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Abstract: With the advancement of power systems, the integration of a substantial portion of
renewable energy often leads to frequent voltage surges and increased fluctuations in distribution
networks (DNs), significantly affecting the safety of DNs. Active distribution networks (ADNs) can
address voltage issues arising from a high proportion of renewable energy by regulating distributed
controllable resources. However, the conventional mathematical optimization-based approach to
voltage reactive power control has certain limitations. It heavily depends on precise DN parameters,
and its online implementation requires iterative solutions, resulting in prolonged computation
time. In this study, we propose a Volt-VAR control (VVC) framework in ADNs based on multi-
agent reinforcement learning (MARL). To simplify the control of photovoltaic (PV) inverters, the
ADNs are initially divided into several distributed autonomous sub-networks based on the electrical
distance of reactive voltage sensitivity. Subsequently, the Multi-Agent Soft Actor-Critic (MASAC)
algorithm is employed to address the partitioned cooperative voltage control problem. During
online deployment, the agents execute distributed cooperative control based on local observations.
Comparative tests involving various methods are conducted on IEEE 33-bus and IEEE 141-bus
medium-voltage DNs. The results demonstrate the effectiveness and versatility of this method in
managing voltage fluctuations and mitigating reactive power loss.

Keywords: active distribution network; Volt-VAR control; network partitioning; soft actor-critic;
multi-agent reinforcement learning

1. Introduction

With the widespread integration of a high proportion of new energy sources into
active distribution networks (ADNs), issues such as voltage violation, voltage fluctuation,
and power loss caused by distributed new energy sources such, as photovoltaic (PV),
are becoming increasingly prominent [1]. In order to alleviate these problems, Volt-VAR
Control (VVC) is widely applied to improve the voltage quality of distribution networks
(DNs) and reduce network losses [2].

The objective of VVC is to ensure the robust operation of DNs through the control of
voltage and reactive power [3]. In conventional DNs, methods such as distribution network
reconfiguration [4], shunt capacitor banks (SCBs) [5], and on-load tap changers (OLTCs) [6]
are commonly employed for voltage regulation. However, these methods, which rely
on mechanical devices, encounter challenges such as slow response speeds and limited
accuracy. These limitations hinder the execution of rapid and flexible control strategies,
falling short of the requirements for quick and precise regulation in ADNs. An emerging
trend involves the gradual integration of PV inverters into the voltage regulation of DNs.
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This approach achieves voltage regulation by adjusting the reactive power injection of the
inverter and is progressively gaining traction and widespread application.

Based on the limitations posed by DNs in terms of computing and communication
capabilities, the control of ADNs can be categorized into the following three types: local
control, centralized control, and distributed control. The local control method operates
relatively independently and does not rely on complex communication equipment. Each
distributed generation device can make decisions based on local information, ensuring a
fast response and autonomy [7]. Centralized control methods consolidate control functions
within a central controller, enabling unified management and regulation of grid voltage [8].
Consequently, centralized control strategies require dependable and rapid communication
devices as a fundamental prerequisite to fulfill real-time data acquisition and transmission
necessities. The distributed control approach is specifically designed for regions character-
ized by unreliable communication links and limited computational resources at the central
station. It accomplishes distributed management and regulation of voltage by exchanging
boundary information between autonomous units. The alternating direction method of
multipliers (ADMM) is the most widely used distributed algorithm in distribution net-
works. ADMM is used to solve the stochastic and distributed optimal energy management
problem for ADNs within office buildings [9]. This is achieved through coordination and
optimization in a hierarchical and zoned manner, accounting for control speed and global
coordination capability [10,11]. This method only requires a limited number of commu-
nication links to obtain local observation information for problem-solving, allowing it to
adapt to the complexity and dynamics of large-scale DNs.

