Telescope (HST) [10], expert systems
were used in the fault diagnosis of HST energy systems [11], and statistical machine learn-
ing algorithms were widely used in the preprocessing of database data to label quasars,
stars, and galaxies [12–14]. With AI’s evolution, its applications in telescope intelligence
have broadened, encompassing the selection of excellent stations, the calibration of tele-
scope optical systems, and the optimization of imaging quality [15–17]. In general, large,
ground-based astronomical telescopes are integrated optical and mechatronics devices
encompassing mechanical and drive systems, optical paths and optical systems, imaging
observation, control systems, and environmental conditions. Each subsystem comprises
numerous complex entities, including but not limited to the parts shown in Figure 1. In the
future, with the relentless progression of cutting-edge AI technology, telescope technology
will undergo significant changes.

Figure 1. Classes of telescope entities.

Many articles have described the application of AI technology in astronomy. In 2010,
Ball and Brunner [18] introduced the application of traditional machine learning algorithms,
including the use of support vector machines (SVMs), artificial neural networks (ANNs), K-
nearest neighbor (KNN) algorithms, kernel density estimations, the expectation–maximization
algorithm (EM), self-organizing maps (SOMs), and K-means clustering algorithms, in
astronomical big data mining. Fluke and Jacobs [19] introduced the application of the latest
deep learning algorithms in the field of astronomy and divided AI tasks into classification,
regression, clustering, prediction, generation, discovery, and the promotion of scientific
ideas according to the type of task. Meher and Panda [20] and Sen et al. [21] provided more
comprehensive and detailed introductions to the application of deep learning algorithms
in the field of astronomy. However, the scarcity of telescope-specific discussions in these
articles makes it impossible to understand trends and hotspots in current research on
telescope intelligence.

This paper explores the lifecycle of astronomical optical telescopes (which, in general,
operate primarily within the visible range, the near-ultraviolet range, and the infrared
range [22]), delineating two principle phases of telescope intelligence: manufacturing
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planning and operational maintenance. Various aspects, such as observatory site condition
assessments, optical system design, telescope observation schedules, fault diagnosis, image
quality optimization, and telescope database management, are included, and this paper
systematically outlines the role of AI technology in each field. Then, these focal points of
research are statistically analyzed, delineating the merits of each investigative direction.
Furthermore, emergent trends in telescope intelligence are indicated. Finally, this paper
considers the future advantages of both technology and telescope development trends,
identifying prospective hotspots in future telescope intelligence research.

The arrangement of this article is as follows. Section 2 comprehensively introduces
telescope intelligence, providing examples, and decribes hotspots in all stages of astro-
nomical optical telescope research. Section 3 discusses and analyzes current research on
telescope intelligence and describes research trends and future hotspots. Finally, the main
conclusions of the article are summarized in Section 4.

2. Telescope Intelligence

Telescope intelligence encompasses two primary domains: manufacturing planning
and operational maintenance. The former can be further divided into astronomical obser-
vatory site selection intelligence and optical system intelligence, while the latter can be
further divided into observation schedule intelligence, fault diagnosis intelligence, image
quality optimization intelligence, and database intelligence.

2.1. Observatory Site Selection

The selection of observation sites for astronomical telescopes is crucial to maximiz-
ing their observational capabilities. Theoretical research and empirical methods for site
selection have rapidly developed in recent decades, leading to the discovery of exceptional
ground-based sites such as Maunakea in Hawaii [23], Paranal and La Silla in the Chilean
highlands, La Palma in Spain [24,25], Dome A in Antarctica [26], and Lenghu on the Tibetan
Plateau in China [27]. The environments of some sites are shown in Figure 2.

Figure 2. The environments of some sites located in high-altitude areas or Antarctica.

Selecting an astronomical observatory site requires the careful consideration of several
critical observation parameters. These include the number of clear nights, atmospheric
seeing conditions, precipitable water vapor (PWV), night sky brightness, meteorological
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parameters (e.g., wind speed and cloud distribution), artificial light pollution, and terrain
coverage. AI methods play a crucial role in the statistical analysis and forecasting of these
key indicators.

2.1.1. Assessment of Site Observation Conditions

In recent years, meteorological satellites, GIS (Geographic Information System) tech-
nologies, and all-sky cameras have played prominent roles in assessing astronomical
observation conditions at target sites [28–30]. With the use of AI technology, station cloud
cover statistics can be quickly assessed.

Conventional cloud identification, which relies on multiband thresholding rules for
classifying cloud areas, necessitates specific detection equipment for the corresponding
bands and may yield low-accuracy results. SVM, principal component analysis (PCA),
and Bayesian methods are utilized for single-pixel classifications of satellite images; how-
ever, their performance is hindered by the absence of spatial information. Francis et al. [31]
utilized a convolutional neural network (CNN) algorithm to amalgamate single-pixel and
spatial information, realizing the high-precision identification of satellite cloud conditions.
Mommert [32] used a machine learning model based on gradient boosting called lightGBM
and a residual neural network to classify cloud conditions from the Lowell Observatory’s
all-sky camera imagery. They showed that lightGBM demonstrates superior accuracy. Li
et al. [33] combined CNN and Transformer to classify and recognize cloud types, solving
the problem of the global difficulty of CNN feature extraction. The model architecture is
shown in Figure 3.

Figure 3. This method uses the output of the CNN (convolutional neural network) model as input for
the Transformer model to achieve cloud classification and recognition in all-sky camera imagery [33].

Meanwhile, employing AI techniques to classify statistical data from multiple sta-
tions can enable the prediction of PWV and sky background. Molano et al. [34] utilized
unsupervised learning to cluster meteorological parameters from various weather stations
from sites across Colombia, obtaining two very low PWV astronomical sites with high
probability. Priyatikanto et al. [15] applied a random forest (RF) algorithm to classify sky
brightness from different stations, enabling the monitoring of sky background brightness.
Additionally, Kruk et al. [35] employed transfer learning and AutoML (automated machine
learning) to analyze approximately two decades of Hubble Space Telescope imagery; their
work quantifies the impact of artificial satellites on astronomical observations, a factor that
should be considered in the selection of astronomical observatory sites.

2.1.2. Site Seeing Estimate and Prediction

The structure of the Earth’s atmosphere, as depicted in Figure 4, primarily consists of
the troposphere, stratosphere, mesosphere, thermosphere, and exosphere. The troposphere
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can be further divided by altitude into the free atmosphere and the planetary boundary
layer, which has the greatest impact on atmospheric turbulence [36,37]. Monitoring and
predicting atmospheric turbulence is of significant importance for enhancing telescope
observational efficiency.

