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Abstract: Depression is associated with pathological changes and metabolic abnormalities in multiple
brain regions. The simultaneous comprehensive and in situ detection of endogenous molecules in
all brain regions is essential for a comprehensive understanding of depression pathology, which is
described in this paper. A method based on desorption electrospray ionization mass spectrometry
imaging (DESI-MSI) technology was developed to classify mouse brain regions using characteristic
lipid molecules and to detect the metabolites in mouse brain tissue samples simultaneously. The
results showed that characteristic lipid molecules can be used to clearly distinguish each subdivision
of the mouse brain, and the accuracy of this method is higher than that of the conventional staining
method. The cerebellar cortex, medial prefrontal cortex, hippocampus, striatum, nucleus accumbens-
core, and nucleus accumbens-shell exhibited the most significant differences in the chronic social
defeat stress model. An analysis of metabolic pathways revealed that 13 kinds of molecules related to
energy metabolism and purine metabolism exhibited significant changes. A DESI-MSI method was
developed for the detection of pathological brain sections. We found, for the first time, that there are
characteristic changes in the energy metabolism in the cortex and purine metabolism in the striatum,
which is highly important for obtaining a deeper and more comprehensive understanding of the
pathology of depression and discovering regulatory targets.

Keywords: spatial metabolomics; CSDS; depression; mass spectrometry imaging; purine metabolism;
energy metabolism

1. Introduction

The mass spectrometry imaging technologies applied to biological samples can be
divided into secondary ion mass spectrometry (SIMS) [1], matrix-assisted laser desorption
ionization (MALDI) [2], and desorption electrospray ionization (DESI) [3]. SIMS is capable
of detecting a wide range of elements, both metals and nonmetals, and can provide valuable
information on the chemical bonds and molecules present on a sample surface [4]. However,
due to the typically high energy of the primary ion beam, there is a risk of breaking
covalent bonds and generating numerous fragment ions during testing. As a result, SIMS is
generally more suitable for analyzing inorganic materials and those with surface chemical
bonding, as well as for elemental analysis, inorganic analysis, and the detection of small
molecules [5]. MALDI technology offers the advantage of high resolution [6] and has been
extensively used to study substance variations across different regions in plant [7] and
animal samples [8]. However, not all substances of interest can be effectively analyzed
using a single matrix [9], which imposes certain limitations on substance identification.
In contrast, DESI involves simpler sample pretreatment and obviates the need for matrix
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alteration during substance imaging [10], enabling comprehensive metabolomics research
by facilitating the visualization of a broader range of substances [11]. The progression
of DESI technology in recent years has enabled its increasing use in substance research
pertaining to the brain [12] as well as pharmacodynamic evaluation of central nervous
system (CNS) drugs [13,14].

Depression is a significant public health concern and a major contributor to the global
disease burden. However, the underlying mechanisms of depression remain unclear. Previ-
ous studies have indicated that depression is closely associated with purine metabolism [15],
energy-related metabolism [16,17], and amino acids [18,19]. Research on depression in
various brain regions has been conducted. Notably, the medial prefrontal cortex (MPFC)
of rats subjected to chronic social defeat stress (CSDS) exhibits substantial alterations [20],
and inflammation or injury in the striatum also influences depressive symptoms [21,22].
Moreover, the nucleus accumbens [23] and the hippocampus [24,25] play crucial roles in
depressive behavior. Recent investigations have revealed that previously overlooked brain
regions, such as the cerebellum, also contribute to depression models [26,27]. Therefore, it
is imperative to comprehensively investigate metabolic alterations across all regions of the
plane. In this context, we employed DESI-MSI technology to elucidate the pivotal areas
experiencing metabolic changes.

However, despite the availability of detailed classification methods for brain re-
gions [28], the application of these methods often varies due to discrepancies between
mass-spectrometry-based material distributions and anatomical structures [13,29]. There-
fore, we aimed to establish a brain partitioning standard based on intrinsic differences
rather than relying on traditional techniques such as HE staining [30] or optical imaging [31].
Under our experimental conditions, we were able to accurately detect relatively stable lipid
profiles in the mouse brain. Moreover, significant variations were found among different
regions, suggesting their potential utility for brain partitioning purposes. Consequently,
we developed a DESI-MSI analysis method utilizing lipid profiling and investigated differ-
entially abundant metabolites and their distinct distribution characteristics in the mouse
brain in a CSDS-related depression model.

2. Materials and Methods
2.1. Chemicals and Reagents

Inosine, lactic acid, glucose, and glutamine were purchased from Sigma–Aldrich
(St. Louis, MO, USA). Adenosine 5′-monophosphate (AMP), hypoxanthine, deoxyguano-
sine, uridine, fumaric acid, malic acid, aspartic acid, and dipotassium phosphate were
obtained from Aladdin (Shanghai, China). Liquid chromatography-mass spectrometry
(LC/MS)-grade acetonitrile was obtained from Merck (Darmstadt, Germany). Ultrapure
water was generated using a Milli-Q system (Millipore, Bedford, MA, USA).

2.2. Animal Models of Depression

Male C57BL/6 J mice (6–7 weeks old) and CD1 aggressive mice (6–8 months old) were
purchased from Vital River Experimental Animal Co., Ltd. (Beijing, China). The animals
were housed in a controlled environment with a constant temperature, relative humidity
of 60% ± 2%, and 12 h light/dark cycles. All mice were allowed free access to chow
and water. Following a one-week acclimatization period, the C57BL/6 J mice underwent
chronic social defeat stress (CSDS) model stimulation [32]. Briefly, C57BL/6J mice were
exposed to daily 10 min aggressive attacks from CD1 mice for 10 days, with the duration
gradually reduced by 0.5 min each day. Furthermore, each C57BL/6J mouse encountered a
different CD1 mouse every day. Following the attacks, injured C57BL/6J mice were placed
on the opposite side of a transparent divider in their CD1 mouse cage, allowing them
24 h of visual, olfactory, and auditory contact. Depressive behavior indicators including
social interaction (SI) and the forced swimming test (FST) were evaluated according to the
established literature protocols. The experimental protocol (no. 2021-09-038) was approved
by the Animal Ethics Committee of China Pharmaceutical University (Nanjing, China).
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2.3. Tissue Preparation

The mice were sacrificed with diethyl ether, and the brain tissue was immediately
frozen with dry ice and stored at −80 ◦C. A small amount of gelatin was used to fix the
brain tissue, and 15 µm thick sagittal slices were prepared using a cryostat microtome
(Leica CM1950, Leica Microsystem, Wetzlar, Germany). After thawing, the slices were
loaded onto positively charged microscope slides (Thermo Fisher Scientific, Waltham, MA,
USA) and stored at −80 ◦C. To ensure consistency, the left side of the mouse brain was
sliced 0.72 mm away from the sagittal suture to ensure that different samples were located
in the same position. All samples were dried at −20 ◦C for 1 h and then placed at room
temperature for 2 h for DESI-MSI analysis.