The VVC problem within DNs can be formulated as a mixed-integer nonlinear pro-
gramming problem. Heuristic algorithms, valued for their ease of programming imple-
mentation, find widespread use in solving optimization problems in DNs. In the VVC
problem of DNs, commonly used intelligent optimization algorithms include Genetic Al-
gorithm [12], Particle Swarm Optimization [13], etc. However, heuristic algorithms are
prone to converging towards local optima and have exponential time complexity in solving
problems, making them inadequate for handling large-scale VVC problems. Consequently,
there are practical limitations associated with their widespread application.

Transforming the non-convex problem into a convex one allows for the utilization of
convex optimization techniques, thereby achieving a globally optimal solution efficiently.
In [14], a method based on mixed-integer quadratic programming is proposed for VVC
in DNs. This innovative approach transforms the initially non-convex problem into a
convex optimization problem by exact relaxation of the non-convex constraints. While
traditional mathematical methods offer high solution accuracy, they struggle to adapt to
VVC scenarios with stringent real-time control requirements. Hence, there is a need to
investigate methods for developing millisecond-level control strategies.

With the advancement of Artificial Intelligence (AI), AI algorithms play a pivotal role
in optimization strategies for DN control. AI algorithms facilitate real-time online opti-
mization by transferring computational load from online to offline processes. Leveraging
the reinforcement learning (RL) approach, real-time responsiveness and adaptability to
the system are facilitated through the interactive learning process between the agent and
the environment. For instance, the Deep Deterministic Policy Gradient (DDPG) algorithm,
introduced in [15], was devised to mitigate voltage violations arising from uncertainty
in power systems. However, most RL methods typically employ a single agent within
a virtual environment, rendering them unsuitable for direct application to larger-scale
systems. Consequently, RL methods based on multi-agent systems have been proposed.
In [16], a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm was
introduced for two-stage VVC of ADNs. Nonetheless, its evaluation was confined to an
IEEE 33-bus DN, limiting the demonstration of its scalability.

Based on the above analysis, this paper proposes a Volt-VAR control strategy based on
MARL in ADNs. The contributions of this paper are outlined as follows:
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1. A method based on electrical distance is proposed for partitioning DNs. The parti-
tioned DN exhibits highly aggregated characteristics within regions and low coupling
between regions, laying the foundation for achieving distributed VVC of PV inverters.

2. This paper proposes a framework for VVC in DNs based on the Multi-Agent Soft
Actor-Critic (MASAC) algorithm. The framework employs a strategy of centralized
training followed by distributed execution, aiming to reduce communication and
computation demands on the DNs during execution. This approach alleviates the
resource-intensive nature of centralized control strategies in terms of real-time compu-
tation and storage requirements. The established framework enables the coordinated
control of PV systems to minimize voltage deviations while simultaneously minimiz-
ing reactive power losses in the DN. Importantly, this coordination occurs with agents
interacting only with local information from sub-regions of the DN.

3. In order to validate the effectiveness and versatility of the proposed framework,
experiments were conducted using five MARL algorithms, including MASAC, on
IEEE 33-bus and IEEE 141-bus network. The results demonstrate that the proposed
method can effectively achieve VVC in DNs, relying solely on local observation
information after training.

2. Proposed VVC Strategy
2.1. The Model of Volt-VAR Control

Consider an ADN consisting of N + 1 individual nodes with a high penetration of
PV integration. The DN is modeled as graph ς = (V, E), where V = {V0, V1, . . . , VN} and
E = {E1, E2, . . . , EN} is the set of nodes and edges. For each bus i ∈ V in the network, let
si = pi + jqi be the complex power injection and ṽi = vi∠θi be the complex voltage. Power
flow constraints at bus i are as follows:

pi,PV − pi,L = |vi|
N

∑
j=1

∣∣vj
∣∣(Gij cos θij + Bij sin θij

)
(1)

qi,PV − qi,L = |vi|
N

∑
j=1

∣∣vj
∣∣(Gij sin θij − Bij cos θij

)
(2)

where pi,PV and qi,PV are the active and reactive power injection of PV, pi,L and qi,L are
the complex power of the load connected to node i, and Gij and Bij denote the real and
imaginary parts of the inter-node conductance for node i and node j, respectively.

