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Abstract: Rice (Oryza sativa L.), a crucial food crop that sustains over half the world’s population, is
often hindered by salt stress during various growth stages, ultimately causing a decrease in yield.
However, the specific mechanism of rice roots’ response to salt stress remains largely unknown. In
this study, transcriptomics and lipidomics were used to analyze the changes in the lipid metabolism
and gene expression profiles of rice roots in response to salt stress. The results showed that salt
stress significantly inhibited rice roots’ growth and increased the roots’ MDA content. Furthermore,
1286 differentially expressed genes including 526 upregulated and 760 downregulated, were identi-
fied as responding to salt stress in rice roots. The lipidomic analysis revealed that the composition
and unsaturation of membrane lipids were significantly altered. In total, 249 lipid molecules were
differentially accumulated in rice roots as a response to salt stress. And most of the major phospho-
lipids, such as phosphatidic acid (PA), phosphatidylcholine (PC), and phosphatidylserine (PS), as
well as major sphingolipids including ceramide (Cer), phytoceramide (CerP), monohexose ceramide
(Hex1Cer), and sphingosine (SPH), were significantly increased, while the triglyceride (TG) molecules
decreased. These results suggested that rice roots mitigate salt stress by altering the fluidity and
integrity of cell membranes. This study enhances our comprehension of salt stress, offering valuable
insights into changes in the lipids and adaptive lipid remodeling in rice’s response to salt stress.

Keywords: transcriptome; lipidomics; rice; salt stress

1. Introduction

Rice (Oryza sativa L.) is one of the most important crops on earth and is the main diet
of 50% of the world’s population [1]. The area of rice is more than 150 million hectares;
however, most agricultural areas are partly salinized or at risk of salinization [2]. Rice is a
salt-sensitive crop, as salt stress reduces the grain yield of rice by more than 50% [3,4]. At the
seedling stage, rice is vulnerable to salt stress [5] and it becomes highly susceptible during
the reproductive stage [6]. However, rice demonstrates relative tolerance during seed
germination [7] and the early vegetative stage, which includes shoot and root development
until the emergence of the first tiller [8]. Breeding salt-tolerant rice is crucial for food
security, as it can help us cope with current and potential food crises. To achieve this, it is
essential to explore the mechanism of salt stress in rice to develop salt-tolerant genotypes.
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The response mechanisms of salt tolerance in plants involve osmotic adjustment, reac-
tive oxygen species (ROS) scavenging, maintenance of ionic homeostasis, and nutritional
balance [9]. While ROS serves as a signal in response to salt stress, excess ROS, such as the
superoxide anion (O2

•−), singlet oxygen (1O2), the hydroxyl radical (·OH), and hydrogen
peroxide (H2O2), can induce oxidative stress [10]. This oxidative stress can react with vital
biomolecules, causing a range of damage, such as lipid peroxidation, protein denatura-
tion, and DNA mutation. To prevent the buildup of ROS, plants have evolved defense
mechanisms. These include promoting the biosynthesis and accumulation of compatible
osmolytes, increasing the activity of antioxidant enzymes such as catalase (CAT), peroxi-
dase (POD), and superoxide dismutase (SOD), as well as non-enzymatic antioxidants such
as ascorbic acid (ASA), alkaloids, carotenoids, flavonoids [11], and glutathione (GSH) [9].
Many antioxidant enzyme genes regulate salt tolerance in plants. Accumulation of ROS
stimulates a mitogen-activated protein kinase (MAPK) cascade, which activates enzymatic
antioxidants [12,13]. MAPK regulates specific cellular responses by modifying the expres-
sion of the target proteins or transcription factors. However, as the salt concentration
increases, the antioxidant system can become overwhelmed, unable to remove excess ROS
on its own, resulting in the rapid accumulation of O2

•− and H2O2. The increases in the
malondialdehyde (MDA) content and membrane lipid peroxidation cause rice cells to
suffer membrane damage, ultimately affecting normal growth and development [14].