2.4. DESI-MSI Data Acquisition

DESI-MSI experiments were conducted using the DESI-XEVO-G2-XS-QTOF platform
(Waters, Milford, MA, USA), and MSI analysis was performed in both positive and negative
ion modes of the XEVO-G2-QTOF mass spectrometer. Prior to analysis, the DESI-MSI
instrument was calibrated using a 0.5 mM sodium formate solution prepared in 90% 2-
propanol. A Harvard Apparatus Pump 11 Elite (Harvard Apparatus, Holliston, MA, USA)
was employed for delivering the spray solvent during data acquisition. Rhodamine 6G
was utilized for optimizing DESI performance, with its signal strength remaining stable at
e7 for over 10 s, indicating signal stability. Additionally, leucine enkephalin served as an
internal standard for mass spectrum correction. The solvent flow rate was set at 2 µL/min,
covering a mass range of 50–1000 Da with an ACN/H2O (8:2) solvent composition ratio
while achieving lateral and longitudinal resolutions of 100 µm. Brain slices from CSDS
mice and control mice were placed on the same slide to ensure consistent data acquisition
across both sample sets.

2.5. DESI-MSI Data Analysis

The DESI-MSI data were acquired using Mass Lyn x 4.1 and HDI Imaging ver 1.6
software (Waters, Milford, MA, USA). TIC normalization was applied to the mass spectrom-
etry data, which were then imaged in HDI and imported into Waters MSI Segmentation
and Waters MSI Analyte Browser for UMAP dimensionality reduction. Progenesis QI was
utilized for isotopic interference elimination and material identification. Multivariate data
analysis was performed using SIMCA software (Sartorius Stedim Biotech, Umeå, Sweden,
version 14.1), with PCA providing an overview of each brain region. Column charts were
generated using GraphPad Prism (Version 8.0.1, La Jolla, CA, USA). Statistical analyses
were conducted using SPSS software (version 19.0, IBM, Armonk, NY, USA), with p-values
from Spearman’s and Pearson’s correlation adjusted using the FDR method at a significance
threshold of p = 0.05. Heat maps were created using TBtools [33].

3. Results
3.1. Experimental Procedures and Lipid Partitioning of DESI-MSI

The complete experimental procedure is illustrated in Figure 1. The procedure in-
cluded the imaging of the endogenous metabolites in the mouse brain, data analysis, and
validation of the metabolite standards (Figure 1). For DESI-MSI imaging of mouse brains,
three C57BL/6J mice each from the control group and the CSDS group were utilized. The
brains of the mice were dissected, sectioned, and mounted on slides. Positive and negative
ion signals were acquired using DESI-MSI, followed by data processing. After excluding
the isotopic imaging results (Figure S1), the ions with optimal signal responses were se-
lected for analysis of the spatial distribution of the metabolites (Figure S2). The analysis
involved randomly sampling three data points from each brain region and summarizing
three biological samples from each group. Statistical analysis was conducted with a sample
size of n = 9. The corresponding mass spectrometry imaging maps were determined and
verified according to the differentially abundant metabolites detected in the fourteen brain
regions. For liquid samples, desiccation was performed to simulate substance determi-
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nation under the experimental DESI conditions. The standard solution was continuously
dripped onto various locations on the same slide while being sampled simultaneously to
eliminate any interference from the other experimental procedures. During data processing,
comparisons and analyses of the mass-charge ratios of the imaging results obtained from
the standards and from the mouse brain images allowed for the further identification of the
altered substances.
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Figure 1. Workflow of DESI-MSI analysis of metabolic characteristics in the brains of CSDS depression
model mice; n = 9 for statistical analysis. After conducting independent statistical analysis of 14 brain
regions, we comprehensively validated and selected the differential metabolic mass spectrometry
imaging maps. Mouse brain homogenates were added to the standard solution and compared
with mouse brain homogenates to mitigate interference from the experimental matrix. *: p < 0.05,
**: p < 0.01.

The optimized DESI conditions provided clear and accurate imaging of the lipid sub-
stances in the mouse brain, as depicted in Figure 2. Consequently, we proposed a novel
classification method based on the in situ imaging lipid classification technique. As illus-
trated in Figure 2, both positive (Figure 2A: m/z 845.5299 and Figure 2B: m/z 872.5571) and
negative (Figure 2C: m/z 834.5325 and Figure 2D: m/z 888.6270) ion modes provided clear
and stable imaging results for the two lipids. Notably, a series of lipid mass spectrometry
images revealed distinct and well-defined boundaries. Employing HDI software processing,
different colors were assigned to represent corresponding mass-charge ratios at identical
positions within the image (Figure 2E). Through this technique, we observed complete
overlap of boundaries when various lipids were utilized for regional division. Hence, brain
regions could be classified based on the distribution of lipid components. According to
the analysis of the brain region imaging results, we defined 14 categories as criteria for
classifying brain slices from different regions (Figure 2F): medial prefrontal cortex (MPFC),
hippocampus (HIP), caudate putamen (striatum) (CPu), nucleus accumbens-core region
(AcbC), nucleus accumbens-shell (Acbsh), thalamus (TH), hypothalamus (HY), central
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nucleus of the inferior colliculus (CIC), deep mesencephalic nucleus (DpMe), superior col-
liculus (SC), substantia nigra (SN), cerebellar cortex (CBC), pons (PN), and medulla (Med).
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Figure 2. Classification of brain regions through clear lipid imaging. (A) Lipid 1, m/z 845.5299 in
positive ion mode. (B) Lipid 2, m/z 872.5571 in positive ion mode. (C) Lipid 3, m/z 834.5325 in
negative ion mode. (D) Lipid 4, m/z 888.6270 in negative ion mode. (E) Merged image: Lipid 3 is red,
while Lipid 4 is green. (F) Results of regional classification based on lipid formation. (G) Comparison
between lipid classification methods and the traditional HE classification method.

To validate the efficacy of the lipid classification system, we conducted a comparative
analysis between the conventional HE staining method and the proposed lipid classification
approach (Figure 2G). Notably, lipid mass spectrometry exhibited superior discriminatory
power in distinguishing the CIC and SC brain regions. Furthermore, across the other areas
depicted in Figure 2, the lipid classification method demonstrated enhanced adaptability
for classifying diverse brain regions.

3.2. Significant Changes in 13 Metabolites Induced by the CSDS Model

In the experiment, we detected a total of 205 metabolites, of which 77 were identified.
A total of 13 metabolites showed significant differences in different pathways. In the study
of the energy metabolism pathway, we primarily analyzed the alterations in the lactic acid,
glucose, fumaric acid, and malic acid levels (Figure 3A). Lactate levels exhibited a more
uniform distribution throughout the entire brain and were significantly lower in the model
group than in the control group. When considering the schematic diagram with these
findings, it was evident that the decrease in lactic acid was predominantly concentrated
in the anterior region of the mouse brain. The distribution of glucose in the mouse brain
was naturally biased toward the posterior hemisphere; however, under the influence of
CSDS, there was a significant accumulation of glucose near the cerebellum and striatum.
The natural distribution of fumarate was homogeneous, whereas in the model group, a
significant reduction in fumarate concentration was observed in the posterior brain regions.
The malic acid concentration was greater in the posterior brain regions than in the anterior
brain regions and showed a decreasing trend, particularly in the cerebellar cortex and
accumbens-shell. In summary, the disparities in lactate levels were predominantly localized
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within the frontal region, whereas alterations in glucose, fumarate, and malic acid levels
exhibited greater concentrations within the posterior region.
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Figure 3. Thirteen differentially abundant metabolites and their corresponding substance validation.
(A) Images of energy-metabolism-related metabolites and their most prominent brain regions. (B) Im-
ages of purine-metabolism-related metabolites and their most prominent brain regions. (C) Images of
other metabolites and their most prominent brain regions. (D) Validation of standards for 13 metabo-
lites. The figure of the brain shows one of the three experimental groups, and the remaining two
groups are illustrated in the accompanying figure (Figure S3).