In ensuring the safe and optimal operation of the DN, it is imperative to consider
constraints on voltage at individual nodes to alleviate voltage deviations.

vi,min ≤ vi ≤ vi,max (3)

where vi,min and vi,max represent the lower and upper bounds. The upper voltage bound is
vi,max = 1.05 p.u., and the lower voltage bound is vi,min = 0.95 p.u.

In addressing the voltage instability resulting from the integration of renewable energy
sources, PV inverters serve as controllable instruments. In the presence of a PV inverter at
a node, limitations are imposed on the reactive power output of the PV inverter as follows:

si,PV ≥
√
(pi,PV)

2 + (qi,PV)
2 (4)

where si,PV denotes the rated capacity of the PV inverter. To guarantee that the rated
capacity of the PV generating units utilizing inverters is met, the inverters retain the
capacity to provide reactive power support. Generally, rated capacity is established at
1.0 to 1.1 times the PV generating units’ active power capacity.
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2.2. Network Partition Based on Electrical Distance

An ADN can be subdivided into multiple sub-regions, enabling the resolution of the VVC
problem in a distributed fashion. This approach transforms a large-scale DN optimization
problem into multiple smaller optimization problems within various sub-regions. This not only
reduces the demands of the control strategy on communication equipment and computational
resource but also enhances the synergy and stability of the control.

This study employs electrical distance based on voltage sensitivity to cluster nodes
sharing similar characteristics. Electrical distance can be derived from the Newton–Raphson
method-based power flow calculation equation. The modified expression for the power
flow calculation can be articulated as:[

∆δ
∆U

]
=

[
SPδ SQδ

SPU SQU

][
∆P
∆Q

]
(5)

where SPδ and SQδ are the impact of unit active power and reactive power, respectively, on
the phase angle alteration of the nodal voltage. Similarly, SPU and SQU denote the effect of
unit active and reactive power, respectively, on the magnitude of the node voltage. Then,
the voltage magnitude satisfies the following equation:

∆U = SPU∆P + SQU∆Q (6)

The objective of this paper is to regulate voltage by controlling the reactive power of
PV inverters. Consequently, only the influence of reactive power on voltage magnitude
is considered. Reactive voltage sensitivity is chosen to characterize the electrical distance
Dij [17]:

Dij = Sii
QU + Sjj

QU − Sij
QU − Sji

QU (7)

where Dij denotes the degree of electrical coupling between the nodes. Sij
QU represents the

sensitivity of the voltage magnitude at node i to the injected reactive power at node j. The
smaller the numerical value of the electrical distance, the tighter the electrical connection
between two nodes. For nodes i and j, a closer electrical connection implies that their
mutual reactive power-voltage sensitivity is more similar, resulting in a smaller electrical
distance Dij.

The network topology of the community network bears resemblance to the ADN
structure. The modularity index not only serves to gauge the quality of connections
within the network topology but also guides the direction of network partitioning through
intelligent search algorithms, determining the optimal partitioning scheme. In this paper,
the modularity index is chosen as the optimization objective for ADN partitioning.

Q =
1

2m∑
i,j
(Aij −

kik j

2m
)δ(ci, cj) (8)

Aij = 1 −
Dij

maxDmn
m,n

(9)

δ
(
ci, cj

)
= ∑g δ(ci, g)δ

(
cj, g

)
(10)

where Q is the modularity index, Aij elucidates the weights of connections between nodes,
m = 1

2 ∑i,j Aij is the total weight of node in the whole network, and ki = ∑n
j=1 Aij is the sum

of weights connected to node i. g denotes the cluster number, ci denotes the cluster number
where node i is located. When two nodes i, j belong to the same cluster g, δ

(
ci, cj

)
= 1;

otherwise, δ
(
ci, cj

)
= 0.

The degree of electrical coupling is proportional to the value of the module degree. In
ADNs, a higher modularity index indicates tighter electrical connections within the same
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region and sparser electrical connections between different regions. When the modularity
index is greater than 0.3, it indicates that the degree of electrical coupling is obvious.