Figure 4. Schematic diagram of the structure of the Earth’s atmosphere.

As a major parameter reflecting the intensity of atmospheric turbulence and the most
crucial site parameter, the atmospheric seeing of observatory sites significantly affects
the image quality of optical telescopes. Certain models estimate atmospheric seeing by
correlating atmospheric parameters with the integrated parameters of optical turbulence
(astronomical optical parameters), such as the Dewan model [38], the Coulman-Vernin
model [39], and the AXP model (the parameters A and p are functions related to the
altitude h) proposed by Trinquet and Vernin [40]. However, these models, as they are based
on statistical data from multiple stations, are less effective for specific site analyses. AI
techniques can establish relationships between atmospheric parameters and astronomical
optical parameters for a given station.

C2
N , a key parameter reflecting the change in optical turbulence intensity, is also an

important parameter for deriving atmospheric seeing through an analytical model. In a
pioneering effort, Wang and Basu [41], from the Mauna Loa Observatory, first used ANNs
on atmospheric temperature, pressure, and relative humidity to estimate the structure
constant of the refractive index C2

N . Jellen et al. [42] used the RF method to predict the C2
N

of the near-surface atmosphere and studied the contribution of environmental parameters
to optical turbulence. Su et al. [43] operated an optimized backpropagation (BP) network
to experiment with data obtained from Chinese Antarctic scientific research, showing that
C2

N forecasting results based on this method had a reliable correlation. Vorontsov et al. [44]
processed short-exposure laser beam intensity scintillation patterns based on deep neural
networks (DNNs) to predict C2

N , achieving superior measurement accuracy and a higher
temporal resolution. Bi et al. [45] used a GA-BP (Genetic Algorithm Backpropagation)



Universe 2024, 10, 210 6 of 28

neural network to train and predict meteorological parameters collected by an instrument,
a technique which can deduce the relevant astronomical optical parameters. Grose and
Watson [46] employed a turbulence prediction method based on recurrent neural networks
(RNNs), utilizing prior environmental parameters to forecast turbulence parameters for the
following 3 h.

AI techniques have also been used to directly forecast seeing. Kornilov [47] analyzed
atmospheric optical turbulence data above Mount Shatdzhatmaz and predicted short-term
seeing. Milli et al. [48] constructed a seeing prediction strategy based on the RF method
for the Paranal Observatory to provide a reference for optimizing telescope observation
efficiency. Giordano et al. [49] used the atmospheric parameter database of the Calern
Observatory as an input for statistical learning to predict turbulence conditions while
illustrating the importance of the in situ parameter characteristics of the station [50]. The
Maunakea Observatory has used its observation and forecast data to build a machine learn-
ing seeing prediction model that can make predictions for the following five nights [51,52].
Turchi et al. [53] used the RF method to make a short-time-scale (1–2 h) forecast of at-
mospheric turbulence and seeing above the Very Large Telescope (VLT). Hou et al. [54]
employed wind speed and temperature gradient data acquired from Antarctic Dome
A as inputs and predicted seeing based on long short-term memory (LSTM) and Gaus-
sian Process Regression (GPR). Masciadri et al. [55] introduced a method for short-term
(1–2 h) predictions of astroclimate parameters, including seeing, airmass, coherence time,
and ground-layer fraction, demonstrating its effectiveness at the VLT. Ni et al. [56] used situ
monitoring data from the Large Sky Area Multi-Objective Fiber Spectroscopic Telescope
(LAMOST) to predict seeing through a variety of AI techniques, including sthe tatistical
models ARIMA and Prophet, the machine learning methods Multilayer Perceptron (MLP)
and XGBoost, and the deep learning methods LSTM, Gate Recurrent Unit (GRU), and
Transformer. The method, input parameters, output parameters, and statistical operators
of some methods mentioned above are shown in Table 1.

Table 1. Input parameters, output parameters, and accuracy of different methods.

Method Input Parameters Output Parameters Statistical Operators

MLP [41]

Temperature, relative
humidity, and pressure at the

height of 2 m;
potential temperature

gradient and wind shear at
the height of 15 m

C2
N R2 = 0.87, weekly a

RF [42]
Surface station: dew point

temperature, pressure, wind
speed, relative humidity, etc.

log (C2
N) MSE = 0.09 b

Optimized BP [43]

Surface pressure, temperature
at a height of 0.5 m and 2 m,

relative humidity at 0.5 m and
2 m, wind speed at the height
of 0.5 m and 2 m, and snow

surface temperature

log (C2
N)

Rxy = 0.9323 and
RMSE = 0.2367 c

DNN [44] Simulated C2
N from laser beam

intensity scintillation patterns C2
N

C2
N/C2

N,0: RMSE = 0.072 and
std = 0.06 d

GA-BP [45]

Vertical profiles from
sounding balloon: height,

pressure, temperature, wind
speed, wind shear, and
temperature gradient

log (C2
N) RMSE < 1.4
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Table 1. Cont.

Method Input Parameters Output Parameters Statistical Operators

RF and MLP [48]

Seeing, surface atmospheric
parameters (pressure,

temperature, wind, humidity,
etc.)

Seeing RMSE < 0.27; 2 h

RF [49]

ground parameters (wind,
temperature, relative

humidity, pressure), seeing,
isoplanatic angle, etc.

Seeing Pearson correlation
coefficient ≈ 0.8 at start time

K-means [51]
Free seeing, vertical profile of
wind velocity and wind shear

from GFS, etc.

Seeing of total and free
atmospheric parameters for

the next 5 days
RMSE < 0.25

RF [53]

Seeing, wavefront coherence
time, isoplanatic angle,

ground layer fraction, and
atmospheric parameters

(temperature, relative
humidity, wind speed, and

direction)

Seeing RMSE = 0.24; 1 h
RMSE = 0.32; 2 h

LSTM and GPR [54]
Wind speed and temperature

gradient at heights of 2 m,
4 m, 6 m, 8 m, 10 m, and 12 m

Seeing RMSE = 0.14; 10 min

a R2: correlation coefficient; b MSE: mean square error; c Rxy: correlation coefficient; d std: standard deviation;
RMSE: root-mean-square error.