Maintenance of ionic homeostasis is another strategy for salt tolerance. Salt stress
impacts numerous genes. The SOS pathway, which is a fundamental and evolutionarily
conserved signal transduction route, plays a pivotal role in removing excessive Na+ out of
the cells. SOS1 is a plasma membrane-localized Na+/H+ antiporter, which is regulated by
the SOS2–SOS3 complex (SOS2, a serine/threonine protein kinase; SOS3, a calcium-binding
protein) to expel Na+ out of the cell. HIS1-3, a histone linker protein, negatively regulates
the SOS pathway through the transcriptional regulation of the SOS genes, while the TF
WRKY1 oppositely regulates them [15]. PLATZ2 inhibits the transcription of SOS3 and
SCaBP8, both of which are crucial for SOS2’s kinase activity [16]. Using transcriptome
high-throughput sequencing technology, it has been found that the HKT and NHX family
genes differ in salt tolerance when comparing barley and rice transcriptomes [17]. The
vacuolar Na+/H+ antiporters OsNHX1, OsNHX2, OsNHX3, OsNHX4, and OsNHX5 were
reported to maintain the compartmentalization of Na+ and K+ [18,19]. The high-affinity
K+ transporter (HKT) family mainly functions to maintain Na+/K+ homeostasis in the
cytoplasm. In addition to the HKT and NHX family genes, the genes regulating HKT,
NHX, and CLC also play important roles in salt tolerance, such as OsMYBc, OsbZIP71, and
OsNF-YC13 [9].

Maintaining the membrane’s stability and integrity under salt conditions is a crucial
adaptation to salt stress, as it safeguards the cell’s homeostatic balance [20,21]. The plant
cell membrane, serving as the primary semi-permeable barrier, plays a pivotal role in
protecting the cell from the disruptive effects of salt stress [22,23]. The main structural
components of the plasma and endomembrane are lipids, including phospholipids, glycol-
ipids, glycerides, fatty acids, and sphingolipids [24]. Under salt stress, plants demonstrate
adaptations in the accumulation, composition, and saturation of lipids to cope with the
stressful environment [25]. The accumulation of phospholipids in response to salt stress
has been well documented through numerous studies. PAleon, a recently developed PA-
specific biosensor, has been used to observe the accumulation of PA during salt stress. It
was observed that PA accumulates rapidly within 10 min of salt treatment, primarily in the
roots [26]. PA activates the Na+/H+ antiporter SOS1, promoting Na+ efflux by binding to
MPK6 and stimulating its kinase activity, which phosphorylates SOS1 [27], or binding to the
residue Lys57 in SOS2, enhancing the activity and plasma membrane localization of SOS2,
leading to the activation of SOS1 [28]. Additionally, PA promotes the phosphorylation of
the SOS3-like calcium-binding protein 8 (SCaBP8) by SOS2 under salt stress, diminishing
SCaBP8-mediated inhibition of Arabidopsis K+ transporter 1 (AKT1) [28].
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The addition of exogenous PC significantly improves the tolerance of annual peach tree
(Prunus persica (L.) Batsch.) to salt stress and mitigates its damage [29]. PC can interact with
ACBP, enhancing plants’ salt tolerance by increasing PLDδ’s activity and further converting
PC to PE, PS, and PG to stabilize the cell membrane [30]. Furthermore, salinity induces the
accumulation of PS [20,31]. PS regulates salt stress tolerance by regulating the activity of
PM H+-ATPas, the PM Na+/H+ antiporter, and maintaining ion homeostasis. Additionally,
it may even regulate the electrostatic field of the plasma membrane [32]. Overexpression of
the sphingosine-1-phosphate (S1P) lyase gene has been shown to decrease salt tolerance in
tobacco [33]. Conversely, the overexpression of the ceramide (Cer) catalase gene increases
the salt tolerance of Arabidopsis thaliana [34]. Interestingly, the ectopic expression of GhIPCS1
(inositol phosphatidyl ceramide (IPC) synthase) in cotton leads to increased IPC content
and heightened sensitivity to salt stress [35]. These lipid-mediated adaptations allow plants
to maintain membrane stability and integrity under salt conditions, thus enhancing their
tolerance to environmental stress.

The salt tolerance mechanism of rice has been extensively examined, yet the impact of
lipids on this mechanism remains under-explored. For this study, a conventional rice variety,
Huanghuazhan, was selected. The primary aim of this investigation was to conduct a
combined lipidomic and transcriptomic analysis to pinpoint the changes in the membrane’s
lipid metabolism and delve into the regulation of lipid remodeling in rice roots under salt
stress. Unraveling the regulatory patterns of lipid metabolism in rice during salt stress sets
the stage for a deeper understanding of the regulation mechanism of lipid metabolism,
ultimately aiding in safeguarding crop productivity and optimizing the efficient utilization
of saline land.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

The rice cultivar, Huanghuazhan, was used in this study. Seeds were surface-sterilized
with a 5% sodium hypochlorite solution for 15 min and rinsed several times with distilled
water. Then the rice seeds were germinated in a dish covered with filter paper for 4 days.
Seedlings with consistent growth were moved to a 96-well hydroponic box filled with
Yoshida hydroponic nutrient solution with (salt treatment) or without (CK) 50 mM NaCl
for 14 days. Three groups of replicates were set up. The nutrient solution was refreshed
every 3 days. At 14 days, the shoots and roots were harvested for measurement.

