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Abstract: Our starting point is the covariant coordinate transformation equation of a relativistic
positioning system in Minkowski space–time that maps the receiver’s emission coordinates (proper
times broadcast by the emitters) to its coordinates in some inertial reference frame. Bancroft’s
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recovered, and the subjacent elements are geometrically interpreted. The case of four static beacons is
analysed as a clarifying situation.

Keywords: relativistic positioning systems; pseudorange navigation equations; Bancroft’s
closed-form solution

1. Introduction

In the context of global navigation satellite systems (GNSSs), a modern approach is
that of relativistic positioning. The foundations of the theory of relativistic positioning
systems (RPS) were laid down some time ago: for a genesis and perspectives, please refer
to [1–4] and the references therein.

In any space–time, an RPS can be thought of as a set of four emitters A (A = 1, 2, 3, 4)
of world-lines γA(τ

A) that broadcast their respective proper times τA by means of elec-
tromagnetic signals. In an RPS, the basic observable is the set of four proper times {τA}
received at an event x by the user. These are the user’s emission coordinates (refer to [5]
for a detailed analysis, and also [6,7]). The four space T ≡ [τ1]× [τ2]× [τ3]× [τ4] ≈ R4

is called the grid of the positioning system. For generalities on this concept and RPS
constructions in two and three dimensions see [8,9]. Similar constructions apply to locate
an emitter from a given set of coplanar receivers [10,11].

The set of four emission events {γA(τ
A)} at the emission times {τA} received at

the event x is known as the configuration of the emitters for the event x. Suppose the
four world-lines γA(τ

A) are known in an inertial coordinate system {xα}(α = 0, 1, 2, 3).
In Minkowski space–time, the location problem consists of finding the transformation
between the user’s emission coordinates and its coordinates in that inertial coordinate
system by solving the following algebraic system of four non-linear equations (called the
null propagation equations):

(x− γA)
2 = 0, A = 1, 2, 3, 4, (1)

where x and γA = OγA(τ
A) are, respectively, the user and the emitters position four-

vectors with respect to the origin O of {xα}. The solution to (1), which maps the user’s
emission coordinates to its inertial coordinates, is what we may call the RPS coordinate
transformation or the RPS solution [12,13].

In the traditional approach to GNSSs, one of the basic observables is the pseudorange,
which is the apparent range (distance) between the emitter and the user as inferred from
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the travelling time of the signal. Neglecting gravitational, atmospheric and instrumental
effects, this apparent distance differs from the Euclidean geometric distance at the time of
signal emission due to synchronisation errors between emitter and user clocks (clock biases
or offsets). With at least four pseudorange measurements, the receiver can estimate its
position and clock bias by solving the corresponding navigation equations. In practice, this
estimation is the result of a multilateration problem that is solved by iterative methods (least
squares algorithms) [14,15]. Analytical or closed-form solutions are usually brought in as an
initial (approximate) estimation [16]. This work is concerned only with analytical solutions,
leaving aside the treatment of any source of errors due to measurement uncertainties, for
which further estimation and statistical analysis are necessary (see [11,17] for an analysis in
the context of source localization).

The main purpose of this paper is to bring the (non-relativistic) theoretical foundations
of current GNSSs closer to the RPS approach by recovering from the RPS coordinate trans-
formation equation [12,13] one of the classical solutions to the problem that is still in use
today: Bancroft’s closed-form solution (with four emitters) [18]. Abel and Chaffee [19,20]
used Lorentzian geometry in their interpretation of the Bancroft algorithm, providing
conditions for the existence and unicity of solutions. Bancroft’s solution has been recently
considered in [21,22]. However, Bancroft’s characteristic elements in terms of the RPS
geometric ones have not been sufficiently interpreted up to now.

We begin by explaining the notation (Section 2). We then briefly review the RPS
solution (Section 3) and express Bancroft’s solution using a relativistic notation (Section 4).
Next, by choosing a specific value for the subsidiary vector ξ, we recover Bancroft’s solution
from the RPS solution (Section 5), and we provide proofs of the results in Section 6. Section 7
contains a positioning example to illustrate the correspondence between both solutions
for four static emitters, and Section 8 contains constructions of the characteristic regions
for this static situation. Section 9 extends these constructions by considering some of the
satellites as receivers. Finally, we set out our conclusions in Section 10.

Some preliminary results of this work have been communicated at the congress Math-
ematical Modelling in Engineering and Human Behaviour 2023 [23].

2. Notation

The main sign conventions and notation adopted in this paper are:

(i) g is the Minkowski space–time metric with signature (−,+,+,+). We use units for
which the speed of light in vacuum is c = 1.

(ii) η is the metric volume element of g, defined by ηαβγδ = −
√
−det g ϵαβγδ, where ϵαβγδ

stands for the Levi–Civita permutation symbol: ϵ0123 = 1. The Hodge dual operator
associated with η is denoted by an asterisk ∗. For instance, in index notation (where
summing over repeated indices is understood), if x, y, z are space–time vectors, one has

[∗(x ∧ y ∧ z)]α = ηαβγδxβyγzδ, (2)

where ∧ stands for the wedge or exterior product (defined by the antisymmetrized tensor
product of antisymmetric tensors).

(iii) i() denotes the interior or contracted product: that is, if x is a vector and T a covariant
2-tensor, one has [i(x)T]ν = xµTµν (contracting the first left tensor index). If k is
another space–time vector, then we have the following properties:

i(k) ∗ (x ∧ y) =− ∗(k ∧ x ∧ y), (3)

i(k) ∗ (x ∧ y ∧ z) = ∗ (k ∧ x ∧ y ∧ z). (4)

(iv) In terms of matrices, a contravariant space–time vector is represented by a column, and
a covariant vector is represented by a row. In index notation, the interior or contracted
(or scalar) product of a column vector (xα) and a row vector (yβ) is the contraction
i(x)y = x · y = xαyα. A column vector (xα) is converted into a row vector (xα) with the
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metric: xα = gαβxβ. A matrix M acts on a column vector x yielding another column
vector Mx and on a row vector y yielding another row vector yM.

3. The RPS Solution in Minkowski Space–Time

In this section, we present a brief compendium of relativistic positioning in flat
space–time. For more explanations and details, please refer to [12,13].