In this study, we employ the unsupervised heuristic Louvain algorithm to explore
the optimal clustering. The Louvain algorithm aims to optimize modularity, wherein the
fundamental concept involves partitioning nodes into clusters that maximize the network’s
modularity. Within this algorithm, each node is considered an independent cluster initially,
and subsequent merging of adjacent clusters continues until modularity ceases to increase.

2.3. Formulate VVC as a Markov Game

After partitioning the DN into multiple sub-regions during network partitioning,
agents have access to decentralized observation data within these sub-regions. Aiming to
manage voltage within a specified range by adjusting PV inverters, the VVC problem is
commonly expressed as a Markov game (MG) [18]. The essential components of the MG
settings are outlined as follows:

State space: St is the state set of the agent, and si
t ∈ St is the local observation of agent

i at moment t. In this study, si
t consists of five parts (pi,L, qi,L, pi,PV , qi,PV , ui,v), where qi,L

is the reactive power generated by PV inverters at the previous step and ui,v is the nodal
voltage vector of the node to which the inverter is connected.

Action space: each agent has a set of continuous actions ai,t = {−h ≤ ai,t ≤ h, h > 0}.

The reactive power produced by the first i PV inverter is qi,PV = ai,t

√
(si,PV)

2 − (pi,PV)
2.

When ai,t > 0, it signifies that the PV inverter penetrates reactive power to the DN; when
ai,t < 0, it indicates that the PV inverter absorbs reactive power from DN. h represents a
hyperparameter that constrains the range of actions available to an agent, which is often
chosen according to the load capacity of lines and transformers in the DN to ensure the
safe operation of the PV inverter.

State transition: In this paper, the state space includes the PV agent’s previous action,
and the load demand depends on user behaviors. Therefore, let si

t+1 = P
(
si

t, ai
t, wt

)
describe

the state transition function, depicting how the state changes after agents’ actions, where
wt represents random environment noise used to simulate the randomness of PV and load
demand fluctuations (pi,L, qi,L, pi,PV).

Reward function: ri
t ∈ Rt symbolizes the reward granted to an agent upon executing

an action. All agents subscribe to a unified form of the reward function, aligning with the
optimization goal of sustaining voltage within a secure threshold around Vre f while also
minimizing reactive power losses. Hence, the reward function can be articulated as:

ri,t = − 1
|v|∑ fv(vi)− α · fq(qPV) (11)

where fq(qPV) =
1
|A|∥qPV∥1 is the average reactive power losses, and the control requires

as little reactive power generation as possible, fq
(
qPV) < ε, ε > 0.

One of the objectives of VVC is to maintain the voltage within the range of 0.95 p.u. to
1.05 p.u. as much as possible. When the voltage exceeds the safety range, it is desired that
the MARL intelligent agents receive greater penalties, thereby guiding the agents to learn
strategies that maximize the reward function. Hence, the voltage barrier function fv(vk) is
defined as:

fv(vk) =

{
a · |vk − vref| − b i f |vk − vref| > 0.05

−c · N (vk − vref, 0.1) + d otherwise
(12)

where N (vk − vref, 0.1) represents a density function that follows a normal distribution
with a mean of vref and a standard deviation of 0.1.

2.4. MASAC-Based VVC Framework

The MASAC algorithm is effective in tackling sequential decision-making challenges
within Markov games. To achieve multi-cluster distributed cooperative control without
relying on inter-cluster communication, the proposed network partition method divides
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regions based on electrical distances, thus creating a partition pattern characterized by a
high cohesion of nodes within regions and low coupling between regions. Within each
subregion, every PV inverter is represented as an individual SAC agent, and ultimately, the
MASAC algorithm is utilized to address the VVC problem. The MASAC-based Centralized
Training and Decentralized Execution (CTDE) architecture is introduced, as illustrated in
Figure 1. The framework employs centralized training to refine the policy of each agent,
subsequently facilitating decentralized execution.
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Figure 1. VVC framework based on MASAC.