2.2. Phenotypic Measurement

For the measurement of plant height, root length, and dry weight, CK and NaCl
treatment samples were obtained from three biological replicates, and each biological
replicate contained 20 plants. Root length was scanned with a WinRHIZO LA6400XL
root scanner and the data were analyzed with WinRHIZO Pro 2005b software (Régent
Instruments Inc., Quebec, QC, Canada).

2.3. Analysis of Physiological and Biochemical Indices

Measurement of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)
activity and proline (Pro) content was made, following the methods of Gu et al. [36].
The malondialdehyde (MDA) content was determined by the thiobarbituric acid method
according to Yan et al. [37]. For leaf chlorophyll (Chl) content, the relative values of the
third leaves were measured using a chlorophyll meter (SPAD-502Plus, Konica-Minolta
Company, Osaka, Japan).
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2.4. RNA Sequencing and Analysis

To study the changes in whole transcripts of rice roots in response to salt stress, RNA-
Seq analysis was conducted as described previously [38]. The total RNA of roots from the
control and NaCl treatments was extracted. Each treatment had three biological replicates.
After treatment with DNase I, the complementary DNA was synthesized to construct the
cDNA library using the AMPure XP system. Sequencing was performed on an MGISEQ-T7
platform. After rigorous filtering to eliminate low-quality sequences, the clean reads were
then mapped to the reference genome. The gene expression levels were estimated as the
fragments per kilobase per million (FPKM) mapped. The gene expression levels with
|log2foldchange| > 1 and p < 0.05 were identified as the differentially expressed genes
(DEGs) between the CK and NaCl treatments. Functional enrichment was comprehensively
evaluated utilizing both the Gene Ontology (GO) framework and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database.

2.5. RNA Extraction, Reverse Transcription, and Real-Time Quantitative PCR

Total RNA extraction was performed using the TaKaRa MiniBEST Plant RNA Extrac-
tion Kit (Takara, Bio, Tokyo, Japan). The total RNA was stored at −80 ◦C. About 1 µg of
RNA was treated with DNase I, then the reverse transcription kit was used to synthesize
the first-strand complementary DNA. The primers used for qPCR are listed in Table S1.
The OsActin gene was used as a reference. The real-time quantitative polymerase chain
reaction (RT-qPCR) was conducted using a CFX Connect™ Real-Time PCR System (Bio-Rad,
Hercules, CA, USA), and the relative expression levels were calculated using the 2−∆∆CT

method [39]. Each gene had three biological replicates.

2.6. Lipid Extraction and UHPLC-MS/MS Analysis

The same materials were used for both the lipidomic and the transcriptomic analysis.
For the lipidomic analysis, six replicates were processed. Lipid extraction and mass spec-
trometry analysis were performed by Shanghai Applied Protein Technology. The specific
methods were described in detail by Zhu et al. [38]. Quantitative results were based on the
ion signal’s intensity. LipidSearch v4.0 software (Thermo Scientific, San Jose, CA, USA) was
used for lipid analysis, in which lipids with VIP > 1 and p-value < 0.05 were considered to
be differentially accumulated metabolites.

2.7. Data Analysis

The data were expressed as mean ± standard error (SEM). All data were processed and
underwent statistical analysis using Excel 2019 and IBM SPSS Statistics V25.0 for one-way
analysis of variance (ANOVA), followed by Duncan’s multiple range tests; p < 0.05 was
considered significant. The histograms were generated with Origin 2022.