As detailed in [12], the set of Equation (1) can be conveniently solved by referring to
both the user’s position x and three of the emitters, say {γ1, γ2, γ3}, to the fourth one, γ4:

y = x− γ4, (5)

ea = γa − γ4, a = 1, 2, 3, (6)

and separating (1) into a quadratic equation

y2 = 0, (7)

and a system of three linear equations

ea · y = Ωa, a = 1, 2, 3, (8)

where Ωa =
1
2 (ea)2 are the world-function scalars associated with the three pairs of events

(γa, γ4) at emission times.
Here, we consider only regular emitter configurations: that is, when the four emission

events {γA(τ
A)} determine a three-plane Γ. According to [12], a regular emitter configuration

is an emission/reception configuration iff all the relative emitter positions are space-like: that
is,

(ea)
2 > 0, (ea − eb)

2 > 0. (9)

These conditions express that the vectors defined by

mA = x− γA

are null (1) and are all future (past) oriented: mA ·mB < 0, A ̸= B. The bounds imposed
by conditions (9) are called the shadows that the emitters produce to each other. The null
vectors mA and mB become collinear (mA ·mB = 0) at the mutual shadows produced by
γA and γB, respectively. The precise definition of the shadow that a world-line produces to
another world-line was given in [24] (see also [25]).

Furthermore, {γA(τ
A)} is an emission (reception) configuration iff, in addition to

(9), the null vector y is future (past) oriented. These conditions allow interpretation of the
solutions of the null propagations Equation (1) as emission solutions.

The general solution to the underdetermined system (8) is of the form:

y = y∗ + λχ, (10)

where y∗ is a particular solution to the system, λ is a real parameter, and

χ = ∗(e1 ∧ e2 ∧ e3) = ∗((γ1 − γ4) ∧ (γ2 − γ4) ∧ (γ3 − γ4)) (11)

is the configuration vector of the RPS, which is orthogonal to the configuration three-plane
Γ. A regular emitter configuration (at x) is said to be space-like, light-like or time-like if
χ2 < 0, χ2 = 0 or χ2 > 0, respectively, at x. The regions defined by these conditions are
respectively denoted as Cs, Cl and Ct. In Sections 8.1 and 8.2, we analyse these regions for
the case of four static emitters.
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The particular solution y∗ is found by bringing in a subsidiary vector ξ such that
ξ · χ ̸= 0 (that is, transversal to the emitter configuration) and is otherwise arbitrary:

y∗ =
1

ξ · χ i(ξ)H, (12)

where H is the configuration bivector

H = Ω1E1 + Ω2E2 + Ω3E3, (13)

with
E1 = ∗(e2 ∧ e3), E2 = ∗(e3 ∧ e1), E3 = ∗(e1 ∧ e2). (14)

Then y∗ is orthogonal to ξ, i(ξ)y∗ = 0. Quantities Ωa, H and χ are intrinsically related to the
configuration of the emitters at x and are independent of the origin of the inertial chart {xα}.

The general solution x to the null propagation Equation (1) is obtained by introducing (10)
in the main quadratic Equation (7):

χ2λ2 + 2(y∗ · χ)λ + y2
∗ = 0, (15)

and solving for λ. This procedure gives:

x = γ4 + y∗ + λχ, (16)

with

λ = − y2
∗

(y∗ · χ) + ϵ̂
√

∆
, (17)

where
∆ = (y∗ · χ)2 − y2

∗χ
2, (18)

and ϵ̂ is the orientation of the positioning system at the event x. The orientation ϵ̂ is defined
as the sign of the Jacobian determinant of the coordinate transformation τA(xα) from
inertial to emission coordinates: that is,

ϵ̂ = sgn[∗(dτ1 ∧ dτ2 ∧ dτ3 ∧ dτ4)], (19)

with dτA = ∂τA

∂xα dxα. In [12], the orientation is expressed as ϵ̂ = sgn(χ · y) and is determined
by the configuration of the emitters as seen by the user, which is analysed in [13] in
connection with the bifurcation problem as follows.

Depending on the causal character of the configuration vector χ and assuming the
coordinate condition χ · y ̸= 0, we distinguish three situations (see Figures 3–5 in [13]):

(i) If χ is time-like, there is only one emission solution P, the other (P′) is a recep-
tion solution (the events P and P′ are on opposite sides of the configuration hy-
perplane Γ). In this case, the sign of ϵ̂ can be determined from the sole standard
emission data {γA(τ

A), {τA}}.
(ii) If χ is light-like, there is only one valid emission solution (the other solution is degen-

erate). The sign of ϵ̂ can be determined from {γA(τ
A), {τA}}.

(iii) If χ is space-like, there are two valid emission solutions: in order to determine the sign
of ϵ̂, additional observational information is necessary (relative positions of emitters
on the user’s celestial sphere).

In practical GPS applications, there is generally no bifurcation problem because the valid
solution is always the one that is closest to the Earth’s radius. Nevertheless, bifurcation
is inherent to any time-like emitter configuration and therefore acquires importance in
positioning situations beyond the proximity of the Earth.

On the other hand, the sign of ∆ determines the causal character of the two-plane
generated by {y∗, χ}. It is negative when the plane is space-like, zero when the plane is
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light-like, and positive when the plane is time-like. From (5) and (16), this plane is the
same as that generated by {y, χ}. Since y is light-like, this two-plane is non-space-like, and
therefore, ∆ ≥ 0. Moreover, sgn(∆) = sgn[(χ · y)2]. Consequently, the events for which
∆ = 0 are those where the Jacobian determinant of τA(xα) vanishes (ϵ̂ = 0); these events
form the border that separates two (the front and back) coordinate domains, where ϵ̂ takes
opposite values [13].

4. Bancroft’s Solution

As mentioned earlier, we aim to bring the traditional GNSS approach closer to the RPS
formalism. In this section, we express Bancroft’s solution [18] using the RPS notation. In
fact, Bancroft’s solution, despite being based on non-relativistic concepts, incorporates four-
vectors and a Minkowski-like scalar product. Nevertheless, it calls for a reinterpretation of
those concepts on relativistic terms.

Bancroft first defines the user’s spatial coordinates, x⃗, and those of the n satellites, s⃗i
(for our purposes, 1 ≤ i ≤ n = 4). Then he introduces the pseudorange measurements ti
made by the user with respect to each of the satellites:

ti = d(x⃗, s⃗i) + b, (20)

where d(x⃗, s⃗i) =
√
(x− sx

i )
2 + (y− sy

i )
2 + (z− sz

i )
2 is the Euclidean distance between the

ith satellite and the user, and b is what he calls the user clock’s offset.
Reinterpreting (20) as a past light-cone equation (with the user at its vertex), we

identify ti with the coordinate time component, with respect to some inertial coordinate
system {xα}, of the world-line of the ith emitter:

ti ←→ γt
i ,

and the clock’s offset b with the inertial time coordinate of the user’s position four-vector x
is:

b←→ t.

Bancroft now defines the four-vectors ai, which we identify as the (position vectors of
the) emitters’ world-lines:

ai = (ti, s⃗i)←→ γi = (γt
i , γ⃗i), i = 1, 2, 3, 4.

He introduces a scalar product between four-vectors ⟨a, b⟩, which is equivalent to the
scalar product in Minkowski space–time a · b ≡ g(a, b) with metric signature (−,+,+,+).