In the centralized training phase, based on the network partition method, the critic
network of each agent receives global state information from all agents, while the actor
network corresponding to each agent receives local observations from its respective sub-
region. The critic network, utilizing global information, supports the actor network in
acquiring coordinated control strategies for multi-PV voltage systems.

During decentralized execution, control strategies are determined by the actor network,
requiring the retention of only the actor network. As the actor network has already acquired
cooperative control strategies utilizing global information during the training phase, it
becomes feasible to deliver more cooperative and resilient control strategies solely relying
on local information during execution.

The set of strategies of the MG can be expressed as π = {π1, . . . πN}, where strategy
πi denotes the action function of agent i. Unlike traditional reinforcement learning, the
optimization objective of the MASAC algorithm is to maximize the weighted sum of
cumulative returns and entropy, ∑T

t=0 E[rt + αH(πi(·|si,t))], where entropy is denoted
as H(πi(·|si,t)); α is the temperature coefficient. Entropy is introduced to improve the
efficiency of exploring the action space. To this end, MASAC provides an efficient and
principled way for balancing exploration and exploitation [18].

The parameters of the strategy function undergo updates through the utilization of
the strategy gradient.

∇µ J(µt) = ESt ,At∼D
[
∇µ log(πµt(ai,t | si,t))ρt(St, a1,t, . . . , aN,t)

]
(13)

ρt(St, a1,t, . . . , aN,t) = +Qπ
i (St, a1,t, . . . , aN,t)− b

(
St, ai′ ,t

)
− α log(πµt(ai,t | si,t)) (14)
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b
(
St, ai′ ,t

)
= Eai,t∼πωi (si,t)

[
Qπ

i
(
St,

(
ai,t, ai′ ,t

))]
(15)

where Qπ
i (St, a1,t, . . . , aN,t) is the value of the action; b is the base term used to represent the

average value of all possible actions of an agent body i in state St; and Qπ
i (St, a1,t, . . . , aN,t)−

b
(
St, ai′ ,t

)
is the dominance function representing the value of the current action, which

provides an estimate of the relative value of the action for the agent.
The evaluation network Qπ

i (·) is responsible for calculating the value of an action
for an agent. The parameters of the evaluation network are optimized by minimizing the
following loss function:

L = (yt − Qπ
i (St, a1,t, . . . , aN,t))

2 (16)

yt = ri,t + γE
ai,t+1∼π

µ′i

[
−α log

(
πµ′

i (ai,t+1 | si,t+1)
)
+ Q′π

i (St, a1,t, . . . , aN,t)
]

(17)

where yt is the target value and πµ
′
i and Q

′π
i are the target action and critic function.

Deep neural networks typically demand the input data to be distributed indepen-
dently and uniformly during training. However, in reinforcement learning, the interaction
between agents and the environment often leads to non-independent and non-uniform data
distributions, impacting neural network training stability. SAC introduces the experience
replay buffer, where each agent interacts with the environment, storing experience data(
sj,t, aj,t, rj,t, sj,t+1

)
acquired from these interactions in a playback pool. When updating net-

work parameters, agents randomly draw experience data from this pool, compute gradients,
and update corresponding network parameters. This mechanism disrupts data correlations,
promoting a distribution closer to independence and uniformity, thereby reducing update
variance and enhancing network convergence speed. Moreover, reusing empirical data
facilitates more efficient data utilization, particularly in scenarios with limited access to
new data.

3. Case Study

This paper conducts arithmetic simulation experiments to assess the performance
of the VVC strategy based on the MASAC algorithm, utilizing the IEEE 33-bus [19] and
IEEE 141-bus networks [20]. Power flow calculation was performed using PandaPower
v2.13.1, and the training and testing of the proposed VVC strategy was performed in Python
equipped with the Pytorch library. All experiments are implemented on a workstation
equipped with an Intel 12th generation i7-12700H central processor (Intel, Santa Clara, CA,
USA) and a NVIDIA GeForce3060 GPU (NVIDIA, Santa Clara, CA, USA).