3. Results
3.1. Response of Growth and Photosynthetic Properties of Rice under Salt Stress

After 14 days of NaCl treatment, the effect of salt stress on the growth of rice was
explored (Figure 1). The salt-treated rice showed significant yellowing and wilting of the
leaves, and shortened roots (Figure 1A). Rice under salt stress had a significant decrease
in plant height (Figure 1B) and total root length (Figure 1C), which decreased by 30.13%
and 81.1%, respectively, compared with rice cultured under normal conditions. Under
salt stress, the biomass of the shoot (Figure 1D) and the root (Figure 1E) was significantly
lower than that of rice under normal conditions. Accordingly, the chlorophyll content
(Figure 1F) of rice under salt stress significantly decreased compared with CK. As the
main organ of plants that absorbs nutrients from the outside, the root system plays a
key role in plants’ growth and development. Roots are the first organs to be exposed to
the soil, so they are also the first ones to perceive salt stress and are the most vulnerable
to salt stress. In the morphology of the root system, the overall length of the roots was
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significantly reduced, and the number of lateral roots and the root absorption area were
significantly reduced (Figure 1A,C).
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Figure 1. Effect of salt stress on the phenotype and photosynthetic properties of rice. (A) Phenotype
of rice, bar = 5 cm. (B) Plant height. (C) Total root length. (D) Shoot dry mass. (E) Root dry
mass. (F) SPAD value. Experimental data are expressed as the mean and standard deviation (SD)
of three biological replicates. Significance analysis was performed using the Waller–Duncan model.
“**” indicates a highly significant difference at the p < 0.01 level.

3.2. Response of the Physiological Properties of Rice under Salt Stress

Rice suffers osmotic stress caused by salt stress. In order to reduce this damage, plants
accumulate organic solutes and inorganic solutes to protect against osmotic damage, among
which, the most sensitive osmotic regulatory material is proline. In this study, the proline
content was significantly affected in different parts of rice seedlings under salt stress. In the
shoots, the proline content exhibited a significant increase of 218.51% compared with the
control group (CK), as depicted in Figure 2A. Similarly, the proline levels in the roots were
notably distinct from the control, with an increase of 23.91% (Figure 2A).

Rice produces excessive ROS under salt stress and causes membrane oxidative damage.
The antioxidant enzymes, such as catalase (CAT), peroxidase (POD), and superoxide
dismutase (SOD), reduce the content of reactive oxygen species in plants. The activities of
SOD, POD, and CAT in the roots were detected. The results revealed that the activities of
SOD decreased by 39.71% in salt-treated seedlings in contrast to the control (Figure 2B).
The activity of POD increased by 84.44% (Figure 2C) and activity of the CAT increased by
61.29% (Figure 2D).

3.3. Changes in the Transcriptomes in Rice Roots Resulting from NaCl Stress

To analyze the responsive genes in rice roots when subjected to salt stress, RNA-seq
transcriptome analysis was conducted on rice roots grown under the CK and NaCl treat-
ments. The results showed that about 57,512,451 and 54,030,857 raw reads were obtained
in CK and NaCl roots, respectively (Table S2). Among the raw reads, about 57,501,566
and 54,017,240 were clean reads from the CK and NaCl treatments, respectively (Table S2).
More than 70% of the clean reads were mapped to the rice reference genome (Table S2). Fur-
thermore, 29,127 genes were identified expressed in roots under the CK or NaCl treatment
(Table S3). Compared with the CK, 1286 differentially expressed genes (DEGs), including
526 upregulated genes (log2foldchange > 1 and Padj < 0.05) and 760 downregulated genes
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(log2foldchange < −1 and Padj < 0.05), were found in roots from the NaCl treatment
(Figure 3A,B and Table S4).
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a highly significant difference at the p < 0.01 level.

RT-qPCR was used to detect the expression levels of 12 identified transcriptome (RNA-
seq) DEGs to validate the RNA-seq data (Figure 3C,D). Twelve DEGs were selected from the
previous results, which were associated with response of rice to salt stress. The results of
RT-qPCR were positively correlated with those of RNA-seq. Six of the twelve genes selected
after salt stress were significantly higher than those of the control treatment (Figure 3C), and
the other six genes were significantly lower than those from the transcriptome sequencing
analysis (Figure 3D).