Bancroft’s solution vector y1,2 = (−b1,2 , x⃗1,2) can be readily identified with the user’s
position four-vector x of the RPS.

These correspondences are summarized in Table 1. Now, we are ready to write down
the navigation equations solved by Bancroft using the RPS notation. These are none other
than Equation (1):

(x− γi)
2 = x2 − 2γi · x + γ2

i = 0, (21)

with i = 1, 2, 3, 4.

Table 1. Identifying Bancroft’s notation and concepts with those of the RPS solution.

Bancroft RPS

pseudorange ti γt
i emitter coordinate time

data vector ai γi emitter world-line

clock offset b t user coordinate time

solution vector y1,2 x user position four-vector
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This system of four equations can be rewritten with the help of the following scalar:

ρ =
1
2

x2, (22)

row vectors:
1 =

(
1 1 1 1

)
, r =

(
r1 r2 r3 r4

)
, (23)

where
ri =

1
2

γ2
i , (24)

and the following matrix:

A = (γ1 γ2 γ3 γ4), (25)

where γi are considered column vectors. The system (21) reads:

ρ1− i(x)A+ r = 0,

or equivalently, provided that A is invertible:

x = ρ u + v, (26)

where
u = 1A−1, v = rA−1. (27)

Squaring (26) and substituting x2 = 2ρ gives:

Eρ2 + 2Fρ + G = 0, (28)

where
E = u2, F = u · v− 1, G = v2. (29)

Equation (26) is Bancroft’s solution to the location problem, where u and v are known
from the emitters’ trajectories γi, and ρ is obtained by solving Equation (28). Here, we can
distinguish the case for which E = 0 (which, as we will see, corresponds to a light-like
configuration of the emitters):

E = 0⇒ ρ = − G
2F

, (30)

and the cases for which E ̸= 0 (which correspond to time-like and space-like emitter configura-
tions):

E ̸= 0⇒ ρ =
−F±

√
F2 − EG

E
. (31)

Bancroft does not make this distinction and implicitly assumes E ̸= 0, his solution being
Equation (26) with ρ given by (31). The following expression can be used for any value of E:

ρ = − G
F±
√

F2 − EG
. (32)

5. Recovering Bancroft’s Solution from the RPS Solution

In this section, the quantities E, F and G, used to express Bancroft’s solution, are related
to the geometric elements of the RPS statement of the location problem. The subjacent
correspondence is achieved using exterior calculus in Lorentzian geometry (Minkowski
space–time). For clarity, the steps of this calculation are grouped into propositions, proof of
which are given in Section 6.
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Proposition 1. Let A = (γ1 γ2 γ3 γ4) be a matrix for which the columns are the emitters’
world-lines γi. The inverse of A is given by:

A−1 = [det(A)]−1


Γ1

Γ2

Γ3

Γ4

, (33)

the matrix entries now being row vectors

Γ1 = − ∗ (γ2 ∧ γ3 ∧ γ4), Γ2 = ∗(γ1 ∧ γ3 ∧ γ4), (34)

Γ3 = − ∗ (γ1 ∧ γ2 ∧ γ4), Γ4 = ∗(γ1 ∧ γ2 ∧ γ3),

and where
det(A) = − ∗ (γ1 ∧ γ2 ∧ γ3 ∧ γ4) (35)

is the determinant of A.

On the other hand, for χ and H, we have:

Proposition 2. The configuration vector χ and the bivector H of an RPS can be written as:

χ =
4

∑
i=1

Γi, (36)

and

H = Ω1 ∗ (γ2 ∧ γ3) + Ω2 ∗ (γ3 ∧ γ1) + Ω3 ∗ (γ1 ∧ γ2) (37)

+ (Ω3 −Ω1) ∗ (γ2 ∧ γ4) + (Ω2 −Ω3) ∗ (γ1 ∧ γ4) + (Ω1 −Ω2) ∗ (γ3 ∧ γ4),

respectively.

Notice that {Θi}, with
Θi = [det(A)]−1Γi, (38)

is the dual basis of {γi}: that is, Θi(γj) = δi
j. Now we can write u and v according to (27):

u = [det(A)]−1
4

∑
i=1

Γi =
4

∑
i=1

Θi, (39)

v = [det(A)]−1
4

∑
i=1

riΓi =
4

∑
i=1

riΘi, (40)

and the configuration vector χ can now be written as

χ = det(A) u. (41)

With E, F and G defined as in (29), we can state the next proposition.

Proposition 3. Setting ξ = γ4, (i) the particular solution y∗ and the discriminant ∆ can be written as

y∗ = v + r4 u− γ4, (42)

∆ = [det(A)]2[F2 − E G], (43)

and (ii) the RPS solution is expressed as

x = v + ρ u, (44)
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where u and v are given by (39) and (40), and

ρ = − G
F + ϵ̂µ

√
F2 − EG

, (45)

which is Equation (32): that is, Bancroft’s solution extended to any emitter configurations, with
µ = sgn(det(A)) and ϵ̂ being the orientation of the RPS at x.

On the other hand, from (41) and (42), we can write Bancroft’s scalars E, F and G,
given by (29), explicitly in terms of the RPS variables.

E =[det(A)]−2 χ2, (46)

F =[det(A)]−1
(

y∗ · χ− r4
det(A) χ2

)
,

G =
(

y∗ − r4
det(A) χ + γ4

)2
=

(
y∗ − r4

det(A) χ
)2

. (47)

In Equation (47), we have used γ4 · y∗ ∝ H(γ4, γ4) = 0, i(γ4)u = 1, and γ2
4 = 2r4.

Equation (46) says that the sign of E provides the causal character of the emitter configura-
tion for x. Therefore, E = 0⇔ χ2 = 0 corresponds to light-like emitter configurations, which
are not covered by Bancroft’s solution. In contrast, Equations (16)–(18) and their transcription
using Bancroft’s notation (Equations (44) and (45)) are valid for any emitter configuration.

6. Proof of the Propositions

Proof of Proposition 1. Since A−1 is defined in terms of row vectors and A is defined in
terms of column vectors, the matrix product A−1A is straightforward. In index notation,
the only non-vanishing entries of [A−1A]αβ are:

[A−1A]00 = [A−1A]11 = [A−1A]22 = [A−1A]33

= − 1
det(A) i(γ1) ∗ (γ2 ∧ γ3 ∧ γ4) = −

1
det(A) ∗ (γ1 ∧ γ2 ∧ γ3 ∧ γ4) = 1,

(48)

where in the last two steps, we have taken into account (4) and (35).

Proof of Proposition 2. To obtain Equation (36), we write out (11) explicitly:

χ = − ∗ (γ2 ∧ γ3 ∧ γ4) + ∗(γ1 ∧ γ3 ∧ γ4)− ∗(γ1 ∧ γ2 ∧ γ4) + ∗(γ1 ∧ γ2 ∧ γ3) =
4

∑
i=1

Γi.