3.1. The Performance of Network Partition

In this section, simulations are implemented on the IEEE standard network to evaluate
the performance of the network partition method. The PV data is obtained from one year’s
operation of a local grid, and the PV parameters and integration information are shown in
Table 1.

Table 1. Capacity and location of PV.

Networks Capacity Location

IEEE 33 0.5MW/0.51MVA 11, 17, 21, 24, 29, 32

IEEE 141 0.5MW/0.51MVA 35, 52, 58, 61, 67, 68, 74, 76, 81, 86, 99, 105, 109,
110, 115, 116, 129, 132, 136, 137, 138, 140

Figure 2 illustrates the arrangement of the IEEE 33-bus network topology alongside the
outcomes of optimal partitioning. The convergence of the modularity index yields a result
of 0.4851, delineating the DN into five distinct sub-regions characterized by strong internal
cohesion and minimal inter-regional coupling. The IEEE 141-bus network is divided
into nine sub-regions, and the optimal partitioning results are shown in Figure 3. The
convergence result of the modularity index is 0.3623, and there are controllable regulation
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devices in each region. The proposed partitioning algorithm converges quickly and can be
extended to be used in large-scale DN models, which provides the basis for the cooperative
VVC strategy.

Figure 2. IEEE 33-bus network structure.

Figure 3. IEEE 141-bus network structure.

3.2. The Performance of Volt-VAR Control Based on MASAC

In this study, every PV inverter is portrayed as a reinforcement learning agent. The
IEEE 33-bus system comprises 5 agents, while the IEEE 141-bus system encompasses
22 agents. Within the MASAC algorithm framework, each agent comprises two actor networks
and three critic networks, with shared neural network parameters across all agents. GRU,
a recurrent neural network, is utilized as an optimizer for the actor networks to tackle the
partially observed problem. The critic networks are fashioned using a multilayer perceptron.

Throughout the training phase, we initiate each episode by randomly selecting a
day of photovoltaic data as the starting state, with each episode spanning 240 time steps
(equivalent to half a day). Testing is conducted every 20 episodes, whereby 10 episodes are
randomly chosen for assessment. The training data batch size is configured at 32, while the
non-strategy algorithm’s buffer size is set to 5000.

The hyperparameter configurations of the MASAC algorithm are presented in Table 2.
To assess the control efficacy of the proposed algorithm, comparison experiments involving
various MARL algorithms are undertaken. These encompass the following:

1. The counterfactual multi-agent (COMA) method, which uses Q-value decomposition
to achieve collaborative decision-making by optimizing local Q-values and influ-
ence factors;

2. The MADDPG algorithm, which uses a deep deterministic policy gradient to achieve
collaborative decision-making for multi-agents;
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3. The multi-agent proximal policy optimization (MAPPO) algorithm, which uses policy
optimization and importance sampling to achieve collaborative decision-making for
multi-agents;

4. Multi-agent twin delayed deep deterministic (MATD3) method, which uses double-
delayed deep deterministic policy gradients to achieve collaborative decision-making
for multi-agents;

5. The proposed MASAC method, where SAC algorithm-based agents are trained based
on global observations, and each agent controls the inverter reactive output based on
local observations within the network in which it is located.

Table 2. Simulation setup.

Parameter Value

h 0.8
Batch 32

Experience replay buffer 5000
Policy network learning rate 0.001
Critic network learning rate 0.001

λ 0.99

In the experiment, three metrics are established to assess algorithm performance
including the following:

1. Rewards: this metric calculates the value of discount rewards received by the agent
after executing an action. The agent aims to maximize the discounted rewards, and a
higher discounted reward indicates that in the current episode, the agent receives a
higher value of the reward from the environment after executing the scheduling action
and has a better overall performance in maximizing the trade-off between reducing
the voltage excursion and reducing the reactive power loss.