Gene Ontology (GO) enrichment analysis of these DEGs was also conducted, and
the top 30 enriched terms were divided into three parts, including biological processes
(BP), molecular functions (MF), and cellular components (CC), as shown in Figure 4A.
For the biological processes, there were 21 DEGs involved in small-molecule metabolic
processes, 18 DEGs involved in oxoacid metabolic processes, 18 DEGs involved in organic
acid metabolic processes, 17 DEGs involved in carboxylic acid metabolic processes, 7 DEGs
involved in cellular carbohydrate metabolic processes, and 6 DEGs involved in cellular
amino acid metabolic processes (Figure 4A). For the molecular functions, there were
39 DEGs involved in cation binding; 7 DEGs involved in transferase activity, transferring
acyl groups; 3 DEGs involved in sulfur compound binding; 2 DEGs involved in amylase
activity; and 2 DEGs involved in acetolactate synthase activity (Figure 4A). For the cellular
components, there were 19 DEGs involved in the cell periphery and 11 DEGs involved in
the extracellular region (Figure 4A).
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Figure 3. Transcriptomic analysis of NaCl and CK samples based on RNA-seq data. (A) Volcano plot
of the differential expression analysis. (B) DEGs of all samples obtained by applying k–means cluster-
ing. (C,D) Expression levels of target gene obtained by RT-qPCR: bZIP9 (LOC_Os05g39540), SCP40
(LOC_Os07g46350), bZIP14 (LOC_Os02g03960), TIFY10c (LOC_Os09g26780), MYB30 (LOC_Os02g41510),
LAC13 (LOC_Os05g38390), Fbox203 (LOC_Os04g31120), NAC032 (LOC_Os02g56600), HMG-CoA
(LOC_Os01g16350), PSK2 (LOC_Os11g05190), VPS28 (LOC_Os01g57260), and PR2 (LOC_Os05g31140).
Significance analysis was performed using the Waller–Duncan model. “**” indicates a highly significant
difference at the p < 0.01 level.

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these DEGs was
further conducted, and the top 20 enriched pathways are shown in Figure 4B. The re-
sults showed that the most enriched pathway was the metabolic pathway, including
162 DEGs, followed by the biosynthesis of secondary metabolites, including 104 DEGs
(Figure 4B). There were 32 DEGs enriched for phenylpropanoid biosynthesis (Figure 4B).
The number of DEGs that were enriched for glutathione metabolism, and starch and sucrose
metabolism were the same, which was 16 (Figure 4B). There were nine DEGs enriched
for the metabolism of xenobiotics by cytochrome P450; eight DEGs enriched for nitrogen
metabolism, seven for phenylalanine metabolism; six for valine, leucine, and isoleucine
degradation; six for flavonoid biosynthesis; five for carotenoid biosynthesis; and four for
carbohydrate digestion and absorption (Figure 4B).
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3.4. Expression of Key Genes Associated with Lipids under Salt Stress

The membrane is a lipid bilayer structure and is the primary target for the damage
induced by salt stress [32]. To resist salt stress, several alterations in the structure and
functionality of the cell membrane occurred. The MDA content was detected. The results
showed that the MDA content of rice roots treated with 50 mM NaCl was significantly
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higher than that in the control plants (Figure 5A). As the main structural components
of the plasma and endomembrane are lipids, to gain an insight into the gene expression
levels of lipid metabolism genes and decode the transcriptional regulatory network under
salt stress, a KEGG analysis of DEGs related to lipids was performed (Figure 5B). The
results indicated that the transcriptome levels of glycerophospholipid metabolism, the
phosphatidylinositol signaling system, and sphingolipid metabolism were involved in salt
stress (Figure 5B). Among them, there were four DEGs enriched in glycerophospholipid
metabolism including a phospholipase D (encoding EC3.1.4.4), a non-specific phospholipase
C (encoding EC3.1.4.3), a lysophospholipase (encoding 3.1.1.5), and a glycerophospho-
diester phosphodiesterase (encoding EC3.1.4.46), and all of them were upregulated by
the NaCl treatment (Figure 5C). The phospholipase D participated in the hydrolyzation
of phosphatidylcholine and phosphatidylethanolamine to generate 1,2-diacyl-sn-glycerol-
3P (Figure 5C). The non-specific phospholipase C participated in the hydrolyzation of
phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol to generate 1,2-
diacyl-sn-glycerol (Figure 5C). The lysophospholipase participated in the hydrolyzation of
2-acyl-sn-glycero-3-phosphocholine and 2-acyl-sn-glycero-3-phosphoethanolamine to gen-
erate sn-glycero-3-phosphocholine and sn-glycero-3-phosphoethanolamine, respectively
(Figure 5C). The glycerophosphodiester phosphodiesterase participated in the hydrolyza-
tion of sn-glycero-3-phosphocholine and sn-glycero-3-phosphoethanolamine to generate
sn-glycero-3P (Figure 5C).