2.2. Intelligence of Optical Systems

The optical system is the most crucial part of a telescope. Optical system misalignment
directly affects imaging quality, resulting in the deformation of star shapes and the enlarge-
ment of star sizes. Traditional optical system calibration relies on a laser interferometer and
wavefront detection equipment, which are challenging to operate in harsh environments.
AI technology can replace or simplify equipment operations to achieve optical path and
mirror surface calibration.

2.2.1. Optical Path Calibration

Large-aperture and wide-field survey telescopes often have a primary mirror with a
fast focal ratio, making the secondary mirror more sensitive and requiring higher calibration
accuracy [57]. By using laser interferometers and other equipment for manual adjustments,
the mirror tilt accuracy can reach ten arc seconds, and the eccentricity accuracy can reach
0.1 mm [58]. Many computer-aided alignment methods have been developed to achieve
higher-precision calibration, including the vector aberration theory proposed for the optical
path alignment of the LSST (Large Synoptic Survey Telescope) and JWST (James Webb Space
Telescope) [59]. With mature wavefront detection technology, the method of wavefront
detection and inverse calculations of misalignment error based on Zernike polynomial
decomposition have played enormous roles in the collimation and adjustment of telescopes.

The method mentioned above requires a wavefront sensor device and the relationship
between the telescope’s aberration and the adjustment error, and it meets the challenge of
adjusting multiple fields of view simultaneously. AI technology can construct a relationship
between the adjustment error and the detection parameters. Wu et al. [57] used an ANN
to construct a relationship between a star image obtained by a scientific camera and the
adjustment error of a telescope to realize optical path calibration. Jia et al. [16] proposed
a CNN-based algorithm to fit the relationship between the point spread function (PSF)
and the four degrees of freedom of a secondary mirror which can be used to align the
secondary mirrors of wide-field survey telescopes. The Rubin Observatory uses a CNN
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with a self-attention mechanism to realize correspondence between the degrees of freedom
of the primary mirror, secondary mirror, and focal plane and the final imaging of the
scienctific camera, achieving the active adjustment of the attitude of the LSST telescope [60].

In addition to being applied to the calibration of the entire optical path of a telescope,
AI technology can also be applied to calibrating a specific device in a telescope. LAMOST
is a large-field survey telescope with a focal surface that has 4000 optical fibers. Before each
observation, each optical fiber needs to be moved to its corresponding position. The po-
sitioning accuracy of the optical fiber is closely related to the initial angle of the optical
fiber head. A CNN is used to classify the camera’s pixels, including the optical fiber head,
to carry out optical fiber contour extraction and achieve the optical fiber’s initial angle [61].

2.2.2. Mirror Surface Calibration

Active optics technology is the primary means of realizing the surface shape calibration
of large-aperture telescopes. An active optical system can be divided into two steps.
The first part comprises wavefront reconstruction, including phase retrieval and the use of
the phase diversity method and the wavefront sensor-based method. In the second step,
the calibration voltage according to the corresponding relationship between the wavefront
and the calibration voltage is obtained. The calibration voltage is imported into the force
actuator to realize the adjustment of the surface shape [62].

AI technology can be applied to active optical technology to calibrate surface shape.
A DNN can be used to directly construct the relationship between a point map obtained by
a Shack–Hartmann wavefront sensor and the calibration voltage to improve calibration
efficiency [63]. Bi-GRU can be used to obtain the corresponding relationship between the
defocused star images and the wavefront [64]. A sketch map of the co-phasing approach
using the Bi-GRU network is shown in Figure 5. An SVM can be utilized to overcome the
shortcomings of curvature sensing, which is easily affected by atmospheric disturbances,
and improve the calibration ability of curvature sensing [65].

Figure 5. In-focus and defocused star images and aberrated wavefront maps are used to train the
Bi-GRU network, and the trained network is used to predict wavefront maps [64].

Segmented mirror telescope surface calibration mainly comprises piston error and
tip/tilt error; among these, tip/tilt error detection methods are relatively mature, while
piston error detection is still challenging and 2π errors are prone to occurring. An ANN can
be used to build the relationship between piston error and the amplitude of a modulation
transfer function’s sidelobes to detect piston error [66]. A CNN can be used to distinguish
the range of the piston error and improve the sensitivity of the Shack–Hartmann wavefront
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sensor to the 2π error [67]. Wang et al. [68] proposed a CNN-based multichannel left-
subtract-right feature vector piston error detection method which can improve the detection
range of piston error to between −139λ and 139λ.

2.3. Intelligent Scheduling

A telescope executes observation tasks according to an observation schedule. A long-
term schedule refers to allocating observation time for observation tasks over the next few
months, selecting valuable observation proposals from numerous observation proposals;
observations are then conducted according to each proposal’s priority, observation time,
observation goals, and the constraints of the telescope itself. At the same time, it is
necessary to formulate short-term plans and adjust the observation plan for new targets or
transient phenomena.

Observation planning requires the calculation of many observation tasks to find the
best observation plan. Manual planning is not sufficient for long-term task planning.
Research in this area has been ongoing since the mid-1950s, ranging from simple heuristics
to more complex genetic algorithms or neural networks. AI techniques are widely used
in observation-planning tasks. Granzer [69] introduced traditional observation-planning
methods, including queue planning, critical path planning, optimal planning, and allocation
planning. Colome et al. [70] further comprehensively introduced observation-planning
techniques developed over the past 50 years, mainly based on genetic algorithms, the
ant colony optimization algorithm, multiobjective evolutionary algorithms, and other
new methods.

In the 1990s, the Hubble Space Telescope utilized an ANN-based SPIKE system [10,71] to
generate observation plans and extended its use to the VLT and Subaru telescopes. This
neural network is built upon the Hopfield discrete neural network framework [72], with
the addition of a guard network to prevent it from becoming trapped in local minima.