And to obtain (37), we write (13) explicitly, taking into account (14). The quantities
χ and H only depend on the relative positions between pairs of emitters at the emis-
sion times.

Proof of Proposition 3. To derive Equation (42), we start by writing out the right-hand side
of y∗ using (12). Setting ξ = γ4 and calculating the contraction ξ · χ using (41), we obtain:

γ4 · χ = det(A)i(γ4)u = det(A)i(γ4)
4

∑
i=1

Θi = det(A),

since i(γ4)Θi = δi
4. From (3) and (37), we get:

i(γ4)H = −Ω1 ∗ (γ2 ∧ γ3 ∧ γ4) + Ω2 ∗ (γ1 ∧ γ3 ∧ γ4)−Ω3 ∗ (γ1 ∧ γ2 ∧ γ4) =
3

∑
a=1

ΩaΓa.
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Then, the particular solution y∗ is written as

y∗ =
1

γ4 · χ
i(γ4)H = [det(A)]−1

3

∑
a=1

ΩaΓa =
3

∑
a=1

ΩaΘa, (49)

where, using (6) and (24), the world-function scalars Ωa =
1
2 (ea)2 can be expressed as:

Ωa = ra + r4 − γa · γ4 (a = 1, 2, 3). (50)

Now, by substituting (50) in (49) and using (39) and (40):

y∗ =
3

∑
a=1

ΩaΘa =
3

∑
a=1

(ra + r4 − γa · γ4)Θa =
3

∑
a=1

raΘa + r4

3

∑
a=1

Θa −
3

∑
a=1

(γa · γ4)Θa

=v− r4Θ4 + r4(u−Θ4)−
3

∑
a=1

(γa · γ4)Θa = v + r4u− 2r4Θ4 −
3

∑
a=1

(γa · γ4)Θa

=v + r4u− g(γ4),

where in the last step, we have taken into account that 2r4 = γ2
4 and that

g(γ4) =
4

∑
i=1

(γi · γ4)Θi,

is the one-form metrically equivalent to γ4.
On the other hand, to obtain (43), noting that, from (39) and (40),

γ4 · u = 1, γ4 · v = r4,

and from the definitions (29) and using (41) and (42):

χ2 = [det(A)]2E, y2
∗ = G + r2

4E + 2r4F, y∗ · χ = det(A)[r4E + F].

Then,
∆ = (y∗ · χ)2 − y2

∗χ
2 = [det(A)]2[F2 − E G].

Substituting the above expressions in (16) and taking into account that χ = det(A)u,
we obtain (44) with

ρ = r4 −
G + r2

4E + 2r4F

r4E + F + ϵ̂µ
√

F2 − EG
,

where µ = sgn(det(A)). To obtain (45), multiply the denominator by r4E+ F− ϵ̂µ
√

F2 − EG
and simplify the expression.

7. Four Static Emitters: Solutions

To illustrate the correspondence between the RPS and Bancroft’s solution, in this section,
we use both approaches to solve the location problem for the case of four static emitters. This
is a simple but clarifying example to gain insight into the RPS terminology. For any given time
t measured by an inertial observer of unit velocity e0 (e2

0 = −1, [e0]
α
= (1, 0, 0, 0)), we choose

the simple spatial arrangement of an orthogonal tetrahedron as shown in Figure 1a, where the
reference emitter γ4 is at the origin of the observer’s (spatial) coordinate system {x1, x2, x3}.

The essential simplification that the static situation provides is the possibility to
synchronise the emitters’ clocks at a given common (initial) instant. The respective proper
times then become synchronised forever, which allows the representation of the static case
in three-dimensional diagrams. We will come back to this point in Section 8.
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(a) (b)
Figure 1. Representation of emitters when a = b = c = 1. (a) Spatial arrangement of four static
emitters forming an orthogonal tetrahedron, with the fourth emitter at the origin. (b) Representation
of emitters (red points) in the Q-grid. The black (unnumbered) point has q-components (1, 1, 1).

7.1. Emitters’ World-Lines and Emission/Reception Conditions

As the emitters’ clocks are synchronised at x0 = 0 taking τ1 = τ2 = τ3 = τ4 = 0, the
emitters’ world-lines, expressed with respect to an inertial reference frame {xα}, can be
easily written down in the case of static emitters:

γ1(τ
1) = τ1e0 + d1, γ2(τ

2) = τ2e0 + d2, γ3(τ
3) = τ3e0 + d3, γ4(τ

4) = τ4e0, (51)

where da are the position vectors of the other three emitters with respect to the fourth emitter:

d1 = (0, a, 0, 0), d2 = (0, 0, b, 0), d3 = (0, 0, 0, c), (52)

where {a, b, c} are real constants, and where we have switched to component notation, with
the first component being the coordinate time x0. We can now write the position vector of
the referred emitters with respect to the reference emitter:

e1 = T1e0 + d1, e2 = T2e0 + d2, e3 = T3e0 + d3, (53)

where Ta ≡ τa − τ4. Then, substituting (53) into (11), we obtain the covariant components
of the configuration vector χ:

[χ]
α
= a b c (−1, q1, q2, q3), (54)

where
q1 =

T1

a
, q2 =

T2

b
, q3 =

T3

c
.

The Cartesian product Q ≡ [q1]× [q2]× [q3] ≈ R3 is included in the grid T of the
positioning system and will be called the Q-grid (quotient grid) according to the meaning
of the triads (q1, q2, q3) ∈ Q given below. Figure 1b shows the emitters’ arrangement in the
Q-grid (see Equations (76) and (77)).

According to (9), the emission/reception conditions are written as

|qa| < 1, |aq1 − bq2| <
√

a2 + b2, |aq1 − bq3| <
√

a2 + c2, |bq2 − cq3| <
√

b2 + c2, (55)

and the emission condition is written as

abcλ > 0, (56)

with λ given by (17) in terms of y∗, χ and ϵ̂.



Universe 2024, 10, 179 11 of 22

7.2. Computing the RPS Quantities

To compute the particular solution y∗ (12), we begin by setting ξ = γ4 = τ4e0:

ξ · χ = − a b c τ4. (57)

To obtain H = ΩaEa, we calculate the world-function scalars Ωa =
1
2 (ea)2 from (53):

Ω1 = 1
2 (a2 − T2

1 ), Ω2 = 1
2 (b

2 − T2
2 ), Ω3 = 1

2 (c
2 − T2

3 ), (58)

and the bivectors Ea from (14), substituting (53):

E1 = ∗ (T2e0 ∧ d3)− ∗(T3e0 ∧ d2) + ∗(d2 ∧ d3),

E2 = ∗ (T3e0 ∧ d1)− ∗(T1e0 ∧ d3)− ∗(d1 ∧ d3),

E3 = ∗ (T1e0 ∧ d2)− ∗(T2e0 ∧ d1) + ∗(d1 ∧ d2).