3.5. Response of the Lipid Composition of Rice under Salt Stress

To study the effects of salinity on the changes in the intracellular lipid content, a
lipidomic analysis of rice roots was performed. In total, 3542 identified lipid molecules were
detected in rice roots with or without salt stress, including 48 lipid subclasses (Figure 6A,B
and Table S5). The lipid subclass composition of the samples from each group is presented
in ring plots, as shown in Figure S1. The top lipid subclasses in CK were PG, Cer, PA,
Hex1Cer, and ChE (Figure S1A), while PG, PA, Hex1Cer, SPH, and Cer were the main
lipid components of the samples under the NaCl treatment (Figure S1B). Among them,
the most significant changes in the lipid profile in response to salt stress were observed in
phospholipids, as illustrated in Figure 6A. The total lipid content of PA, PC, PS, Cer, CerP,
Hex1Cer, and SPH showed a significant increase under salt stress, while the triglyceride
(TG) content showed significant decreases following salt treatment (Figure 6A). In total,
249 lipid molecules with VIP > 1 and p-value < 0.05 were identified as differentially
accumulated lipid metabolites (DAMs) (Table S6). Heat maps were constructed, and
hierarchical clustering analysis of the DAMs was conducted, and most of the differentially
expressed lipid metabolites were found to increase in response to salt stress. DAMs
clustered in the same cluster had similar expression patterns (Figure S2).

3.6. Response of the Lipid Chain Length and Chain Saturation under Salt Stress

The chain length and saturation of lipids are also important factors affecting lipids’
functions. In addition to the content of lipids and the function of lipids, chain length affects
the thickness of the cell membrane, the membrane’s mobility, and the activity and function
of target proteins. The double bonds introduce kinks, reduce the packing density of acyl
chains, and inhibit the change in the cell membrane from a fluid to a solid phase gel state.
To further analyze the effects of lipid chains’ length and the degree of unsaturation on salt
stress, we analyzed the differences in eight subclasses. This showed that salt stress led to
the elongation of chain length in the roots and an increase in the chains’ saturation in rice
(Figures 7 and 8).
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Figure 5. Effects of lipid peroxidation in rice without or with 50 mM NaCl. (A) The content of
MDA in rice roots and leaves. Significance analysis was performed using the Waller–Duncan model.
“**” indicates a significant difference at the p < 0.01 level. (B) KEGG enrichment analysis of the
DEGs related to lipids. (C) DEGs involved in glycerophospholipid metabolism. Circles represent
metabolites. The boxes between metabolites indicate the enzymes that catalyze the reaction between
the two metabolites. Red indicates that the DEGs encoding the enzyme were upregulated, and
green indicates that the DEGs encoding the enzyme were downregulated. 3.1.4.4, phospholipase D
(LOC_Os01g07760); 3.1.4.3, non-specific phospholipase C (LOC_Os03g63580); 3.1.1.5, lysophospholi-
pase (LOC_Os04g57380); 3.1.4.46, glycerophosphodiester phosphodiesterase (LOC_Os07g41150).

3.7. Multi-Omics Combined Analysis of Rice Seedlings’ Roots in Response to Salt Stress

Correlation network analysis refers to the use of the correlation coefficient to establish a
network’s interactions, providing a new perspective on the correlation between genes with
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significant differences and lipids with significant differences. The elements of the correlation
need to have a certain connection or relationship before the correlation analysis. According
to the Pearson correlation coefficient, we could measure the degree of association between
the genes and lipids in the sample. To screen for lipids with significant differences at key
nodes in the network and genes with significant differences, Pearson’s correlation network
analysis of the top 50 genes and top 50 lipids with significant differences with a correlation
coefficient value |r| of ≥0.5 and p < 0.01 was performed using Cytoscape (version 3.7.0)
software. In total, 29 significantly correlated differential genes and 12 differential lipids,
including 32 correlated pairs, identified 9 nodes (Figure 9).
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Figure 7. Analysis of lipid chains’ length. Differences in the content of lipid molecules with dif-
ferent carbon chain lengths: (A) PA, (B) PC, (C) PS, (D) SPH, (E) Cer, (F) Cerp, (G) Hex1Cer, and
(H) TG. Experimental data are expressed as the mean and standard deviation (SD) of three biological
replicates. Significance analysis was performed using the Waller–Duncan model. “*” indicates a
significant difference at the p < 0.05 level and “**” indicates a highly significant difference at the
p < 0.01 level.



Metabolites 2024, 14, 244 13 of 19
Metabolites 2024, 14, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 8. Analysis of lipid chains’ saturation. Differences in the content of lipid molecules with dif-
ferent numbers of unsaturated bonds: (A) PA, (B) PC, (C) PS, (D) SPH, (E) Cer, (F) Cerp, (G) 
Hex1Cer, and (H) TG. Experimental data are expressed as the mean and standard deviation (SD) of 
three biological replicates. Significance analysis was performed using the Waller–Duncan model. 