The telescope scheduling process is transformed into a constraint satisfaction problem
in which N observation activities are scheduled into M time intervals. The schedule result
can be presented by an N × M neural network, where yim represents the state of observation
activities Ai in time intervals m. The constraints are categorized into unary constraints
bim and binary constraints Wim,jn. Unary constraints apply to single observation activities
Ai only. Binary activity constraints are derived from suitability functions which specify
the impact of scheduling one activity Ai on another Aj. The neural node states yim are
initialized randomly, the neural state is then updated, and the input, denoted by xim, is
given by the following equation:

xim = ∑
jn

Wjnyjn + bim, (1)

A neuron selected for updating computes its state from its input via the following step
transfer function:

yim ⇐= η(xim) =

{
1, if xim > 0
0, if xim ≤ 0

(2)

and once the total utility U stabilizes, the schedule result is outputted. Here,

U =
1
2

M

∑
m,n=1

N

∑
i,j=1

Wim,jnyimyjn +
M

∑
m=1

N

∑
i=1

bimyim. (3)
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The non-dominated sorting genetic algorithm (NSGA-II) was employed in the DSAN,
RTS2, and EChO projects [73] and the 3.5-m Zeiss telescope [74]. It is suitable for long-term
planning tasks and can be used in conjunction with constraint-based methods. The gen-
eralized differential evolution 3 (GDE3) algorithm is more efficient than NSGA-II, and it
was combined with SPIKE to provide observation planning for the JWST [75]. In addition,
it is also used in the DSAN project. The SWO (Squeaky Wheel Optimization) optimizer
based on the greedy algorithm is used in the SOFIA [76], Mars Rover, and THEMIS projects.
Reinforcement learning is used for the planning of LSST telescopes and the ordering of
sky areas observed by optical telescopes, improving the probability of optical telescopes
discovering transient astronomical phenomena such as gravitational waves, gamma-ray
bursts, and kilonovae [77,78].

2.4. Fault Diagnosis

Real-time fault monitoring and efficient fault diagnosis can prevent observation time
waste and ensure high-quality imaging. In addition, equipment faults in telescopes can
lead to significant economic losses. Traditional telescope fault diagnosis involves installing
numerous sensors to monitor telescope parameters, such as voltage and meteorological
conditions, and setting thresholds based on experience. When these parameters exceed the
threshold, the alarm system will issue a warning and identify the location and cause of
the fault.

The application of AI technology in fault diagnosis has a long history. Since the 1980s,
fault diagnosis systems based on expert knowledge have been widely used in fields such
as the aerospace industry and automotive fault diagnosis and telescopes. For instance,
Dunham et al. [79] applied a knowledge-based diagnostic system to achieve fault diagnosis
in the pointing and tracking system of the Hubble Space Telescope, while Bykat [11] used
an expert system to diagnose faults in the energy system of the same telescope. The fault
diagnosis system based on expert knowledge has the advantages of strong logic and
intuitive knowledge representation and is still widely used. Yun and Shi-hai [80] used a
knowledge tree to implement artificial intelligence in the main-axis control system of the
Antarctic Sky Survey Telescope AST3. Tang et al. [81] proposed a method for the rapid
localization of faults in LAMOST’s fiber positioner based on LSTM.

In the 1980s, fault diagnosis systems based on ANNs gained popularity with the
rise of neural networks. The fault diagnosis problem can be viewed as a classification
problem in which correspondence between sensor features and faults can be established.
In recent years, deep learning has advanced the use of neural networks for deep fault feature
extraction. For instance, Teimoorinia et al. [82] combined an SOM and CNN to classify star
image shapes for telescope imaging, enabling the timely detection of poor-quality telescope
imaging. Similarly, Hu et al. [83] used CNNs to establish a relationship between telescope
failure and telescope images, enabling the initial diagnosis of telescope faults. Recently, we
also proposed a methodology for the real-time monitoring and diagnosis of the imaging
quality of astronomical telescopes [84], incorporating AI technologies such as CNNs and
knowledge graphs, and validated it using observational data from LAMOST. This has
profound implications for the future of monitoring and diagnosing imaging quality in
next-generation large telescopes. The framework of this approach is shown in Figure 6.

Neural networks are also being used for fault prediction by establishing a relationship
between parameters before a fault occurs and the probability of the fault occurring. How-
ever, fault prediction in telescopes is still in its early stages due to a lack of training data.
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Figure 6. In the framework of the telescope maintenance support system, the left part realizes imaging
quality monitoring, and the right part realizes fault diagnosis [84].

2.5. Optimization of Imaging Quality

The imaging quality of an astronomical telescope can be quantified by the full width
at half-maximum (FWHM) of the light intensity distribution. A smaller FWHM indicates
better imaging quality. The measured values of imaging quality (IQMeasured) are mainly
affected by defects in the optical system, turbulence introduced by the dome, and atmo-
spheric turbulence, which are expressed using corresponding indicators (IQOptics, IQDome,
and IQAtmosphere, respectively). These indicators follow the 5/3-power law from different
turbulent layers [85,86], and the following relationship exists:

IQ5/3
Measured = IQ5/3

Optics + IQ5/3
Dome + IQ5/3

Atmosphere. (4)

Assuming that the observatory site is confirmed and that the defects in the telescope’s
optical system cannot be further improved, its imaging quality can be optimized by ad-
dressing atmospheric turbulence and dome seeing. This can be achieved through the use
of adaptive optics technology to calibrate atmospheric turbulence and improve the dome
design and ventilation system to enhance dome seeing.

2.5.1. Dome Seeing

The primary factors that affect dome seeing are local temperature differences inside
the dome, especially near the primary and secondary mirrors, and turbulent flow caused
by temperature differences inside and outside the dome. Therefore, controlling the tem-
perature difference is crucial for reducing deteriorations in imaging quality caused by
dome seeing.

In general, the air temperature inside an observatory dome is higher than the ambient
temperature at night. The initial solution to this problem was to ventilate the dome for a few
hours before nighttime observation to bring the temperature inside the dome in line with
the ambient temperature. However, due to the high-temperature inertia of the primary and
secondary mirrors, more than a few hours of ventilation is needed to bring the temperature
down to the same level as the ambient temperature. As a result, a local turbulence layer,
known as mirror seeing, can form near the mirror with the higher temperature, leading to
a deterioration in imaging quality.

To mitigate this issue, the general practice is to use temperature control means, such as
air conditioning, during the daytime to adjust the temperature inside the dome, primarily
the temperature of the primary and secondary mirrors, so they are consistent with the
ambient temperature during nighttime observations. The accurate prediction of the ambient
temperature during nighttime observations is crucial for temperature control.
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Murtagh and Sarazin [87] utilized meteorological data recorded by the European
Southern Observatory in La Silla and Paranal to predict temperature 24 h later using the
KNN method. They used the current, 24-h-ahead, and 48-h-ahead temperatures, as well
as the current and 24-h-ahead air pressure, to achieve an accuracy of 85.1% with an error
range of 2 °C and a 70% reliability of predicting good seeing. Aussem et al. [88] investigated
the accuracy and adaptability of dynamic recurrent neural networks and KNN methods
for time series predictions using the same data. They found that many interruptions in
the recording sequence and insufficient data were the main factors limiting these two
methods. Additionally, they proved that in the case of the fuzzy coding of seeing (dividing
the seeing degree into Good, Moderate, and Bad), the forecasting accuracy of dynamic
recurrent neural networks outperforms that of KNN methods. Buffa and Porceddu [89]
studied the problem of forecasting observatory site temperatures and proved that the
nonlinear autoregressive neural network model is more competitive than the traditional
linear filtering algorithm.