(59)

Computing the contractions i(ξ = γ4)Ea using (3):

i(τ4e0)E1 = (0,−τ4bc, 0, 0), i(τ4e0)E2 = (0, 0,−τ4ac, 0), i(τ4e0)E3 = (0, 0, 0,−τ4ab),

yields the covariant components of the particular solution y∗ from (12)–(14) using (57) and (58):

[y∗]α = 1
2 (0, a(1− q2

1), b(1− q2
2), c(1− q2

3)). (60)

To obtain the user’s inertial coordinates from (16), we need the following to calculate
λ from (17):

y∗ · χ = 1
2 abc [aq1(1− q2

1) + bq2(1− q2
2) + cq3(1− q2

3)], (61)

y2
∗ =

1
4 [a

2(1− q2
1)

2 + b2(1− q2
2)

2 + c2(1− q2
3)

2], (62)

χ2 = a2b2c2(−1 + q2
1 + q2

2 + q2
3), (63)

as follows from (54) and (60). Then, by substitution in (18),

∆ = (y∗ · χ)2 − y2
∗χ

2

= 1
4 a2b2c2 [

2abq1q2(1− q2
1)(1− q2

2) + 2acq1q3(1− q2
1)(1− q2

3) + 2bcq2q3(1− q2
2)(1− q2

3)

+ a2(1− q2
1)

2(1− q2
2 − q2

3) + b2(1− q2
2)

2(1− q2
1 − q2

3) + c2(1− q2
3)

2(1− q2
1 − q2

2)
]
. (64)

Notice that ∆ is an even symmetric function, ∆(q1, q2, q3) = ∆(−q1,−q2,−q3), which
is symmetric about the origin. With these quantities, we can express the coordinate trans-
formation xα(τA) using (16)–(18).

7.3. Interpretation of the RPS Solution

In order to remark on the essential properties of the RPS solution, let us consider
the inertial coordinate locations of those users whose emission coordinates satisfy the
restrictions q1 = q2 = q and q3 = ±q. Then, expressions (60)–(64) simplify, and their
substitution into (16) gives:

xα(τ + aq, τ + bq, τ ± cq, τ) = (τ, 0, 0, 0) +
1
2
(1− q2)(0, a, b, c) + λ abc (1, q, q,±q), (65)

with τ4 ≡ τ: that is, γ4(τ) = τe0, and

λ(q, q,±q) = − (1− q2)(a2 + b2 + c2)

2abc[(a + b± c)q + ϵ̂ν
√

q2(a + b± c)2 + (1− 3q2)(a2 + b2 + c2)]
, (66)
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where ν ≡ sgn(abc) = sgn(χ0). Then (65) will be an emission solution iff, in addition to (55)
and ∆ ≥ 0, Equation (56) holds, with λ given by (66): that is,

(a + b± c)q + ϵ̂ν
√

q2(a + b± c)2 + (1− 3q2)(a2 + b2 + c2) < 0. (67)

Table 2 shows the result assuming q1 = q2 = q3 = q for different values of q, where
for the sake of clarity, we have taken a = b = c = 1, and thus, ∆(q, q, q) = 3

4 (1− q2)2.

(i) For q = 0, the emitter configuration is space-like at xα = (τ +
√

3
2 , 1

2 , 1
2 , 1

2 ), which is the
sole emission solution (with ϵ̂ = −1). The solution with ϵ̂ = 1 is a reception solution.

(ii) For q = −
√

1
3 , the emitter configuration is light-like at xα = (τ + 1

2
√

3
, 1

6 , 1
6 , 1

6 ), which
is the sole emission solution (with ϵ̂ = −1). The solution with ϵ̂ = 1 is degenerate.

(iii) For q = −
√

2
3 , the emitter configuration is time-like at

xα
∓ =

(
τ +

√
2∓ 1

2
√

3
,

1
6
(±
√

2− 1),
1
6
(±
√

2− 1),
1
6
(±
√

2− 1)
)

,

both being emission solutions (with ϵ̂ = ∓1); x−(x+) is in the front (back) emission
coordinate domain.

Table 2. RPS solution for users with q1 = q2 = q3 ≡ q and τ4 ≡ τ.

q χ2 ∆ x0 x1 = x2 = x3 Emission Solutions

0 −1 3
4 τ −

√
3

2 ϵ̂ 1
2

ϵ̂ = −1
One emission solution

−
√

1
3 0 1

3
τ + 1√

3(1−ϵ̂)
1
6

ϵ̂ = −1
One emission solution

−
√

2
3 1 1

12 τ +
√

2+ϵ̂
2
√

3
− 1

6 (1 +
√

2ϵ̂) ϵ̂ = −1, ϵ̂ = 1
Two emission solutions

Similarly, Table 3 shows the result assuming q1 = q2 = q and q3 = −q for different val-
ues of q, where we have taken a = b = c = 1, and thus ∆(q, q,−q) = 1

4 (1− q2)2(3− 8q2).

Table 3. RPS solution for users with q1 = q2 = q, q3 = −q and τ4 ≡ τ.

q χ2 ∆ x0 x1 = x2
Emission Solutions

x3

0 −1 3
4 τ −

√
3

2 ϵ̂
1
2 ϵ̂ = −1
1
2 One emission solution

−
√

1
3 0 1

27 τ +
√

3
2

− 1
6 ϵ̂ = −1
5
6 One emission solution

−
√

6
17

1
17

363
19,652 τ + 11

2

√
3
17 (
√

2 + ϵ̂)
11
34 [1− 3(2 +

√
2ϵ̂)] ϵ̂ = −1, ϵ̂ = 1

11
34 [1 + 3(2 +

√
2ϵ̂)] Two emission solutions

7.4. Computing Bancroft’s Quantities

In order to relate the RPS and Bancroft’s expression of the solution to the location
problem, we begin by writing the matrix A given by (25), for which the columns are the
emitters’ world-lines (51):

A = (τ1e0 + d1; τ2e0 + d2; τ3e0 + d3; τ4e0). (68)



Universe 2024, 10, 179 13 of 22

In component notation, we have:

A =


τ1 τ2 τ3 τ4

a 0 0 0
0 b 0 0
0 0 c 0

. (69)

To calculate A−1, we verify that:

det(A) =− ∗(γ1 ∧ γ2 ∧ γ3 ∧ γ4)

=− ∗[(τ1e0 + d1) ∧ (τ2e0 + d2) ∧ (τ3e0 + d3) ∧ τ4e0]

=− τ4 ∗ (d1 ∧ d2 ∧ d3 ∧ e0) = τ4 a b c η0123 = −τ4 a b c ,

(70)

and that the row vectors (1-forms) Γi appearing in (33) and given by (34) are expressed as:

Γ1 =− bcτ4θ1, Γ2 = −acτ4θ2, Γ3 = −abτ4θ3,

Γ4 =− abcθ0 + bcτ1θ1 + acτ2θ2 + abτ3θ3,
(71)

where {θ0, θ1, θ2, θ3} is the dual basis of the inertial Cartesian basis.
Now we can write A−1 as:

A−1 =


0 1

a 0 0
0 0 1

b 0
0 0 0 1

c
1

τ4 − τ1

τ4a − τ2

τ4b − τ3

τ4c

, (72)

and then we compute the vector u and verify (41):

[u]α =[det(A)]−1
4

∑
i=1

Γi = ( 1
τ4 , 1

a (1−
τ1

τ4 ),
1
b (1−

τ2

τ4 ),
1
c (1−

τ3

τ4 ))

= 1
τ4 (1,−q1,−q2,−q3) =

1
det(A) [χ]α .