In the purine metabolism pathway, we primarily analyzed the alterations in AMP,
inosine, hypoxanthine, deoxyguanosine, and uridine levels (Figure 3B). AMP exhibited
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a greater distribution within the cerebral cortex and a more balanced distribution in the
remaining regions. We observed a decrease in the AMP concentration specifically within
the striatum region. The distribution of inosine was predominantly observed in the Med,
PN, CIC, and other regions. In the depression model group, elevated levels of inosine were
detected specifically in the posterior brain regions and around the thalamus. Hypoxanthine
and inosine are converted reciprocally in vivo. The distributions of hypoxanthine and
inosine were very similar, and both were also upregulated in the depression model mice.
The brain regions with the largest concentration differences occurred in the posterior region
of the brain and around the thalamus. Deoxyguanosine was mainly distributed in the
striatum and nucleus accumbens. Interestingly, when we analyzed deoxyguanosine, we
found that the changes in different brain regions were opposite. The concentration of
deoxyguanosine increased in the CPu, CBC, and Acbsh regions and decreased in the Med,
CIC, and TH regions. These differences suggest that the synthesis and decomposition
of deoxyguanosine may differ in different brain regions, and further analysis is needed.
Uridine was mainly distributed in the posterior brain of mice, and the concentration of
uridine increased more significantly in the hippocampus and medial prefrontal cortex in
the model group. In general, there was a more significant metabolic upregulation of purine
pyrimidine metabolism-related substances in the cerebellum, hippocampus, striatum, and
surrounding regions.

In addition, we selected other substances that exhibited significant differences in
the model for analysis. These substances included glutamine, aspartic acid, disodium
phosphate, and potassium phosphate (Figure 3C). Glutamine was primarily distributed
around the thalamus, and its concentration was increased in the model group. After the
data analysis, concentration differences were found to predominantly occur in and around
the striatum. Aspartate was mainly distributed in the Med, DpMe, CIC, and MPFC regions.
In the depression model, the concentration of aspartate was significantly lower in the
TH region. Disodium phosphate and dipotassium phosphate levels reflect changes in
phosphoric acid levels within mouse brains. The concentrations of the two phosphates
in various brain regions did not significantly differ. Both phosphates increased within
the mouse brain. These findings revealed notable variations in the cerebellar regions and
thalamus, as well as in the striatum regions and their adjacent areas.

The 13 metabolites were confirmed using standards (Figure 3D and Table S1). To better
simulate substance detection in the mouse brain slices, standard solutions were mixed with
mouse brain homogenates. Simultaneous sampling of different standards and mouse brain
homogenates was conducted to validate that the signal originated solely from the added
standard. The results verified that AMP, inosine, hypoxanthine, lactic acid, fumaric acid,
malic acid, glutamine, and aspartic acid exhibited [M − H]− negative ions. Na2HPO4 and
K2HPO4 displayed metal-addition positive ions. Glucose, deoxyguanosine, and uridine
produced [M + Cl]− negative ions.

In summary, our study revealed and validated that the most prominent alterations in
the three major substance categories and 13 metabolites were observed in the striatum and
surrounding regions, hippocampus, medial prefrontal cortex, and cerebellum.

3.3. Areas of Significant Metabolic Change

The differences between the model and control groups were transformed into ratios
and visualized using a clustered heatmap (Figure 4A). The cluster analysis revealed that
the brain regions could be categorized into two groups: CPu, HIP, AcbC, Acbsh, CBC, and
MPFC as one category and Med, PN, CIC, SC, SN, TH, DpMe, and HY as another category.
The disparities observed in the first group were significant and possessed distinctive
attributes. For instance, several substances, such as deoxyguanosine and malic acid,
exhibited noteworthy variations. After considering these data, we defined the brain
regions in the first category as the significant metabolic change area (SMCA). Moreover,
we observed a stronger correlation of the metabolic changes between the cerebellar cortex
and cerebral cortex. Additionally, we noted a consistent pattern of metabolic changes
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between the nucleus accumbens core region and its adjacent shell region, supporting their
close association.
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Figure 4. Regional salience of the significant metabolic change area (SMCA) and validation of this
classification approach. (A) Clustering heatmap of brain regions and metabolites. The data were
transformed into ratios comparing the model group to the control group, where red indicates an
elevated concentration in the disease model, and blue represents a reduced concentration. The data
were normalized to eliminate interference from material detection. The row labels list the metabolites;
the top column labels indicate the class; the bottom column labels indicate the brain regions. (B) PCA
score scatter plot of brain regions. (C) Loading scatter plot of brain regions. Red represents purine
metabolites, while blue indicates energy-related metabolites. (D) UMAP analysis revealing metabolic
variations across distinct brain regions. (E) Classification clustering graph generated by UMAP.
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To validate the reliability of the classification results, we employed SIMCA software
for unsupervised data dimensionality reduction to examine the correlations among brain
regions (Figure 4B). The unsupervised classification results showed that the CPu, HIP,
AcbC, Acbsh, CBC, and MPFC brain regions were clustered in the lower left of the image
during dimensionality reduction. Further analysis of their contributions revealed that
energy-metabolism-related substances, such as lactic acid, malic acid and fumaric acid, and
purine metabolism pathway substances, including uracil, inosine, hypoxanthine, and de-
oxyguanosine, contributed to two directions of discrimination (Figure 4C). Moreover, most
substances were better distinguished in two directions of discrimination. This classification
method is robust and reliable.

To further validate the brain regions affected by depression, we did not confine our-
selves to the primary differential substances but instead utilized all the detected metabolite
data to conduct uniform manifold approximation and projection (UMAP) dimensionality
reduction. The UMAP dimensionality reduction data revealed that the mouse brain tis-
sue could be segregated into distinct regions based on substance differences (Figure 4D).
Although the classifications of most brain regions, such as the cerebellum and thalamus,
were consistent between the CSDS model group and the control group, indicating minimal
alterations in regional composition, notable differences in matter were observed within
the cerebral cortex, hippocampus, and striatum nucleus accumbens. Consequently, these
regions exhibited distinct clustering patterns. This finding underscores the substantial
alterations in the composition of the SMCA region induced by the depression model,
surpassing its inherent compositional characteristics. Additionally, we corroborated the
reliability of this outcome. In Figure 4E, the left area corresponds to the mouse brain
sample region, while the right area represents slide artefacts and other interferences. These
findings confirmed that the classification of the mouse brain regions by UMAP in this study
was reliable.