In addition, Gilda et al. [17] developed a method for predicting the probability distribu-
tion function of observed image quality based on environmental conditions and observatory
operating parameters using Canada–France–Hawaii Telescope data and a mixture density
network. They then combined this approach with a robust variational autoencoder to
forecast the optimal configuration of 12 vents to reduce the time required to reach a fixed
signal-to-noise ratio (SNR) for observations. This approach has the potential to increase
scientific output and improve the efficiency of astronomical observations. Figure 7 presents
results on the improvement in MegaPrime Image Quality (MPIQ, MegaPrime is a scientific
instrument of the Canada–France–Hawaii Telescope), as predicted by a mixture density
network, given the (hypothetically) optimal vent configurations obtained from a restricted
set of ID configurations selected by the robust variational autoencoder.

Figure 7. The baseline configuration is all open. After restricting ourselves to a subset of ID
“togglings”, the improvement over the measured MPIQ values is plotted [17].

2.5.2. Adaptive Optics

Adaptive optics (AO) is a crucial tool for improving the imaging quality of ground-
based optical telescopes by ameliorating atmospheric turbulence. Since its first implementa-
tion in the telescopes of the European Southern Observatory 30 years ago, it has been widely
used for imaging quality optimization. Guo et al. [90] introduced machine learning meth-
ods in adaptive optics, including improving the performance of wavefront sensors, building
WFSless adaptive optics systems, and developing wavefront prediction techniques.

Improving the performance of traditional wavefront sensors is similar to improving
active optics, which includes enhancing the anti-noise of wavefront detection [91,92] and
constructing a relationship between wavefront detection equipment imaging and the
wavefront [93,94]. In addition to being implemented in conventional adaptive optics
systems, AI techniques have also been utilized to overcome the sensitivity of multiobjective
adaptive optics systems to atmospheric contour changes [95].

WFSless systems do not use conventional wavefront sensing devices to construct
wavefronts. Kendrick et al. [96] used defocusing images to generate wavefronts based on
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neural networks. Wong et al. [97] ultilized bottleneck networks for more precise wavefront
reconstruction, which was confirmed to have enhanced performance by data from the
adaptive optics system of the Subaru Telescope. Some training and testing procedures
using the proposed method are shown in Figure 8. With the wide application of deep
learning, CNNs are also employed for WFSless systems for wavefront detection [98–101].

Figure 8. A visualization of the training and testing process on the turbulence-like dataset mentioned
in a related paper [97].

The calibration frequency of adaptive optics is much higher than that of active optics
technology, and the reconstruction and feedback of the wavefront cause the wavefront
calibrated by the optical calibration equipment to have an unavoidable time delay com-
pared with the actual wavefront. Improving the speed of wavefront reconstruction or
predicting future wavefronts can solve this problem. Montera et al. [102] compared the
prediction accuracy of the linear minimum mean square error method and the neural
network algorithm, indicating that the prediction performance of the latter was better.
The recurrent neural network LSTM [103] and the Bayesian regularization-based neural
network architectures [104] are also implemented for wavefront prediction.

In addition, AI technology is also used to expand the ultra-high-resolution imaging
of light sources. This includes using CNNs to construct encoding and decoding layers in
which the encoding layers extract image features and the decoding layers output corrected
images and multi-frame information to improve solar imaging resolution [105]. Generative
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adversarial networks are also utilized to generate high-resolution solar magnetic field
pictures [106,107]. However, as this research content does not belong to traditional telescope
technology, we will not further discuss it as a telescope-related intelligent technology.

2.6. Database Intelligence

The astronomical database system serves as service platform for data storage and shar-
ing, allowing astronomers and other relevant users worldwide to share, obtain, and mine
valuable information from astronomical database lists [108]. To enhance the scientificity
and richness of data, it is crucial to establish an intelligent astronomical database. AI
technology is well suited to database data fusion and classification due to its ability to
automatically extract features [19].

2.6.1. Database Data Fusion

The Astronomical Database has been accumulating data since the 1980s and com-
prises various sub-databases, such as the astronomical star list database, large-field mul-
ticolour sky survey database, asteroid database, and astronomical literature database.
The cross-fusion of databases is a significant trend in current astronomy. Table 2 shows the
classification of the database.

Table 2. Classification of database and representative catalogues.

Catalog Database Volume Representative Catalogues

I. Astrometric Data 1136 AGK3 Catalogue (I/61B)
UCAC3 Catalogue (I/315)

II. Photometric Data 747 General Catalog of Variable Stars, 4th Ed (II/139B)
BATC–DR1 (II/262)

III. Spectroscopic Data 291 Catalogue of Stellar Spectral Classifications (III/233B)
Spectral Library of Galaxies, Clusters and Stars (III/219)

IV. Cross-Identifications 19 SAO-HD-GC-DM Cross Index (IV/12)
HD-DM-GC-HR-HIP-Bayer-Flamsteed Cross Index (IV/27A)

V. Combined Data 554 The SDSS Photometric Catalogue, Release 12 (V/147)
LAMOST DR5 catalogs (V/164)

VI. Miscellaneous 379 Atomic Spectral Line List (VI/69)
Plate Centers of POSS-II (VI/114)

VII. Non-stellar Objects 292 NGC 2000.0 (VII/118)
SDSS DR5 quasar catalog (VII/252)

VIII. Radio and Far-IR Data 99 The 3C and 3CR Catalogues (VIII/1A)
Miyun 232 MHz survey (VIII/44)

IX.High-Energy Data 47 Wisconsin soft X-ray diffuse background all-sky Survey (IX1)

Bayesian-based methods are widely used in astronomical catalog cross-matching and
image fusion [109]. Budavári and Szalay [110] developed a unified framework, grounded
in Bayesian principles, for object matching which includes both spatial information and
physical properties. Additionally, Medan et al. [111] presented a Bayesian method to
cross-match 5,827,988 high-proper-motion Gaia sources with various photometric surveys.
Furthermore, Bayesian methods are employed to determine the probability of whether the
data represent objects or the background in image fusion [112,113].