2. Controllable ratio: this metric calculates the ratio of time steps during which all bus
voltages are under control during each episode. A higher controllable ratio indicates
a better performance of the algorithm in terms of bus control.

3. Reactive power loss: this metric calculates the average value of the reactive power
loss of all lines for each time step during each event. A lower reactive power loss can
indicate that the algorithm has better performance in reducing power loss.

3.2.1. Test on This IEEE 33-Bus Network

In this study, 400 episodes were trained offline utilizing the proposed method. During
the training phase, the initial state for each episode is randomly selected from the dataset,
and each episode comprises 240 steps. The size of the experience playback pool is set to
5000 sample sizes, before 5000 sample sizes, the agents’ action decisions do not rely on
the selection of the strategy function, which enables full exploration of the strategy space.
Within this phase, the action state reward function is deposited into the experience playback
pool for each agent and the parameters of the neural network remain fixed. After collecting
5000 sample numbers, the capacity of the experience playback pool reaches the upper limit,
at which point the neural network parameters of the agents start to be updated. During the
training process, the inverter gradually masters the reactive power control strategy. When
the training comes to the late stage, the discount reward curve of the agent oscillates in a
small range around the fixed value. At this time, the algorithm begins to converge, and
the inverter masters the reactive power control strategy of avoiding voltage overruns and
reducing reactive power losses. The results of the tests during the training period are given
by interquartile shading from 25% to 75% after a sliding average process.

Figure 4 shows the rewards curve. From the analysis of Figure 4, the VVC strategy
based on the proposed MASAC algorithm converges faster and has greater discounted
rewards as compared with algorithms such as MADDPG, COMA, and MAPPO. This shows
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that the MASAC algorithm has a better synthesis ability in learning VVC strategies for
PV inverters.
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The reactive power loss indicator curve is shown in Figure 5. In this metric, the
MASAC algorithm controls the reactive power loss value convergence value of 0.12 MVA.
Compared with the other algorithms, the SAC agents learn a better strategy to reduce the
reactive power loss.
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The controllable ratio curve is shown in Figure 6. The MASAC algorithm has high
values of final convergence of the controllable ratio and better busbar control capability as
compared with the other algorithms. The training trend in the MASAC algorithm shows
that it has a faster exploration ability in the initial phase of training.
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The voltage control effects achieved by different control methods on the test set are
shown in Table 3. It can be observed that all control methods are capable of regulating
the voltage to a reasonable range. However, the proposed MASAC algorithm achieves
an average voltage value of 0.9976 p.u. and a reactive power loss of 0.1233 MVAR, which
indicates better voltage control and reactive power loss control compared with the other
algorithms. Additionally, the maximum voltage rise is 0.002 p.u. and the maximum voltage
drop is 0.001 p.u., both of which remain within the safety range. This demonstrates that the
VVC framework based on MASAC effectively mitigates voltage fluctuations at DN nodes.

Table 3. Performance of control strategies on IEEE 33-bus network.

Strategy Average
Voltage

Maximum
Voltage Rise

Minimum
Voltage Drop

Reactive
Power Losses

Controllable
Ratio

MASAC 0.9976 0.002 0.001 0.1233 95.37%

MADDPG 0.9944 0.004 0.002 0.1706 96.60%

MATD3 0.9879 0.002 0.001 0.0899 96.03%

MAPPO 1.0096 0.010 0.005 0.6310 60.92%

COMA 0.9972 0.001 0.003 0.2223 98.85%

A comprehensive analysis of the indicators and test results shows that the VVC strategy
based on the proposed MASAC algorithm has a strong comprehensive performance. The
SAC agents learn fast and converge well. This indicates that the MASAC algorithm has
a stronger strategy exploration ability, which verifies that the introduction of the concept
of information entropy in the MASAC algorithm and updating the optimization objective
of the algorithm have led to a significant improvement in the algorithm’s learning ability
and convergence effect. When the proposed algorithm training model is applied to the test
set, the outcomes reveal that the agents acquire an enhanced cooperative VVC strategy,
demonstrating proficient control over the voltage offset, voltage fluctuation, and reactive
power loss.