3.4. Common Features and Differences between SMCAs

Simultaneous alterations in purine metabolism and energy metabolism within the
SMCA were the primary characteristics of the CSDS depression model. However, there
were variations in the significance of the alterations in energy metabolism and purine
metabolism within the SMCA. Therefore, we further synthesized the shared characteristics
and relative distinctions among the SMCA brain regions, thereby uncovering potentially
broader associations within these brain regions. The disparities among the three metabolic
types in the SMCA are shown in Figure 5A. The data revealed that energy metabolism
discrepancies were more pronounced in the medial prefrontal cortex and cerebellar cortex.
In the hippocampus, accumbens-core, and accumbens-shell, differences in both energy
metabolism and purine metabolism were equally significant. Notably, purine metabolism
variations were more prominent in the caudate putamen. Additionally, we arranged
the metabolites according to the magnitude of the metabolic differences and classified
them according to their respective metabolic pathways (Figure 5B). The three compounds
exhibiting the most pronounced metabolic disparities in the medial prefrontal cortex
and cerebellar cortex were all energy-related metabolites, whereas the two compounds
displaying the greatest differences in the caudate putamen were purine metabolites. In
the other brain regions, these two types of metabolites demonstrated a cross-distribution
pattern. These findings provide a more comprehensive understanding of the metabolic
alterations across distinct brain areas.
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4. Discussion

Patients with depression may experience side effects such as headache and drowsi-
ness when taking drugs that directly regulate neurotransmitters [34], due in part to the
nonspecific targeting of these drugs, which increases the likelihood of adverse reactions.
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However, as mentioned in the Introduction, the specific brain regions and metabolic pro-
cesses targeted by antidepressant drugs during development remain unclear. Therefore, an
additional tool is required to simultaneously detect the metabolites in the various brain
regions of the nervous system and provide guidance.

We innovatively employed a lipid-based brain region localization method. First, we
observed that this approach exhibited superior universality, as lipids were detected in all
mouse brain samples, and demonstrated good repeatability. Second, we observed that
various lipid boundaries exhibited consistent repeatability and complete overlap. This
implies the existence of an inherent barrier within the mouse brain that facilitates the
classification of distinct brain regions and impedes unrestricted diffusion of metabolites
across tissues. This phenomenon may arise from the distinct lipid composition ratio of
different brain cells. Third, because the lipid distribution was more closely aligned with the
natural distribution of endogenous metabolites, in situ lipid classification is a more suitable
approach than traditional methods, such as HE staining analysis or UMAP dimensionality
reduction, for investigating the variations in metabolic markers among different the brain
regions of mice. Moreover, this classification approach offers greater accuracy and greater
physiological significance.

The functional/bioinformatic methodology for mass spectrometry imaging is continu-
ously advancing [35,36]. We employed the uniform manifold approximation and projection
(UMAP) approach to validate the SMCA. UMAP, an effective approach for analyzing
high-dimensional data, enables reliable and meaningful analysis while facilitating data
visualization and interpretation [37]. It is widely utilized in mass spectrometry imaging to
differentiate various cell types and aid in pathological assessment [38,39]. To accurately
determine the differences between substances, data from both the control group and the
model group were simultaneously collected in our experiment. Consequently, when em-
ploying UMAP dimensionality reduction analysis, a classification map of brain regions for
both groups was generated on a unified platform. Comprehensive data analysis revealed
significant differences in all SMCA regions except for the cerebellar region, confirming that
the 13 characteristic metabolites effectively captured overall distinctions and validating the
accuracy of the SMCA from an additional perspective.

Studies have demonstrated the therapeutic effects of exogenous malic acid supple-
mentation on depression [40]. Our findings indicate reductions in fumarate and malic
acid levels, both of which are important metabolites in the tricarboxylic acid cycle in the
SMCA of CSDS mice, suggesting that energy metabolism dysfunction potentially under-
lies the pathogenesis of depression. Our experimental findings demonstrated an increase
in glucose concentrations within the SMCA, accompanied by a concurrent decrease in
lactate concentrations. The brain, which is highly energy-dependent, constitutes merely
2% of the body weight but accounts for 20% of oxygen consumption and 25% of glucose
metabolism [41]. Depression significantly diminishes glucose metabolism and utilization
within the MPFC [42], potentially leading to reduced lactate production. Emerging evidence
suggests that lactate serves as a crucial energy substrate for the brain [43], with neurons
exhibiting a preference for its utilization over glucose, while astrocytes predominantly
metabolize glucose and release lactate [41]. Impaired astrocyte metabolism may cause
dysfunction by inhibiting mitochondrial ATP production, thereby inducing depression-like
behavior in animal models [44]. The reduction in and apoptosis of astrocytes are considered
key mechanisms underlying depression [45–47], which is supported by our investigations
into energy metabolism. Interestingly, our study revealed a more pronounced manifestation
of energy metabolism dysfunction in the MPFC and CBC. Previous studies demonstrated a
greater density of astrocytes in these two brain regions [48], which may serve as an intrinsic
factor contributing to the co-occurrence of energy metabolism disorders.

Our previous work demonstrated that, compared with healthy control mice, CSDS
mice exhibit significant increases in inosine, hypoxanthine, and uridine levels in the hip-
pocampal region [49]. In this DESI-MSI experiment, we found that these alterations were
prevalent not only in the hippocampal region but also extended to the SMCA. Interestingly,
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we noted an increase in deoxyguanosine levels specifically within the SMCA while observ-
ing a decrease in the surrounding brain regions. These findings suggest a potential role for
deoxyguanosine in depression pathogenesis. In the ab initio synthesis pathway of purines,
IMP serves as an initial precursor that is subsequently converted into substances such as
AMP and GMP [50]. Among the purine metabolites, the SMCA exhibited elevated levels
of inosine, hypoxanthine, uridine, and deoxyguanosine, indicating enhanced nucleotide
synthesis activity. However, because certain factors inhibiting replenishment processes for
AMP production within SMCA cells are limited, these limitations may play a crucial role in
understanding depression-related mechanisms. The upregulation of purine metabolism is
indicative of genetic material damage in cells, and studies have demonstrated that the most
prominent characteristic of depression associated with the caudate putamen is a reduction
in volume [51], which suggests that the caudate putamen is more closely linked to the
upregulation of purine metabolism.

The absence of an integrated urea cycle in the central nervous system (CNS) means
that glutamine synthesis is the sole mechanism that effectively counteracts blood ammonia
levels or recycles intracellularly produced ammonia in CNS cells [52,53]. Glutamine accu-
mulation is frequently observed in individuals with depression [17], and our experiments
revealed that this accumulation was most pronounced in the nucleus accumbens region.
Excessive glutamine buildup within brain cells may have detrimental effects on brain
function primarily due to its interference with mitochondrial function and partly due to its
osmotic effects [54]. We selected both dipotassium phosphate and disodium phosphate for
the characterization of brain phosphate content. In conventional LC-MS detection, sample
processing and protein precipitation may impact phosphate levels. Therefore, DESI-MSI
enables better observation of the phosphate content and status. Inorganic phosphate in
the brain is closely associated with energy metabolism [55,56]. For instance, mitochondrial
oxidative phosphorylation efficiently catalyzes ADP and inorganic phosphate to generate
ATP using energy derived from glucose metabolism. Phosphorylation also serves as a
vital mechanism for delivering energy to various substances. We observed a widespread
increase in phosphate levels, which is consistent with the widespread reduction in ATP
levels observed during depression [57,58]. These findings further substantiate the aberrant
nature of energy metabolism.