To enhance the connection between various datasets, it is necessary to strengthen the appli-
cation of AI in database retrieval and outlier retrieval. As an example, Du et al. [114] developed a
method based on the bipartite ranking model and bagging techniques, which can systematically
search for specific rare spectra in the Sloan Digital Sky Survey (SDSS) spectral dataset with high
accuracy and little time consumption. Similarly, Wang et al. [115] proposed an unsupervised
hash learning-based rare spectral automatic approximate nearest neighbor search method



Universe 2024, 10, 210 15 of 28

which searches for rare celestial bodies based on spectral data and retrieves rare O-type
stars and their subclasses from the LAMOST database.

Retrieving outliers in a database can improve the reliability of astronomical databases
and realize their fusion. Rebbapragada et al. [116] combined Periodic Curve Anomaly
Detection with the K-means clustering algorithm to separate anomalous objects from known
object categories. However, this method has poor scalability and may lose possible outliers
in massive datasets and high-dimensional spaces. Therefore, Nun et al. [117] proposed
a new RF-based method to automatically discover unknown abnormal objects in large
astronomical catalogs and followed up on the outliers for a more in-depth analysis by
cross-matching them with all publicly available catalogs. Moreover, the use of multiple
data sources may lead to the loss of a certain amount of association information in different
datasets. To address this issue, Ma et al. [118] proposed an outlier detection technique
combining new KNN and RNN density parameters to mine relevant outlier information
from multisource mega-data sets.

2.6.2. Database Data Labeling

Astronomical databases store an enormous amount of features of astronomical data,
which gives rise to dimensional problems that are difficult to analyze. Therefore, the uti-
lization of AI to analyze and annotate celestial information parameters in an astronomical
database is of great significance for further astronomical research.

Automatic Data Classification

The exponential growth of astronomical data has made the automatic classification of
data generated from large-scale surveys crucial. The automatic classification of celestial
data includes the classification of quasars, galaxies, and stars based on various features,
such as their spectra, luminosity, and other celestial information.

Banerji et al. [119] performed a morphological classification of galaxy samples from
SDSS DR6 based on ANNs and compared the results with the Galaxy Zoo. Ball and
Brunner [18] used spectral data from the third SDSS data release to train KdTree to provide
reliable classification research for all 143 million non-repetitive photometric objects. Zhang
et al. [120] combined the KNN and RF approaches to separate quasars and stars. Aguerri
et al. [121] applied an SVM to automatically classify approximately 700,000 galaxy samples
from SDSS DR7 and provided the probability that each sample belongs to a certain category.

Additionally, unsupervised techniques have been used to classify astronomical data.
Mei et al. [122] adopted a three-dimensional convolutional autoencoder to implement an
unsupervised spatial spectral feature classification strategy. Fraix-Burnet et al. [123] used
the unsupervised clustering Fisher–EM (Fisher–expectation–maximization) algorithm to
classify galaxies and quasars with spectral redshifts of less than 0.25 in the SDSS database.

Moreover, deep learning has been used to analyze high-dimensional spectral data
to classify astronomical objects. Khalifa et al. [124] proposed a deep CNN structure for
galaxy classification with high testing accuracy. Becker et al. [125] introduced a scalable
end-to-end recurrent neural network scheme for variable star classification which can
be extended to large datasets. Hinners et al. [126] discussed the effectiveness of LSTM
and RNN deep learning in stellar curve classification. Awang Iskandar et al. [127] used
transfer learning to classify planetary nebula in the HASH DB and Pan STARRS databases.
Barchi et al. [128] combined accurate visual classifications from the Galaxy Zoo project with
machine learning and deep learning methodologies to improve galaxy classification in large
datasets. Wu et al. [129] proposed a new model called the Image-EFficientNetV2-Spectrum
Convolutional Neural Network to realize the classification of spectra.

Preselecting Quasar Candidates

Quasars represent a type of active galactic nucleus, and their classification is crucial in
astronomical research. However, due to the particularity of quasar samples, even a small amount
of pollution can significantly increase the difficulty of discovering a quasar candidate. Several
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studies have been conducted to classify quasars using AI techniques. Gao et al. [13] studied the
performance of the SVM and KdTree methods in classifying stars and quasars in multiband
data. Richards et al. [130] used Bayesian methods to classify 5546 candidate quasars in the
Sloan Digital Sky Survey (SDSS). Abraham et al. [131] implemented this topic using the
difference-boosting neural network method. Jiang et al. [132] identified candidate stars for
Catalytic Variables from SDSS and LAMOST database spectra based on the SVM and RF
methods. Schindler et al. [133] used an RF machine learning algorithm on the SDSS and Wide-
field Infrared Survey Explorer photometry to classify quasars and estimate their photometric
redshift, proposing a quasar selection algorithm and quasar candidate directory.

Automatic Estimation of Photometric Redshift

Galaxy photometry redshift, the so-called photo-z, refers to the redshifting of celestial
objects obtained using medium- and wide-band photometry or imaging data. Photometric
redshifts are key characteristics, especially for dark sources from which spectral data cannot be
obtained. In recent years, many studies have been conducted to measure redshifts in celestial
objects using AI techniques, which have shown obvious advantages in reducing cost and
time consumption. Gradient-boosting tree methods like XGBoost and CATBoost [134,135],
Gaussian mixture models [136,137], KNNs [138,139], SOMs [140], and some other supervised
machine learning models [141,142] have been implemented to estimate and measure photo-z
from multisource data and have achieved certain effects. Combinations of neural networks and
different machine learning methods to estimate photo-z are also utilized [143–145]. Meanwhile,
deep learning has been a powerful strategy for assessing photo-z. For instance, based on
CNNs, [146–149] have realized ideal results, demonstrating the feasibility of deep learning
methods for photo-z measurement and estimation, such as the combination of three networks
to jointly predict the morphology and photo-z shown in Figure 9.