(73)

The vector v is obtained from (40) by substitution of (70), (71) and (24) with

r1 = 1
2 (a2 − (τ1)2), r2 = 1

2 (b
2 − (τ2)2), r3 = 1

2 (c
2 − (τ3)2), r4 = − 1

2 (τ
4)2. (74)

After simplification, the result is:

[v]α = 1
2 (−τ4, a− τ1q1, b− τ2q2, c− τ3q3). (75)

We can substitute (73)–(75) and γ4 = τ4e0 in Equation (42) and check that it is satisfied.
To compute the user’s coordinates from Bancroft’s solution (26) with ρ as in (31) or (32),

we need the following expressions for E, F and G, which follow from (73) and (75) by the
scalar product:

E =u2 = 1
(τ4)2 (−1 + q2

1 + q2
2 + q2

3).

F =u · v− 1 = − 1
2 [1 +

q1
τ4 (a− τ1q1) +

q2
τ4 (b− τ2q2) +

q3
τ4 (c− τ3q3)].

G =v2 = 1
4 [−(τ4)2 + (a− τ1q1)

2 + (b− τ2q2)
2 + (c− τ3q3)

2].

Notice that Bancroft’s quantities E, F and G involve the emission coordinates {τA}
in addition to {q1, q2, q3}. In contrast, the RPS quantities χ2, y2

∗ and χ · y∗ are polynomial
functions only of the {qa} variables. This property simplifies the representation of the RPS
regions in the Q-grid, which is carried out in the next section.
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8. Four Static Emitters: Representations

In this section, we continue with the preceding example. The characteristic regions of
the RPS solution are represented both in Cartesian and in emission coordinates.

8.1. Representations in Cartesian Coordinates

Figure 2 shows for a given x0 value (inertial instant) the emission configuration regions
Cs (space-like), Cl (light-like) and Ct (time-like), which are coloured in green, red and blue,
respectively. The Ct region is the union of two disjoint regions, denoted by Ct-front and
Ct-back, separated by the 3-surface ∆(x0, x1, x2, x3) = 0, which is shown in black. This
3-surface, where the Jacobian determinant of τA(xα) vanishes, is the border between the
front (Cs ∪ Cl ∪ Ct-front) and the back (Ct-back) coordinate domains. The union of both
disjoint domains is called the emission coordinate region C [12,13].

(a) (b) (c)

(d) (e)

Figure 2. Representation of the emission configuration regions for an RPS with four static emitters
(when a = b = c = 1). The emission configuration regions Cs (space-like), Cl (light-like) and Ct

(time-like) are coloured green, red and blue, respectively. The 3-surface where ∆ vanishes is shown in
black. (a) Ct (front). (b) Cl . (c) Cs. (d) Ct (back). (e) ∆ = 0.

Figure 3 includes two-dimensional slices of the emission configuration regions shown
in Figure 2. The black points represent the satellite trajectories. The intersection with ∆ = 0
is also represented.
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Figure 3. Slices of the emission configuration regions (shown in Figure 2) through different 2-planes.
Black points represent the satellites. (a) Slice through the plane x3 = 0. Satellites 4, 1 and 2 are
represented by points (0, 0), (1, 0) and (0, 1), respectively. (b) Slice through the plane x3 = 1. The point
(0, 0) represents satellite 3. (c) Slice through the plane x1 − x2 = 0. Satellites 4 and 3 are represented
by points (0, 0) and (0, 1), respectively. (d) Slice through the plane x1 + x2 + x3 = 1. Satellites 1, 2 and
3 are represented by points (1, 0), (0, 1) and (0, 0), respectively.

8.2. Representations in the Q-Grid

Since the emitters’ trajectories {γA} in inertial coordinates are known from (51), we
can obtain their positions SA in the Q-grid as well as their trajectories γA in the grid T . For
a = b = c = 1, we have

S1 =(1, 1−
√

2, 1−
√

2), S2 = (1−
√

2, 1, 1−
√

2), (76)

S3 =(1−
√

2, 1−
√

2, 1), S4 = (−1,−1,−1), (77)

and
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γ1 =(1 + τ, 1−
√

2 + τ, 1−
√

2 + τ, τ), γ2 = (1−
√

2 + τ, 1 + τ, 1−
√

2 + τ, τ),

γ3 =(1−
√

2 + τ, 1−
√

2 + τ, 1 + τ, τ), γ4 = (−1 + τ,−1 + τ,−1 + τ, τ), with τ = τ4,

which are straight lines in the direction defined by (1, 1, 1, 1) ∈ T . In other words, the
(parallel) emitter world-lines are represented as parallel lines in the grid T along the
direction defined by the main bisectrix. Each γA is represented by the corresponding point
SA in the quotient grid Q. Figure 1b is a representation of the emitters in the Q-grid.

The boundary of the emission/reception conditions (55) defines twelve 2-planes in the
Q-grid, which are denoted by SAB, A ̸= B. SAB is the representation in the Q-grid of the
shadow that satellite A produces to satellite B. Concretely, for a = b = c = 1, we have

S12 : q1 − q2 =
√

2, S13 : q1 − q3 =
√

2, S14 : q1 = 1,
S21 : q1 − q2 = −

√
2, S23 : q2 − q3 =

√
2, S24 : q2 = 1,

S31 : q1 − q3 = −
√

2, S32 : q2 − q3 = −
√

2, S34 : q3 = 1,
S41 : q1 = −1, S42 : q2 = −1, S43 : q3 = −1.