The application of mass spectrometry imaging technology can aid in clinical treatment,
such as through the identification of biomarkers for liver cancer [59] or the analysis of
the metabolic characteristics of intrabody chemotherapy drugs [60]. DESI-MSI technology
was employed to analyze the metabolic changes in the brain associated with depression.
Our findings suggest that targeted drugs for the SMCA brain region may demonstrate
enhanced efficacy and reduced side effects. Modulating abnormal purine metabolism in the
caudate putamen or addressing energy metabolic disorders, such as glucose accumulation
and lactate supply deficiency in the cortex, may help alleviate depressive symptoms more
effectively. This offers valuable insights for the development and evaluation of clinical
antidepressant drugs.

5. Conclusions

In this study, we employed an innovative lipid-based DESI-MSI analysis method
with excellent repeatability and distinct boundaries to investigate the metabolites and
metabolic pathways in the brains of depressed mice in situ. We identified a diverse
range of metabolites and validated 13 key metabolites using standard substances. The
results demonstrated the simultaneous occurrence of energy metabolism disorders and
the upregulation of purine metabolism in the significant metabolic change area (SMCA),
which represents the most significant characteristic of CSDS-induced depression in mice.
The research findings presented in this paper collectively demonstrate a paradigm of brain
metabolic changes associated with depression, contributing to a deeper understanding of
depression and providing valuable insights for the development and evaluation of clinical
antidepressant medications.



Metabolites 2024, 14, 284 13 of 15

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo14050284/s1, Figure S1. Diagram depicting the process of
identification and exclusion of isotope ions; Figure S2. Representative examples of the same metabo-
lites exhibiting variations in composition due to the presence of diverse additional ions; Figure S3.
The remaining two sets of DESI-MSI images; Table S1. Metabolite ions identified using standards.

Author Contributions: Conceptualization, Y.S. and J.A.; methodology, Y.S. and F.X.; writing—original
draft preparation, Y.S.; software, Y.S.; writing—review and editing, F.X. and J.A.; supervision, J.A.
and G.W. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by National Natural Science Foundation of China (82173890),
Leading Technology Foundation Research Project of Jiangsu Province (No. BK20192005, China),
CAMS Innovation Fund for Medical Sciences (CIFMS, No. 2021-I2M-5-011, China), Sanming Project
of Medicine in Shenzhen (No. SZSM201801060, China).

Institutional Review Board Statement: The animal study protocol was approved by the Ethics
Committee of China Pharmaceutical University (protocol code 2021-09-038).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article or Supplementary Material.

Acknowledgments: Some of the figures of the article were drawn with TBtools.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Secondary Ion Mass Spectrometry|Annual Reviews. Available online: https://www.annualreviews.org/content/journals/10.1

146/annurev.ms.15.080185.002505 (accessed on 4 May 2024).
2. Seeley, E.H.; Schwamborn, K.; Caprioli, R.M. Imaging of Intact Tissue Sections: Moving beyond the Microscope. J. Biol. Chem.

2011, 286, 25459–25466. [CrossRef] [PubMed]
3. Eberlin, L.S.; Ferreira, C.R.; Dill, A.L.; Ifa, D.R.; Cooks, R.G. Desorption Electrospray Ionization Mass Spectrometry for Lipid

Characterization and Biological Tissue Imaging. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2011, 1811, 946–960. [CrossRef]
[PubMed]

4. Jia, F.; Zhao, X.; Zhao, Y. Advancements in ToF-SIMS Imaging for Life Sciences. Front. Chem. 2023, 11, 1237408. [CrossRef]
[PubMed]

5. Lechene, C.; Hillion, F.; McMahon, G.; Benson, D.; Kleinfeld, A.M.; Kampf, J.P.; Distel, D.; Luyten, Y.; Bonventre, J.; Hentschel, D.;
et al. High-Resolution Quantitative Imaging of Mammalian and Bacterial Cells Using Stable Isotope Mass Spectrometry. J. Biol.
2006, 5, 20. [CrossRef] [PubMed]

6. Gustafsson, J.O.R.; Oehler, M.K.; Ruszkiewicz, A.; McColl, S.R.; Hoffmann, P. MALDI Imaging Mass Spectrometry (MALDI-
IMS)—Application of Spatial Proteomics for Ovarian Cancer Classification and Diagnosis. Int. J. Mol. Sci. 2011, 12, 773–794.
[CrossRef] [PubMed]

7. Li, B.; Neumann, E.K.; Ge, J.; Gao, W.; Yang, H.; Li, P.; Sweedler, J.V. Interrogation of Spatial Metabolome of Ginkgo Biloba with
High-resolution Matrix-assisted Laser Desorption/Ionization and Laser Desorption/Ionization Mass Spectrometry Imaging.
Plant Cell Environ. 2018, 41, 2693–2703. [CrossRef] [PubMed]

8. Rao, T.; Shao, Y.; Hamada, N.; Li, Y.; Ye, H.; Kang, D.; Shen, B.; Li, X.; Yin, X.; Zhu, Z.; et al. Pharmacokinetic Study Based on a
Matrix-Assisted Laser Desorption/Ionization Quadrupole Ion Trap Time-of-Flight Imaging Mass Microscope Combined with a
Novel Relative Exposure Approach: A Case of Octreotide in Mouse Target Tissues. Anal. Chim. Acta 2017, 952, 71–80. [CrossRef]
[PubMed]

9. Buchberger, A.R.; DeLaney, K.; Johnson, J.; Li, L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future
Insights. Anal. Chem. 2018, 90, 240. [CrossRef]

10. He, M.J.; Pu, W.; Wang, X.; Zhang, W.; Tang, D.; Dai, Y. Comparing DESI-MSI and MALDI-MSI Mediated Spatial Metab-olomics
and Their Applications in Cancer Studies. Front. Oncol. 2022, 12, 891018. [CrossRef]

11. He, J.; Sun, C.; Li, T.; Luo, Z.; Huang, L.; Song, X.; Li, X.; Abliz, Z. A Sensitive and Wide Coverage Ambient Mass Spec-trometry
Imaging Method for Functional Metabolites Based Molecular Histology. Adv. Sci. 2018, 5, 1800250. [CrossRef]

12. Pang, X.; Gao, S.; Ga, M.; Zhang, J.; Luo, Z.; Chen, Y.; Zhang, R.; He, J.; Abliz, Z. Mapping Metabolic Networks in the Brain by
Ambient Mass Spectrometry Imaging and Metabolomics. Anal. Chem. 2021, 93, 6746–6754. [CrossRef]

13. Liu, D.; Huang, J.; Gao, S.; Jin, H.; He, J. A Temporo-Spatial Pharmacometabolomics Method to Characterize Pharmacoki-netics
and Pharmacodynamics in the Brain Microregions by Using Ambient Mass Spectrometry Imaging. Acta Pharm. Sin. B 2022, 12,
3341–3353. [CrossRef] [PubMed]