Figure 9. A combination of three networks to jointly predict morphology and photo-z [146].
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Measurement of Stellar Parameters

Astronomical databases require high-precision measurements to provide the accurate
positions, radial velocities, and physical parameters of a large number of individual stars.
AI techniques have been increasingly applied in the automatic processing and measurement
analysis of stellar physical parameters. Various studies have been conducted to determine
stellar parameters using AI techniques. Bailer-Jones et al. [150] first adopted ANN methods
to determine stellar atmospheric parameters based on different spectral characteristics.
KNN [151], PCA, and Bayesian methods [152–154] have been used to effectively estimate
stellar physical parameters. With the sudden progress of AI, different machine learning
methods have been utilized to analyze stellar parameters [155–158], and some powerful
pipeline tools based on machine learning have been implemented for stellar physics pa-
rameter estimation and measurement, such as ODUSSEAS [159], ROOSTER [160], and
SUPPNet [161]. Benefiting from a huge volume of astrophysical data, deep learning meth-
ods are also widely used in this field and have become a research hotspot [162–164], and the
assessment of stellar physical parameters yields remarkable results.

In particular, LAMOST has obtained more than 20 million pieces of spectral data,
placing it in the leading position among all telescopes in the world as of this moment.
AI technologies, such as machine learning and deep learning methods, are utilized to
evaluate and measure stellar parameters based on mass data from LAMOST [165–174],
and significant scientific research progress has been made in the fields of searching for
special celestial bodies such as lithium-rich giants, metal-poor stars, hypervelocity stars,
and white dwarfs.

3. Discussion

The articles cited in this review encompass both journal papers and conference papers.
The methods proposed in these works are exclusively those that were empirically validated
using either a telescope or a telescope prototype. Our review did not take into consideration
methods requiring additional validation on the telescope using simulation data.

3.1. Telescope Intelligence Research Hotspots

AI technology has found applications in most facets of telescope operation. We
categorize telescope intelligence research into six main areas: site selection, optical sys-
tem calibration, observational schedule, fault diagnosis, imaging quality optimization,
and database optimization. These categories are further divided into subcategories, each
serving as a distinct research direction.

To study the focal points of each research direction, we have conducted an extensive
count of the journal articles published in each field, including the number of papers per
direction, the total citation count for papers, and the citations of articles published in the
past five years. The statistical results indicate that the number of articles published on
the subject of database data labeling far exceeds those in other areas, making it difficult
to account for them fully. We have separately listed the articles and their citation counts
from the past five years in this particular field. The results are presented in Figure 10.
The citation counts for articles published in the last five years reveal that in addition to
database calibration, the application of AI techniques in adaptive optical technology and
site seeing assessment fields are currently research hotspots.
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Figure 10. The right part enumerates both the quantity of publications and the accompanying citations
pertaining to database data labeling, while the left part similarly enumerates the citation counts and
number of publications in various other research domains. The citation count for articles published
in the last five years reveals that aside from database calibration, the application of AI techniques in
the adaptive optical technology and site seeing assessment fields are currently research hotspots.

3.2. Telescope Intelligence Research Trends

We analyze the future research trajectory of AI technology in this domain by comparing
it with traditional methods prevalent in the field, taking into account factors such as time
efficiency and accuracy. We use a scoring system in which AI-based methods are awarded
1 point when their performance surpasses traditional methods or accomplishes tasks that
traditional methods cannot, 0 points when they match the efficacy of traditional methods,
and −1 point when they underperform in comparison. The overall evaluation is obtained
by summing up these two evaluation metrics. The higher the score, the more significant
the advantages of AI technology become, indicating a trend toward its wider adoption in
the future. A classification of various research directions based on these criteria is provided
in Table 3. The results indicate that the use of AI technology is particularly advantageous
in the optimization of dome seeing, observational planning and database data labeling.

Table 3. Classification of various research directions based on proposed criteria.

Item Time Cost Accuracy Level

Site Seeing Estimate and Prediction 0 0 0
Assessment of Site Observation Conditions 1 −1 0

Optimization of Dome Seeing 1 1 2
Adaptive Optics 1 0 1

Optical Path Calibration 1 0 1
Mirror Surface Calibration 1 0 1

Observation Schedule 1 1 2
Fault Diagnosis 1 0 1

Database Data Fusion 1 0 1
Date Classification 1 1 2

Preselected Quasar Candidates 1 1 2
Photometric Infrared Evaluation 1 1 2
Stellar Parameter Measurements 1 1 2

3.3. Future Hotspots of Telescope Intelligence

As the depth of our universe exploration expands, the requirement for higher imaging
sensitivity in telescopes is escalating, especially for observing more distant and dimmer
celestial objects. Increasing the aperture size of telescopes can enhance their resolution,
with several 30-m class telescopes currently under construction. The technique of light
interference using multiple smaller telescopes can also boost resolution while reducing the
cost of constructing large-aperture telescopes.
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To minimize the impact of atmospheric disturbances on telescope resolution, it is
crucial to position these instruments at sites with superior seeing conditions and to develop
high-performance adaptive optical systems. Space telescopes, unaffected by atmospheric
disturbances, can deliver imaging at the optical diffraction limit, although they are subject
to the challenge of high costs. In the era of large-aperture telescopes, smaller telescopes
continue to play significant roles, particularly in detecting transient sources like pulsars,
gamma-ray bursts, and gravitational waves. Coordinated observations employing small-
lens arrays allow for the uninterrupted all-sky monitoring of observational targets.

The following sections will delve into the challenges and complexities associated with
ground-based large-aperture telescopes, optical interference technology, space telescopes,
and small telescope arrays. These same challenges also represent exciting frontiers for
applying AI technology in the field of telescope technology in the future.

3.3.1. Large-Aperture Telescopes and Optical Interference Technology

Currently, construction is underway on a series of 30 m class telescopes, including
the Thirty Meter Telescope (TMT), the Extremely Large Telescope (ELT), and the Giant
Magellan Telescope (GMT). These large-aperture telescopes offer superior light flux and
angular resolution but are accompanied by more intricate structures.

Consider the ELT as an example: the optical system of the ELT comprises five mirrors.
The primary mirror, spanning 39 m in diameter, is assembled from 798 sub-mirrors, each
with a 1.5 m aperture, and requires a surface accuracy of 10 nanometers. The M4 secondary
mirror, with a thickness less than 2 mm and a diameter of 2.4 m, features 5000 magnets on
its rear surface. This intricate arrangement is designed to achieve surface changes with an
accuracy of 10 nanometers a thousand times per second [175].

For 30-m class optical telescopes, the testing of large-aperture sub-mirrors presents
significant challenges due to airflows that cause image blurring and difficulties in assessing
surface accuracy. Active optics demand control over a greater number of mirror surfaces
and actuators; hence, the requirements for precision in active optical detection and control
are elevated. The substantial weight of these large telescopes poses further challenges
for support structures, while the increased size of the deformable adaptive optics neces-
sitates more sophisticated manufacturing and control processes, all while maintaining
high efficiency.