Figure 8. Analysis of lipid chains’ saturation. Differences in the content of lipid molecules with
different numbers of unsaturated bonds: (A) PA, (B) PC, (C) PS, (D) SPH, (E) Cer, (F) Cerp,
(G) Hex1Cer, and (H) TG. Experimental data are expressed as the mean and standard deviation
(SD) of three biological replicates. Significance analysis was performed using the Waller–Duncan
model. “*” indicates a significant difference at the p < 0.05 level and “**” indicates a highly significant
difference at the p < 0.01 level.
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Figure 9. Network plot of the correlation analysis of significant differential genes with significant
differential lipids. In the figure, the green circles represent the lipids with significant differences,
the red circles represent the genes with significant differences, and the thickness of the lines is
proportional to the absolute value of the correlation coefficient. The size of a node is positively
correlated with its degree of connectivity (Degree), that is, the greater the connectivity, the larger the
node’s size.

4. Discussion

It is well known that rice is a salt-sensitive crop. Germination and the early seedling
stages are considered to be sensitive stages in the plant’s life cycle [5,35]. Salt stress se-
riously affects the growth, development, yield, and quality of rice. Salt stress decreases
relative growth by decreasing the efficiency of photosynthesis, reducing rice stands’ density,
limiting seedlings’ production of biomass, and inhibiting the elongation and proliferation
of cells [40]. In addition, we found that the accumulation of biomass decreased significantly
(Figure 1), while the tolerance index decreased relative to the control, which was consistent
with the results of previous relevant studies [41]. This study documented the inverse rela-
tionship between chlorophyll content and salt concentration levels (Figure 1F), indicating
that exposure to salt stress slowed down photosynthesis and chlorophyll synthesis, thus
affecting plants’ growth and performance [42].

Osmotic and ion stress induced by salt stress can damage plants’ cells and metabolic
pathways, thus affecting their growth and development [43]. Various inherent mechanisms
exist in plants to counter the breakdown of major metabolic pathways due to salt stress.
Among these mechanisms, the antioxidant enzyme system plays the most critical role
in clearing overproduced ROS and maintaining plant cells’ homeostasis under stress
conditions [44]. Major players in this antioxidant enzyme system include SOD, POD,
and CAT. In this study, the activities of POD (Figure 2C) and CAT (Figure 2D) in rice
roots increased with the salt stress, showing cellular protection and antioxidant behavior.
When plants are exposed to salt stress, plant cells may lack water due to internal and
external ion imbalance, leading to water shortages, which is known as osmotic stress.
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Under osmotic stress, plant cells regulate osmosis by increasing solutes, which usually
have osmotic activity and can increase the concentration of cells and thus reduce the cells’
osmotic potential. These solutes are called osmoregulators, and their presence ensures
normal water supply to the plant under osmotic stress and maintains normal plant growth
and development [45]. In our experiment, higher proline activity and antioxidant activities
(Figure 2) were indicators of salt stress resistance in rice.

In this study, we analyzed DEGs (Figures 3 and 4) and the differential metabolites of
lipid metabolic pathways (Figure 6) in rice roots under long-term salt stress, indicating that
most of the reactions in the endoplasmic reticulum synthesis pathway and sphingolipid
synthesis pathway were activated, and most of the genes that catalyze these reaction steps
were upregulated under salt stress. A recent report showed that the level of PC in corn
roots decreased under salt stress, which was opposite to the results of this study on the
level of PC in rice roots (Figure 6A), indicating that salt stress activated the renewal of PC
and lipid reprogramming [46]. PA can be produced by the PLD and PLC diacylglycerol
kinase (DGK) pathways [47]. In the PLD pathway, PA can be produced by the hydrolysis
of membrane phospholipids such as PC and PE [47,48]. In the PLC-DGK pathway, the
phospholipid hydrolyzed membrane in PLC produces diacylglycerol (DAG), which is
then converted to PA through a DGK-catalyzed phosphorylation reaction [49]. It can be
seen from the results of this study that PA decreased with the accumulation of salt stress
(Figure 6A and Table S6), indicating that PA played a regulatory role in the related signal
transduction. There are two common methods of PS biosynthesis in plants: one is to use
cytidine diphosphate (CDP-DAG) and serine as substrates to catalyze the synthesis of PS
by CDP-DAG-dependent PS synthase (CD-PSS). Another uses serine and phospholipids
(e.g., PC and PE) through an exchange reaction between the phospholipid’s head and
serine, with Ca2+ being catalytically dependent on the base exchange PSS (BE-PSS) [50].
PS is involved in salt stress tolerance by regulating the activity of PM H+-ATPase, the
activity of the PM-Na+/H+ antiporter, ion homeostasis, and even the electrostatic field of
the plasma membrane. In rice, researchers found that the PS produced by PS synthase
is a lipid molecule necessary for internode cell elongation and the exocytosis pathway
in rice [51]. Therefore, an increase in PS content can effectively promote exocytosis and
plasma membrane repair. In this study, the PS content of the root system of Huanghuazhan
rice was significantly increased (Figure 6A and Table S6). We hypothesized that from the
germination stage to the trifoliate stage, salt stress caused cell damage, and in order to
prevent further damage, the cells began to initiate repair mechanisms.