14. Vismeh, R.; Waldon, D.J.; Teffera, Y.; Zhao, Z. Localization and Quantification of Drugs in Animal Tissues by Use of De-sorption
Electrospray Ionization Mass Spectrometry Imaging. Anal. Chem. 2012, 84, 5439–5445. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/metabo14050284/s1
https://www.mdpi.com/article/10.3390/metabo14050284/s1
https://www.annualreviews.org/content/journals/10.1146/annurev.ms.15.080185.002505
https://www.annualreviews.org/content/journals/10.1146/annurev.ms.15.080185.002505
https://doi.org/10.1074/jbc.R111.225854
https://www.ncbi.nlm.nih.gov/pubmed/21632549
https://doi.org/10.1016/j.bbalip.2011.05.006
https://www.ncbi.nlm.nih.gov/pubmed/21645635
https://doi.org/10.3389/fchem.2023.1237408
https://www.ncbi.nlm.nih.gov/pubmed/37693171
https://doi.org/10.1186/jbiol42
https://www.ncbi.nlm.nih.gov/pubmed/17010211
https://doi.org/10.3390/ijms12010773
https://www.ncbi.nlm.nih.gov/pubmed/21340013
https://doi.org/10.1111/pce.13395
https://www.ncbi.nlm.nih.gov/pubmed/29966033
https://doi.org/10.1016/j.aca.2016.11.056
https://www.ncbi.nlm.nih.gov/pubmed/28010844
https://doi.org/10.1021/acs.analchem.7b04733
https://doi.org/10.3389/fonc.2022.891018
https://doi.org/10.1002/advs.201800250
https://doi.org/10.1021/acs.analchem.1c00467
https://doi.org/10.1016/j.apsb.2022.03.018
https://www.ncbi.nlm.nih.gov/pubmed/35967273
https://doi.org/10.1021/ac3011654
https://www.ncbi.nlm.nih.gov/pubmed/22663341


Metabolites 2024, 14, 284 14 of 15

15. Zhao, Y.F.; Verkhratsky, A.; Tang, Y.; Illes, P. Astrocytes and Major Depression: The Purinergic Avenue. Neuropharmacology 2022,
220, 109252. [CrossRef] [PubMed]

16. Yoshimi, N.; Futamura, T.; Kakumoto, K.; Salehi, A.M.; Sellgren, C.M.; Holmén-Larsson, J.; Jakobsson, J.; Pålsson, E.; Landén, M.;
Hashimoto, K. Blood Metabolomics Analysis Identifies Abnormalities in the Citric Acid Cycle, Urea Cycle, and Amino Acid
Metabolism in Bipolar Disorder. BBA Clin. 2016, 5, 151–158. [CrossRef]

17. Liu, X.; Wei, F.; Liu, H.; Zhao, S.; Du, G.; Qin, X. Integrating Hippocampal Metabolomics and Network Pharmacology Deciphers
the Antidepressant Mechanisms of Xiaoyaosan. J. Ethnopharmacol. 2021, 268, 113549. [CrossRef] [PubMed]

18. Ho, C.S.H.; Tay, G.W.N.; Wee, H.N.; Ching, J. The Utility of Amino Acid Metabolites in the Diagnosis of Major Depressive
Disorder and Correlations with Depression Severity. Int. J. Mol. Sci. 2023, 24, 2231. [CrossRef]

19. Li, S.; Yang, Z.; Yao, M.; Shen, Y.; Zhu, H.; Jiang, Y.; Ji, Y.; Yin, J. Exploration for Biomarkers of Postpartum Depression Based on
Metabolomics: A Systematic Review. J. Affect. Disord. 2022, 317, 298–306. [CrossRef]

20. Xu, J.; Guo, C.; Liu, Y.; Wu, G.; Ke, D.; Wang, Q.; Mao, J.; Wang, J.-Z.; Liu, R.; Wang, X. Nedd4l Downregulation of NRG1 in the
mPFC Induces Depression-like Behaviour in CSDS Mice. Transl. Psychiatry 2020, 10, 249. [CrossRef]

21. Klawonn, A.M.; Fritz, M.; Castany, S.; Pignatelli, M.; Canal, C.; Similä, F.; Tejeda, H.A.; Levinsson, J.; Jaarola, M.; Jakobsson, J.;
et al. Microglial Activation Elicits a Negative Affective State through Prostaglandin-Mediated Modulation of Striatal Neurons.
Immunity 2021, 54, 225–234.e6. [CrossRef]

22. Li, Z.; Vidjro, O.E.; Guo, G.; Du, Y.; Zhou, Y.; Xie, Q.; Li, J.; Gao, K.; Zhou, L.; Ma, T. NLRP3 Deficiency Decreases Alcohol Intake
Controlling Anxiety-like Behavior via Modification of Glutamatergic Transmission in Corticostriatal Circuits. J. Neuroinflamm.
2022, 19, 308. [CrossRef] [PubMed]

23. Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Def-icits
and Reversal by Novel Treatments. Neuron 2019, 102, 75–90. [CrossRef] [PubMed]

24. Tartt, A.N.; Mariani, M.B.; Hen, R.; Mann, J.J.; Boldrini, M. Dysregulation of Adult Hippocampal Neuroplasticity in Major
Depression: Pathogenesis and Therapeutic Implications. Mol. Psychiatry 2022, 27, 2689–2699. [CrossRef] [PubMed]

25. Su, T.; Lu, Y.; Fu, C.; Geng, Y.; Chen, Y. GluN2A Mediates Ketamine-Induced Rapid Antidepressant-like Responses. Nat. Neurosci.
2023, 26, 1751–1761. [CrossRef]

26. Minichino, A.; Bersani, F.S.; Trabucchi, G.; Albano, G.; Primavera, M.; Delle Chiaie, R.; Biondi, M. The Role of Cerebellum in
Unipolar and Bipolar Depression: A Review of the Main Neurobiological Findings. Riv. Psichiatr. 2014, 49, 124–131. [CrossRef]
[PubMed]

27. Gong, J.; Wang, J.; Qiu, S.; Chen, P.; Luo, Z.; Wang, J.; Huang, L.; Wang, Y. Common and Distinct Patterns of Intrinsic Brain
Activity Alterations in Major Depression and Bipolar Disorder: Voxel-Based Meta-Analysis. Transl. Psychiatry 2020, 10, 353.
[CrossRef]

28. Paxinos, G.; Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates; Academic Press: San Diego, CA, USA, 2001.
29. Hulme, H.; Meikle, L.M.; Strittmatter, N.; Van Der Hooft, J.J.J.; Swales, J.; Bragg, R.A.; Villar, V.H.; Ormsby, M.J.; Barnes, S.; Brown,

S.L.; et al. Microbiome-Derived Carnitine Mimics as Previously Unknown Mediators of Gut-Brain Axis Communication. Sci. Adv.
2020, 6, eaax6328. [CrossRef] [PubMed]

30. Eberlin, L.S.; Liu, X.; Ferreira, C.R.; Santagata, S.; Agar, N.Y.R.; Cooks, R.G. Desorption Electrospray Ionization Then MALDI Mass
Spectrometry Imaging of Lipid and Protein Distributions in Single Tissue Sections. Anal. Chem. 2011, 83, 8366–8371. [CrossRef]
[PubMed]

31. Hulme, H.; Fridjonsdottir, E.; Vallianatou, T.; Shariatgorji, R.; Nilsson, A.; Li, Q.; Bezard, E.; Andrén, P.E. Basal Ganglia
Neuropeptides Show Abnormal Processing Associated with L-DOPA-Induced Dyskinesia. npj Park. Dis. 2022, 8, 41. [CrossRef]

32. Golden, S.A.; Covington, H.E.; Berton, O.; Russo, S.J. A Standardized Protocol for Repeated Social Defeat Stress in Mice. Nat.
Protoc. 2011, 6, 1183–1191. [CrossRef]

33. Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive
Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [CrossRef] [PubMed]