Optical interference technology, already deployed in telescopes such as the VLT,
CHARA (Center for High Angular Resolution Astronomy), KECK telescope, and LBT
(Large Binocular Telescope), will retain its high-resolution edge, even in the era of 30-m
telescopes. The MRO (Magdalena Ridge Observatory) Interferometer, presently under
construction and employing 10 telescopes for interference imaging, is projected to achieve
a resolution 100 times greater than that of the Hubble Space Telescope [176]. Concurrently,
the Nanjing Institute of Astronomical Optics & Technology of the Chinese Academy of Sci-
ences is developing an optical interference project that incorporates three 600 mm aperture
telescopes and a baseline length of 100 m. Optical interference, due to its advantages of
lengthy baselines and a wide spectrum of observable wavebands, is attracting widespread
interest. However, current optical interference experiments have resolutions far below the
theoretical limit owing to factors such as detector noise and telescope vibrations [177]. As a
result, the development of AI techniques to enhance the wavelength and baseline dynamic
range of optical interference will be a critical area for future exploration.

3.3.2. Space Telescope

Space telescopes, which operate free from atmospheric disturbances, include the re-
cently successfully launched JWST, along with the planned Chinese Space Station Telescope
(CSST), the Space Infrared Telescope for Cosmology and Astrophysics (SPICA), and the
Large Ultraviolet Optical Infrared Surveyor (LUVOIR). However, these instruments pose
unique challenges: their maintenance costs are substantial, their deployment presents
significant hurdles, and they require advanced levels of automated control.
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Among the key difficulties faced by space telescopes is the need for active optical
technologies to maintain the integrity of their surfaces. This is akin to the active opti-
cal technologies employed in ground-based telescopes. Another challenge is the need
to minimize equipment size. An example of such an innovation is the JWST’s design,
which uses low-temperature programmable slit masks for multiobject spectroscopy [178].
The application of AI to replace intricate hardware devices will be a crucial area of research
in the future. In addition, the high-resolution imaging generated by these telescopes pro-
duces vast amounts of data. Thus, achieving low-power, high-speed, long-distance data
transmission will also be a significant focus of future research.

3.3.3. Small-Aperture Telescope Array

Contrary to possible anticipations, the advent and construction of larger telescopes
have not rendered smaller telescopes obsolete. Instead, these compact instruments have
found wide-ranging applications in diverse fields, including the study of gamma-ray bursts,
the detection of exoplanets, and the investigation of microlensing phenomena. By assem-
bling arrays of small telescopes across multiple continents, researchers can continuously
monitor specific astronomical targets or, alternatively, utilize wide-field small telescope
arrays for sky survey observations.

Projects currently under development, such as the Panoramic Survey Telescope and
Rapid Response System (Pan-STARRS), intend to facilitate rapid sky surveys by utilizing
arrays of four small telescopes [179]. Similarly, the SiTian project employs an array of
small telescopes for all-sky survey observations, utilizing a network of 54 telescopes, each
with a diameter of one meter [180]. This methodology is expected to catalyze significant
breakthroughs in the field of time-domain astronomy. Moreover, the Stellar Observations
Network Group (SONG) project is planning to construct a globally interconnected obser-
vational system by installing eight 1-m telescopes, each with varying apertures, at fixed
latitudes and longitudes in both the Northern and Southern Hemispheres [181].

The hotspot for future research in this domain will likely encompass the coordination
and control of multiple telescopes for collaborative observations, the determination of opti-
mal observational strategies, and the implementation of effective cluster control systems.

3.3.4. The Challenge of Satellite Megaconstellations

Ground-based telescopes are increasingly contending with interference resulting from
sunlight reflected off artificial satellites. In recent years, a multitude of satellite launch
projects, including Starlink2, Kuiper, and WorldVu, have proposed ambitious plans to
deploy approximately 60,000 low-Earth-orbit satellites by the year 2030 [182].

Even after the implementation of sunshades, the brightness of Starlink’s VisorSat
version is expected to reach the sixth magnitude, causing significant disruptions to ground-
based telescopes, particularly those engaged in sky survey operations [183]. Moreover,
the Hubble Space Telescope has reported impacts stemming from satellite-reflected light [35].
Therefore, strategies for mitigating the influence of satellites on astronomical observations
will be a critical focal point for future research in the field.

3.3.5. Large Language Models Improve Telescope Intelligence

Large language models (LLMs), such as BERT [184], Llama2 [185], and GPT-4 [186],
are representative AI technologies that have attracted a significant amount of attention
recently. Meanwhile, LLMs have been widely utilized in many fields such as text reading [187],
medicine [188,189], and education [190], demonstrating outstanding application capabilities.

Future LLMs may be able to more directly serve telescope intelligence, providing
huge potential in telescope equipment status monitoring, optimizing observation plans, etc.
In an intelligent scheduling system, the LLM primarily focuses on gathering information,
which includes applicant assumptions, historical application records, the importance of the
research direction, and weather forecast information. This information is then exported to
the scheduling system for intelligent scheduling purposes. Additionally, the vast amounts
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of data used in training LLMs enables them to recognize and extract meaningful information
from complex astronomical data. This capability offers new avenues for accelerating
scientific discovery and deepening our understanding of the universe.

4. Conclusions

This article delves into the role of AI in various aspects of telescope operation and
research. These aspects include selecting telescope sites, calibrating optical systems, diag-
nosing faults, optimizing image quality, making observational decisions, and enhancing
the intelligence of databases. The piece presents both the current focus areas and specific
topics of research within the realm of telescope intelligence.

This paper provides a comprehensive statistical analysis of recent research trends. It
reveals that the labeling of astronomical data within intelligent databases has become a
significant research hotspot. This particular field has seen the most prolific publication of
papers. Additionally, there is an extensive body of published work dedicated to adaptive
optical technology and site seeing assessments. Through a comparison of the time efficiency
and precision of AI technology with traditional methods, the findings indicate that the use
of AI technology is particularly advantageous in optimizing dome seeing, observational
planning, and database data labeling.

This article concludes by projecting future advancements in telescopes. These include
the development of large-aperture telescopes, optical interference technology, arrays of
small telescopes, space telescopes, and large language models customized for astronomy.
Additionally, it addresses potential threats posed by satellite megaconstellations to tele-
scopes. Given the evolving landscape of telescope technology, it also identifies likely areas
of focus for future research.
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