Comparative experiments on the IEEE 33-bus network reveal that the MASAC al-
gorithm outperforms the other MARL algorithms in achieving collaborative VVC of PV
inverters under local information-based conditions. This ensures the stable and safe opera-
tion of DNs.
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3.2.2. Test on the IEEE 141-Bus Network

In order to test the scalability of the proposed MASAC algorithm, this section performs
a comparison test on the IEEE 141-bus network. The PV parameters and access information
of this network are shown in Table 1, and the rest of the experimental settings and algorithm
settings remain unchanged.

Figure 7 shows the rewards curve. From the analysis of Figure 7, the VVC framework
based on MASAC for the experiments on the IEEE 141-bus network has more obvious
advantages compared with the IEEE 33-bus network. Compared with the MATD3, MAD-
DPG, COMA, and MAPPO algorithms, the proposed method converges faster, gives better
convergence results, and has the largest discount reward for convergence.
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Figure 8 illustrates the reactive power loss curve of the IEEE 141-bus network. An
analysis of the convergence results indicates that the MASAC algorithm effectively controls
average reactive power loss, achieving a value of 0.49 MVAR. This performance surpasses
that of the MADDPG and MATD3 algorithms significantly. The MASAC algorithm demon-
strates adeptness in managing the reactive power loss control challenge within large DNs.
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The controllable ratio curve is depicted in Figure 9, which shows that the MASAC
algorithm achieves a relatively high level of convergence in the controllable ratio. Addition-
ally, the algorithm demonstrates a higher controllable ratio in the IEEE 141-bus network
compared with the IEEE 33-bus network. This indicates that the MASAC algorithm is
capable of stabilizing the voltage of nodes in larger-scale networks more effectively.
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The voltage control results attained on the test set of five control methods in the IEEE
141-bus network are presented in Table 4. The average voltage value of the MASAC algo-
rithm is 0.9957 p.u., the control of reactive power loss is 0.5653 MVAR, and the controllable
ratio is 98.41%, which achieves a better control effect compared with the other algorithms.

Table 4. Performance of control strategies on the IEEE 141-bus network.

Strategy Average
Voltage

Maximum
Voltage Rise

Minimum
Voltage Drop

Reactive
Power Losses

Controllable
Ratio

MASAC 0.9957 0.003 0.001 0.5653 98.41%

MADDPG 0.9932 0.006 0.002 0.7159 98.50%

MATD3 0.9854 0.005 0.001 0.7940 98.23%

MAPPO 1.0255 0.013 0.004 1.0755 68.73%

COMA 1.0046 0.001 0.003 1.1765 99.99%

By carrying out arithmetic simulations on the IEEE 141-bus network, it was found that
the proposed MASAC algorithm has excellent performance in all metrics and can deal with
the cooperative VVC problem in large-scale distribution networks with better scalability
than the other MARL algorithms.

4. Conclusions

In this paper, we address the VVC problem in ADNs through the utilization of MASAC.
Initially, we propose a partitioning strategy for ADN based on reactive voltage sensitivity
to divide the network into multiple sub-regions. This partitioning approach serves as
the foundation for establishing a CTDE framework relying on MASAC. Subsequently,
we formulate the VVC problem involving multiple PV inverters as an MG and apply
the MASAC algorithm to tackle the VVC challenges in ADNs. We conduct comparative
experiments employing various MARL algorithms on the IEEE 33-bus and IEEE 141-bus
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networks. The experimental outcomes substantiate the efficacy of our proposed methodol-
ogy in enabling cooperative VVC control of multiple PV inverters. Notably, it effectively
mitigates voltage deviations and reduces reactive power losses, leveraging solely locally
observed information.

Future research work will mainly focus on the following:

1. Broadening the scope of controllable power electronic devices;
2. Improving the scalability of the algorithm to tackle voltage and VVC challenges in

larger-scale DNs.
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