34. Marwaha, S.; Palmer, E.; Suppes, T.; Cons, E.; Young, A.H.; Upthegrove, R. Novel and Emerging Treatments for Major Depression.
Lancet 2023, 401, 141–153. [CrossRef] [PubMed]

35. Song, X.; Zang, Q.; Zhang, J.; Gao, S.; Zheng, K.; Li, Y.; Abliz, Z.; He, J. Metabolic Perturbation Score-Based Mass Spectrometry
Imaging Spatially Resolves a Functional Metabolic Response. Anal. Chem. 2023, 95, 6775–6784. [CrossRef] [PubMed]

36. Chappel, J.R.; King, M.E.; Fleming, J.; Eberlin, L.S.; Reif, D.M.; Baker, E.S. Aggregated Molecular Phenotype Scores: Enhancing
Assessment and Visualization of Mass Spectrometry Imaging Data for Tissue-Based Diagnostics. Anal. Chem. 2023, 95, 12913–
12922. [CrossRef] [PubMed]

37. Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.-A.; Kwok, I.W.H.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality Re-duction for
Visualizing Single-Cell Data Using UMAP. Nat. Biotechnol. 2018, 37, 38–44. [CrossRef] [PubMed]

38. Sun, C.; Wang, A.; Zhou, Y.; Chen, P.; Wang, X.; Huang, J.; Gao, J.; Wang, X.; Shu, L.; Lu, J.; et al. Spatially Resolved Mul-ti-Omics
Highlights Cell-Specific Metabolic Remodeling and Interactions in Gastric Cancer. Nat. Commun. 2023, 14, 2692. [CrossRef]
[PubMed]

39. Conroy, L.R.; Clarke, H.A.; Allison, D.B.; Valenca, S.S.; Sun, Q.; Hawkinson, T.R.; Young, L.E.A.; Ferreira, J.E.; Hammonds, A.V.;
Dunne, J.B.; et al. Spatial Metabolomics Reveals Glycogen as an Actionable Target for Pulmonary Fibrosis. Nat. Commun. 2023,
14, 2759. [CrossRef]

https://doi.org/10.1016/j.neuropharm.2022.109252
https://www.ncbi.nlm.nih.gov/pubmed/36122663
https://doi.org/10.1016/j.bbacli.2016.03.008
https://doi.org/10.1016/j.jep.2020.113549
https://www.ncbi.nlm.nih.gov/pubmed/33152435
https://doi.org/10.3390/ijms24032231
https://doi.org/10.1016/j.jad.2022.08.043
https://doi.org/10.1038/s41398-020-00935-x
https://doi.org/10.1016/j.immuni.2020.12.016
https://doi.org/10.1186/s12974-022-02666-w
https://www.ncbi.nlm.nih.gov/pubmed/36539796
https://doi.org/10.1016/j.neuron.2019.03.013
https://www.ncbi.nlm.nih.gov/pubmed/30946828
https://doi.org/10.1038/s41380-022-01520-y
https://www.ncbi.nlm.nih.gov/pubmed/35354926
https://doi.org/10.1038/s41593-023-01436-y
https://doi.org/10.1708/1551.16907
https://www.ncbi.nlm.nih.gov/pubmed/25000888
https://doi.org/10.1038/s41398-020-01036-5
https://doi.org/10.1126/sciadv.aax6328
https://www.ncbi.nlm.nih.gov/pubmed/32195337
https://doi.org/10.1021/ac202016x
https://www.ncbi.nlm.nih.gov/pubmed/21975048
https://doi.org/10.1038/s41531-022-00299-7
https://doi.org/10.1038/nprot.2011.361
https://doi.org/10.1016/j.molp.2020.06.009
https://www.ncbi.nlm.nih.gov/pubmed/32585190
https://doi.org/10.1016/S0140-6736(22)02080-3
https://www.ncbi.nlm.nih.gov/pubmed/36535295
https://doi.org/10.1021/acs.analchem.2c01723
https://www.ncbi.nlm.nih.gov/pubmed/37021399
https://doi.org/10.1021/acs.analchem.3c02389
https://www.ncbi.nlm.nih.gov/pubmed/37579019
https://doi.org/10.1038/nbt.4314
https://www.ncbi.nlm.nih.gov/pubmed/30531897
https://doi.org/10.1038/s41467-023-38360-5
https://www.ncbi.nlm.nih.gov/pubmed/37164975
https://doi.org/10.1038/s41467-023-38437-1


Metabolites 2024, 14, 284 15 of 15

40. Koriem, K.M.M.; Tharwat, H.A.K. Malic Acid Improves Behavioral, Biochemical, and Molecular Disturbances in the Hy-
pothalamus of Stressed Rats. J. Integr. Neurosci. 2023, 22, 98. [CrossRef] [PubMed]

41. Bélanger, M.; Allaman, I.; Magistretti, P.J. Brain Energy Metabolism: Focus on Astrocyte-Neuron Metabolic Cooperation. Cell
Metab. 2011, 14, 724–738. [CrossRef]

42. Kennedy, S.H.; Evans, K.R.; Krüger, S.; Mayberg, H.S.; Meyer, J.H.; McCann, S.; Arifuzzman, A.I.; Houle, S.; Vaccarino, F.J.
Changes in Regional Brain Glucose Metabolism Measured with Positron Emission Tomography after Paroxetine Treatment of
Major Depression. Am. J. Psychiatry 2001, 158, 899–905. [CrossRef]

43. Boumezbeur, F.; Petersen, K.F.; Cline, G.W.; Mason, G.F.; Behar, K.L.; Shulman, G.I.; Rothman, D.L. The Contribution of Blood
Lactate to Brain Energy Metabolism in Humans Measured by Dynamic 13C Nuclear Magnetic Resonance Spectroscopy. J. Neurosci.
Off. J. Soc. Neurosci. 2010, 30, 13983–13991. [CrossRef] [PubMed]

44. Xiong, X.-Y.; Tang, Y.; Yang, Q.-W. Metabolic Changes Favor the Activity and Heterogeneity of Reactive Astrocytes. Trends
Endocrinol. Metab. TEM 2022, 33, 390–400. [CrossRef] [PubMed]

45. Miguel-Hidalgo, J.J.; Baucom, C.; Dilley, G.; Overholser, J.C.; Meltzer, H.Y.; Stockmeier, C.A.; Rajkowska, G. Glial Fibrillary Acidic
Protein Immunoreactivity in the Prefrontal Cortex Distinguishes Younger from Older Adults in Major Depressive Disorder. Biol.
Psychiatry 2000, 48, 861–873. [CrossRef]

46. Machado-Santos, A.R.; Loureiro-Campos, E.; Patrício, P.; Araújo, B.; Alves, N.D.; Mateus-Pinheiro, A.; Correia, J.S.; Morais, M.;
Bessa, J.M.; Sousa, N.; et al. Beyond New Neurons in the Adult Hippocampus: Imipramine Acts as a Pro-Astrogliogenic Factor
and Rescues Cognitive Impairments Induced by Stress Exposure. Cells 2022, 11, 390. [CrossRef]

47. Codeluppi, S.A.; Chatterjee, D.; Prevot, T.D.; Bansal, Y.; Misquitta, K.A.; Sibille, E.; Banasr, M. Chronic Stress Alters As-trocyte
Morphology in Mouse Prefrontal Cortex. Int. J. Neuropsychopharmacol. 2021, 24, 842–853. [CrossRef] [PubMed]