So far, there have been few reports on the changes in and effects of sphingolipids
under salt stress. Arabidopsis neuraminidase, AtACER, hydrolyzes ceramides to SPH and
FA. At the same time, atacer mutants downregulated the expression of AtACER while
transgenic Arabidopsis thaliana showed increased salt sensitivity during seed germination
and root growth. However, overexpression of the AtACER gene significantly improved
the salt tolerance of transgenic Arabidopsis plants [34]. Therefore, it was speculated that the
increase in the sphingolipid content (Figure 6A) may positively regulate the salt tolerance
of rice. In light of this, it is reasonable to guess that the sphingolipid content will increase
significantly after long-term salt stress, which is consistent with the results obtained in this
study using Huanghuazhan rice.

The main lipids in plants are glycerides, in which the carboxyl group of fatty acids
is linked to the hydroxyl ester of glycerol. Lipid synthesis involves multiple organelles in
the cell. Fatty acids are synthesized by the chloroplasts and combine directly with glycerol
to form galactolipids, which are the main component of the chloroplast membrane. The
fatty acids are transferred to the cytoplasm and bind to the glycerol in the endoplasmic
reticulum (ER) to become the phospholipids of the cell membrane [52]. In the endoplasmic
reticulum of the seed cells, triglycerides (TG) are synthesized and stored in the oil body [53].
Therefore, TG is a storage lipid in plants and plays an important role under various
stress conditions [54,55]. A large amount of TG is also accumulated in aging leaves [56].
In this study, it was found that the root system of Huanghuazhan after long-term salt
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stress contained a small amount of TG compared with the control system (Figure 6A). We
speculate that salt stress can potentially disrupt cellular structures, including organelles
such as the endoplasmic reticulum, which are responsible for lipid synthesis, thereby
affecting the synthesis and storage of triglycerides (TG).

In this study, we found that after Huanghuazhan rice was exposed to salt stress from
germination, signs of aging were observed in the three-leaf monophyllum stage; repair
of the plasma membrane was slow; and PC, PA, PS, Cer, CerP, Hex1Cer, and TG enabled
the membrane to play an important role in maintaining stability and fluidity under salt
treatment conditions. Future studies will further explore the specific roles of individual
lipid species and their interactions with other cellular components in rice’s response to salt
stress. Additionally, it would be interesting to investigate whether genetic engineering or
agronomic practices can be used to enhance rice’s tolerance to salt stress by manipulating
lipid metabolism or other related pathways.

5. Conclusions

In this study, we aimed to investigate the effects of salt stress on the physiological
quality, gene expression, and lipid diversity of rice seedlings. Through a comprehensive
analysis combining transcriptomic and lipidomic approaches, we identified 1286 differen-
tially expressed genes, indicating alterations in the gene expression patterns in response to
salt stress. Moreover, our lipidomic analysis revealed significant changes in the composi-
tion and unsaturation of lipids, with significant increases in the major phospholipids and
sphingolipids, and a sharp decrease in triglyceride levels. Collectively, our results suggest
that rice roots mitigate salt stress by altering the fluidity and integrity of cell membranes,
possibly through changes in the composition and metabolism of lipids. This study enhances
our comprehension of salt stress responses in rice and offers valuable insights into changes
in the lipid and adaptive lipid remodeling.

In conclusion, this study provides new insights into the physiological and molecular
mechanisms underlying rice’s response to salt stress, highlighting the importance of lipid
remodeling in salt tolerance. Our findings have implications for improving rice production
in salt-affected areas and contribute to the ongoing efforts to ensure food security in the
face of environmental challenges.
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