(78)

Figure 4 contains representations in theQ-grid for a = b = c = 1. Figure 4a represents
the convex polyhedron formed by pieces of the twelve satellite shadows (78). It has
12 = 6 + 6 faces (six squares with side length

√
2 and six rhomboids with side lengths

√
2

and 2(
√

2− 1)): that is, it is a dodecahedron, which we may call the shadow-dodecahedron
D. The fourteen vertices of D are, apart from S4 and −S4, the following points:

V1 = (1, 1, 1−
√

2), V2 = (1, 1−
√

2, 1), V3 = (1−
√

2, 1, 1),
V4 = (1, 1−

√
2, 1−

√
2), V5 = (1−

√
2, 1, 1−

√
2), V6 = (1−

√
2, 1−

√
2, 1)

and their opposites. The interior of D contains the Q-grid points that satisfy the emis-
sion/reception conditions (55). Figure 4b shows the surface where the Jacobian determinant
of the coordinate transformation τA(xα) vanishes; equivalently, ∆(q1, q2, q3) = 0 in theQ-grid.
This surface is strictly confined inside D. The interior of this surface satisfies ∆(q1, q2, q3) > 0
and corresponds to solutions of the null propagation equations. The region insideD satisfying
∆(q1, q2, q3) < 0 does not represent any physical region in theQ-grid.

(a) (b)
Figure 4. Cont.
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(c)

Figure 4. Representation of the surface ∆(q1, q2, q3) = 0 in theQ-grid region where the emission/reception
conditions are satisfied (with a = b = c = 1) and which is bounded byD. (a) Shadow-dodecahedronD.
(b) The surface ∆ = 0. (c) The surface ∆ = 0 within the shadow-dodecahedronD.

Figure 5 shows two-dimensional slices of the configuration regions in theQ-grid when
applying the emission/reception conditions (55) for a = b = c = 1. The colours green, red
and blue are used for the space-like, light-like and time-like character of the configuration,
respectively. The black lines are different slices of the 2-surface ∆(q1, q2, q3) = 0. For clarity,
the intersections with the shadow-dodecahedron are not shown.

Figure 5. Cont.
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Figure 5. Representation of the emitter configuration regions in the Q-grid for different values of
q3 when a = b = c = 1. The colours green, red and blue are used for the space-like, light-like and
time-like character of the configuration, respectively. The black lines are different level cuts of the
2-surface ∆(q1, q2, q3) = 0. For q3 = −1 (q3 = 1), the points shown are S4 and −S3 (S3 and −S4),
with S3 and S4 being the third and fourth satellites, respectively, given by (77).

9. Emission–Reception Conditions and Grid Regions

Figures 1b, 4 and 5 provide representations in the Q-grid of the standard position-
ing data and the elements derived from these data. In this section, we use the Q-grid
representations to obtain further information about other regions where solutions to the
null propagation Equation (1) exist without imposing all of the emission/reception condi-
tions (55). We analyse a mixture of emission and reception conditions that apply to other
location systems [1,2] based on null coordinates, such as reception or radar coordinates. For
an analysis of the notion of a location system (physical realization of a coordinate system),
see [9] and previous references quoted herein.

Figure 6 shows the surfaces in the Q-grid defined by ∆(q1, q2, q3) = 0, in whose
interior there is a solution to the null propagation equations. There exist fifteen disjoint
regions satisfying ∆ > 0. The exterior of this surface (∆ < 0) has no physical meaning.
The interior (∆ > 0) is the Q-grid representation of the solutions to the null propagation
equations and is disjointly divided into fifteen regions. Only one region contains the
origin, and it is divided in two subregions where all the emission/reception conditions are
satisfied (see Figure 4). Among the fourteen remaining regions, eight satisfy only three
emission/reception conditions (each one is confined by three pairs of parallel planes). The
other six satisfy only two emission/reception conditions (each one is confined by two pairs
of parallel planes).

Table 4 shows the signs of the products mA ·mB (A ̸= B) and the related regions. The
emission or reception character of a τA-coordinate is denoted by e or r, respectively.
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Figure 6. Representation of the surface ∆(q1, q2, q3) = 0 in the Q-grid for a = b = c = 1. The closed
piece at the centre is represented in Figure 4.

Table 4. Regions according to the sign of the products mA ·mB (A ̸= B). The emission or reception
character of a τA-coordinate is denoted by e or r, respectively. The subregions {eeee} and {rrrr} form
one region containing the origin (closed piece at the centre of Figure 6). The other fourteen regions
correspond to the fourteen tube-like pieces emerging from the central piece in Figure 6.

m1 · m2 m1 · m3 m1 · m4 m2 · m3 m2 · m4 m3 · m4 Character

− − − − − − {eeee}, {rrrr}

− − + − + + {eeer}, {rrre}

− + − + − + {eere}, {rrer}

+ − − + + − {eree}, {rerr}

+ + + − − − {reee}, {errr}

− + + + + − {eerr}, {rree}

+ − + + − + {erer}, {rere}

+ + − − + + {erre}, {reer}

The results of this section may be compared with those presented in [10,11] regarding
the 2D localization of a source with three receivers. In particular, there is an interesting
similarity between the surface of the vanishing Jacobian (Figure 6) and the Kummer surface
represented in Figure 4 of [11]. The surface shown in Figure 6 has a total of thirty-two
singular points—eight of them on the central piece and twenty-four on the tube-like
pieces—with each of these points connecting the different pieces that make up the surface.
In addition to SA and −SA, the surface has the following singular points:

N1 = (−1, 1, 1), N2 = (1,−1, 1), N3 = (1, 1,−1),
N4 = (1, 1−

√
2, 1 +

√
2), N5 = (1−

√
2, 1, 1 +

√
2), N6 = (1−

√
2, 1 +

√
2, 1),

N7 = (1, 1 +
√

2, 1−
√

2), N8 = (1 +
√

2, 1, 1−
√

2), N9 = (1 +
√

2, 1−
√

2, 1),
N10 = (1, 1 +

√
2, 1 +

√
2), N11 = (1 +

√
2, 1, 1 +

√
2), N12 = (1 +

√
2, 1 +

√
2, 1),

and their opposites. Of these singular points, only S4 and −S4 are also vertices of D.
Figure 7 shows the cuts of the surface ∆(q1, q2, q3) = 0 with the different planes

q3 = constant. Similar cuts are obtained for constant values of q1 or q2.
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Figure 7. Representation in the Q-grid of the level lines ∆(q1, q2, q3 = k) = 0 for different values of k
and with a = b = c = 1. The points in Figures 7d and 7e are singular points. (a) q3 = 0. (b) q3 = −0.9.
(c) q3 = 0.9. (d) q3 = −1. (e) q3 = 1. (f) q3 = −1.1. (g) q3 = 1.1. (h) q3 = −2. (i) q3 = 2.
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10. Conclusions

The RPS approach to GNSSs is grounded in the fundamental principles of relativity,
on which, one might think, navigation systems should be based. Current GNSSs rely on
a posteriori corrections for (special) relativistic effects (and for gravitational, atmospheric
and instrumental effects). In this paper, we have deduced a classical solution to the
navigation equations—Bancroft’s solution, which is still in use today—within a relativistic
framework. In fact, Bancroft’s closed-form solution is suitable for this purpose since
it already incorporates four-vectors and a Minkowski scalar product, although it still
presumes a universal time and a deviation from it (the clock offset). We have recovered
Bancroft’s solution from the RPS solution using the language of relativity: contravariant
(column) and covariant (row) vectors, their inner (scalar) product and their exterior algebra.