48. Endo, F.; Kasai, A.; Soto, J.S.; Yu, X.; Qu, Z.; Hashimoto, H.; Gradinaru, V.; Kawaguchi, R.; Khakh, B.S. Molecular Basis of
Astrocyte Diversity and Morphology across the CNS in Health and Disease. Science 2022, 378, eadc9020. [CrossRef] [PubMed]

49. Lu, Z.; Li, S.; Aa, N.; Zhang, Y.; Zhang, R.; Xu, C.; Zhang, S.; Kong, X.; Wang, G.; Aa, J.; et al. Quantitative Analysis of 20 Purine
and Pyrimidine Metabolites by HILIC-MS/MS in the Serum and Hippocampus of Depressed Mice. J. Pharm. Biomed. Anal. 2022,
219, 114886. [CrossRef] [PubMed]

50. Liu, M.; Fu, Y.; Gao, W.; Xian, M.; Zhao, G. Highly Efficient Biosynthesis of Hypoxanthine in Escherichia Coli and Tran-scriptome-
Based Analysis of the Purine Metabolism. ACS Synth. Biol. 2020, 9, 525–535. [CrossRef] [PubMed]

51. Sachs-Ericsson, N.J.; Hajcak, G.; Sheffler, J.L.; Stanley, I.H.; Selby, E.A.; Potter, G.G.; Steffens, D.C. Putamen Volume Dif-ferences
Among Older Adults: Depression Status, Melancholia, and Age. J. Geriatr. Psychiatry Neurol. 2018, 31, 39–49. [CrossRef]

52. Norenberg, M.D.; Martinez-Hernandez, A. Fine Structural Localization of Glutamine Synthetase in Astrocytes of Rat Brain. Brain
Res. 1979, 161, 303–310. [CrossRef]

53. Cooper, A.J.; Plum, F. Biochemistry and Physiology of Brain Ammonia. Physiol. Rev. 1987, 67, 440–519. [CrossRef] [PubMed]
54. Albrecht, J.; Sonnewald, U.; Waagepetersen, H.S.; Schousboe, A. Glutamine in the Central Nervous System: Function and

Dysfunction. Front. Biosci. J. Virtual Libr. 2007, 12, 332–343. [CrossRef] [PubMed]
55. Chance, B.; Leigh, J.S.; Kent, J.; McCully, K.; Nioka, S.; Clark, B.J.; Maris, J.M.; Graham, T. Multiple Controls of Oxidative

Metabolism in Living Tissues as Studied by Phosphorus Magnetic Resonance. Proc. Natl. Acad. Sci. USA 1986, 83, 9458–9462.
[CrossRef] [PubMed]

56. Bose, S.; French, S.; Evans, F.J.; Joubert, F.; Balaban, R.S. Metabolic Network Control of Oxidative Phosphorylation: Multiple Roles
of Inorganic Phosphate. J. Biol. Chem. 2003, 278, 39155–39165. [CrossRef] [PubMed]

57. Cao, X.; Li, L.-P.; Wang, Q.; Wu, Q.; Hu, H.-H.; Zhang, M.; Fang, Y.-Y.; Zhang, J.; Li, S.-J.; Xiong, W.-C.; et al. Astro-cyte-Derived
ATP Modulates Depressive-like Behaviors. Nat. Med. 2013, 19, 773–777. [CrossRef] [PubMed]

58. Deng, D.; Cui, Y.; Gan, S.; Xie, Z.; Cui, S.; Cao, K.; Wang, S.; Shi, G.; Yang, L.; Bai, S.; et al. Sinisan Alleviates Depression-like
Behaviors by Regulating Mitochondrial Function and Synaptic Plasticity in Maternal Separation Rats. Phytomedicine Int. J.
Phytother. Phytopharm. 2022, 106, 154395. [CrossRef] [PubMed]

59. Chen, H.; Durand, S.; Bawa, O.; Bourgin, M.; Montégut, L.; Lambertucci, F.; Motiño, O.; Li, S.; Nogueira-Recalde, U.; Anag-
nostopoulos, G.; et al. Biomarker Identification in Liver Cancers Using Desorption Electrospray Ionization Mass Spectrometry
(DESI-MS) Imaging: An Approach for Spatially Resolved Metabolomics. Methods Mol. Biol. 2024, 2769, 199–209. [CrossRef]

60. Olkowicz, M.; Ramadan, K.; Rosales-Solano, H.; Yu, M.; Wang, A.; Cypel, M.; Pawliszyn, J. Mapping the Metabolic Responses to
Oxaliplatin-Based Chemotherapy with in Vivo Spatiotemporal Metabolomics. J. Pharm. Anal. 2024, 14, 196–210. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.31083/j.jin2204098
https://www.ncbi.nlm.nih.gov/pubmed/37519180
https://doi.org/10.1016/j.cmet.2011.08.016
https://doi.org/10.1176/appi.ajp.158.6.899
https://doi.org/10.1523/JNEUROSCI.2040-10.2010
https://www.ncbi.nlm.nih.gov/pubmed/20962220
https://doi.org/10.1016/j.tem.2022.03.001
https://www.ncbi.nlm.nih.gov/pubmed/35396164
https://doi.org/10.1016/s0006-3223(00)00999-9
https://doi.org/10.3390/cells11030390
https://doi.org/10.1093/ijnp/pyab052
https://www.ncbi.nlm.nih.gov/pubmed/34346493
https://doi.org/10.1126/science.adc9020
https://www.ncbi.nlm.nih.gov/pubmed/36378959
https://doi.org/10.1016/j.jpba.2022.114886
https://www.ncbi.nlm.nih.gov/pubmed/35715372
https://doi.org/10.1021/acssynbio.9b00396
https://www.ncbi.nlm.nih.gov/pubmed/32049513
https://doi.org/10.1177/0891988717747049
https://doi.org/10.1016/0006-8993(79)90071-4
https://doi.org/10.1152/physrev.1987.67.2.440
https://www.ncbi.nlm.nih.gov/pubmed/2882529
https://doi.org/10.2741/2067
https://www.ncbi.nlm.nih.gov/pubmed/17127302
https://doi.org/10.1073/pnas.83.24.9458
https://www.ncbi.nlm.nih.gov/pubmed/3467315
https://doi.org/10.1074/jbc.M306409200
https://www.ncbi.nlm.nih.gov/pubmed/12871940
https://doi.org/10.1038/nm.3162
https://www.ncbi.nlm.nih.gov/pubmed/23644515
https://doi.org/10.1016/j.phymed.2022.154395
https://www.ncbi.nlm.nih.gov/pubmed/36103769
https://doi.org/10.1007/978-1-0716-3694-7_15
https://doi.org/10.1016/j.jpha.2023.08.001

	Introduction 
	Materials and Methods 
	Chemicals and Reagents 
	Animal Models of Depression 
	Tissue Preparation 
	DESI-MSI Data Acquisition 
	DESI-MSI Data Analysis 

	Results 
	Experimental Procedures and Lipid Partitioning of DESI-MSI 
	Significant Changes in 13 Metabolites Induced by the CSDS Model 
	Areas of Significant Metabolic Change 
	Common Features and Differences between SMCAs 

	Discussion 
	Conclusions 
	References