The characteristic elements of an RPS (emission and configuration regions, front and
back coordinate domains, shadows produced by the satellites to each other, etc.) have been
exemplified for the static situation. These regions are represented both in the physical and
in the grid space of the RPS by introducing an appropriate quotienting procedure. This
kind of representation has been tentatively studied for other location systems for which not
all the emission/reception conditions are assumed. However, to deal with general location
systems, the RPS terminology should be appropriately adapted.

All of this is with the hope of bringing the traditional GNSS approach closer to the
framework of Relativity Theory: a worthwhile task, if only from a scientific perspective.
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7. Blagojević, M.; Garecki, J.; Hehl, F.W.; Obukhov, Y.N. Real null coframes in general relativity and GPS type coordinates. Phys.

Rev. D 2002, 65, 044018. [CrossRef]
8. Pozo, J. Constructions in 3D (I) and (II). In Proceedings of the School on Relativistic Coordinates, Reference and Positioning

Systems, Salamanca, Spain, 21–25 January 2005.
9. Coll, B.; Ferrando, J.J.; Morales, J.A. Two-dimensional approach to relativistic positioning systems. Phys. Rev. D 2006, 73, 084017.

[CrossRef]
10. Compagnoni, M.; Notari, R.; Antonacci, F.; Sarti, A. A comprehensive analysis of the geometry of TDOA maps in localization

problems. Inverse Probl. 2014, 30, 035004. [CrossRef]
11. Compagnoni, M.; Notari, R.; Ruggiu, A.A.; Antonacci, F.; Sarti, A. The Algebro-geometric Study of Range Maps. J. Nonlinear Sci.

2017, 27, 99–157. [CrossRef]
12. Coll, B.; Ferrando, J.J.; Morales-Lladosa, J.A. Positioning systems in Minkowski spacetime: From emission to inertial coordinates.

Class. Quantum Gravity 2010, 27, 065013. [CrossRef]
13. Coll, B.; Ferrando, J.J.; Morales-Lladosa, J.A. Positioning systems in Minkowski space-time: Bifurcation problem and observational

data. Phys. Rev. D 2012, 86, 084036. [CrossRef]
14. Strang, G.; Borre, K. Linear Algebra, Geodesy, and GPS; Wellesley-Cambridge Press: Wellesley, MA, USA, 1997.

http://doi.org/10.2420/AF07.2013.35
http://dx.doi.org/10.1007/978-3-030-11500-5_8
http://dx.doi.org/10.1142/9789812810021_0005
http://dx.doi.org/10.1119/1.1326078
http://dx.doi.org/10.1088/0264-9381/23/24/012
http://dx.doi.org/10.1103/PhysRevD.65.044017
http://dx.doi.org/10.1103/PhysRevD.65.044018
http://dx.doi.org/10.1103/PhysRevD.73.084017
http://dx.doi.org/10.1088/0266-5611/30/3/035004
http://dx.doi.org/10.1007/s00332-016-9327-4
http://dx.doi.org/10.1088/0264-9381/27/6/065013
http://dx.doi.org/10.1103/PhysRevD.86.084036


Universe 2024, 10, 179 22 of 22

15. Closas, P.; Gusi-Amigo, A. Direct Position Estimation of GNSS Receivers: Analyzing main results, architectures, enhancements,
and challenges. IEEE Signal Process. Mag. 2017, 34, 72–84. [CrossRef]

16. Vincent, F.; Vilà-Valls, J.; Besson, O.; Medina, D.; Chaumette, E. Doppler-aided positioning in GNSS receivers—A performance
analysis. Signal Process. 2020, 176, 107713. [CrossRef]

17. Compagnoni, M.; Notari, R.; Antonacci, F.; Sarti, A. On the statistical model of source localization based on Range Difference
measurements. J. Frankl. Inst. 2017, 354, 7183–7214. [CrossRef]

18. Bancroft, S. An Algebraic Solution of the GPS Equations. IEEE Trans. Aerosp. Electron. Syst. 1985, AES-21, 56–59. [CrossRef]
19. Abel, J.; Chaffee, J. Existence and uniqueness of GPS solutions. IEEE Trans. Aerosp. Electron. Syst. 1991, 27, 952–956. [CrossRef]
20. Chaffee, J.; Abel, J. On the exact solutions of pseudorange equations. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 1021–1030.

[CrossRef]
21. Ruggiero, M.L.; Tartaglia, A.; Casalino, L. Geometric definition of emission coordinates. Adv. Space Res. 2022, 69, 4221–4227.

[CrossRef]
22. Feng, J.C.; Hejda, F.; Carloni, S. Relativistic location algorithm in curved spacetime. Phys. Rev. D 2022, 106, 044034. [CrossRef]
23. Serrano Montesinos, R.; Morales-Lladosa, J.A. Bancroft’s GPS Navigation Solution: Relativistic Interpretation; I.U. de Matemática

Multidisciplinar, Universitat Politècnica de València: València, Spain, 2023; pp. 150–157.
24. Coll, B.; Pozo, J.M. General Causal Properties of Emission Coordinates. Private Communication, 2006.
25. Coll, B.; Ferrando, J.J.; Morales-Lladosa, J.A. Newtonian and relativistic emission coordinates. Phys. Rev. D 2009, 80, 064038.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MSP.2017.2718040
http://dx.doi.org/10.1016/j.sigpro.2020.107713
http://dx.doi.org/10.1016/j.jfranklin.2017.07.034
http://dx.doi.org/10.1109/TAES.1985.310538
http://dx.doi.org/10.1109/7.104271
http://dx.doi.org/10.1109/7.328767
http://dx.doi.org/10.1016/j.asr.2022.04.011
http://dx.doi.org/10.1103/PhysRevD.106.044034
http://dx.doi.org/10.1103/PhysRevD.80.064038

	Introduction
	Notation
	The RPS Solution in Minkowski Space–Time
	Bancroft's Solution
	Recovering Bancroft's Solution from the RPS Solution
	Proof of the Propositions
	Four Static Emitters: Solutions
	Emitters' World-Lines and Emission/Reception Conditions
	Computing the RPS Quantities
	Interpretation of the RPS Solution
	Computing Bancroft's Quantities

	Four Static Emitters: Representations
	Representations in Cartesian Coordinates
	Representations in the Q-Grid

	Emission–Reception Conditions and Grid Regions
	Conclusions
	References

