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Abstract: To overcome the problem of insufficiency of linear frequency modulation (LFM) radio
fuzes against sweep-type jamming, a method is proposed to classify and identify radio fuze targets
and interfering signals based on third-order spectrum features. Using the measured data of an LFM
radio fuze, the third-order spectral transform is applied to the output signals of the detector end
under the action of the target and several amplitude modulated sweeping interfering signals, and
the amplitude mean value, third-order spectral amplitude entropy, and third-order spectral singular
value entropy based on the third-order spectrum are extracted as three-dimensional features. The
experimental results show that the classification and identification of targets and AM sweep-type
interference using the third-order spectral features of the signal at the detector end has a high success
rate, with a comprehensive identification accuracy of 98.33%.

Keywords: radio fuze; third-order spectrum; target recognition; anti-jamming

1. Introduction
1.1. Research Background

Continuous waveform linear frequency modulation(LFM) radio fuze is a kind of
proximity detector with high real-time performance, has an excellent ranging and anti-
jamming ability, and is widely used on the modern battlefield [1–3]. However, with the
development of electronic countermeasures technology, LFM radio fuze is seriously affected
by interference and jamming. Electromagnetic jamming by radio fuze jammers can make
radio fuzes spoof interference, which in turn can cause missiles to blow up early or not,
greatly reducing the efficiency of the weaponry’s role [4]. In particular, sweep jamming is
the most serious threat to LFM radio fuzes [5]. Therefore, it’s quite important to improve the
anti-jamming ability of the LFM radio fuze, and the effective classification and identification
of radio fuze targets and jamming signals can greatly improve the anti-jamming capability
of radio fuzes.

1.2. Related Works

Many researchers have conducted research and achieved some results to improve
the anti-jamming ability of LFM radio fuzes. There are two main types of LFM radio
fuze anti-jamming methods: radio fuze transmits waveform design and radio fuze output
signal processing.

Radio fuze transmitted waveform design [6–10] mainly focus on the transmitted
electromagnetic wave to anti-jamming signals. Yue et al. [6] designed a novel structure
based on the intermediate frequency signals for the transceiver which is different from
the traditional linear frequency modulated continuous wave transceiver using the beat
frequency signal-based structure. A sequence with good autocorrelation properties was
studied [7], and the side-lobe level of the autocorrelation is regarded as the main merit
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and is optimized through newly introduced cyclic algorithms. The numerical experiments
confirm the superiority of the newly developed algorithms compared to high-performance
algorithms in monostatic and MIMO radars. Considering the strong sea clutter environ-
ment, Choi et al. [8] designed and built a FMCW transceiver for short range proximity
sensors in sea clutter. The FMCW transceiver has low phase noise and the wideband FMCW
transmits a signal with good linearity while maintaining consistency between transmit and
receive frequencies to reduce the effects of strong sea clutter. Hanbali et al. [9] proposed
a novel technique to counter active echo cancellation and interrupted-sampling repeater
jammer, and the proposed technique is based on frequency-shifting of the transmitted radar
signal. By doing that, the true target and the jammer echo will be in phase. To improve
the anti-jamming performance of FM fuze against DRFM type jamming, Chen et al. [10]
proposed an anti-jamming method based on two-channel harmonic correlation detection of
variable chirp rate transmit signals.

Radio fuze output signals process and mainly research the radio fuze output signals’
recognition and classification [11–15]. Based on the statistical properties of continuous
wave detector outputs under swept jamming, an averaged range flanking method was
proposed [11], which uses the fast Fourier transform to extract the harmonic envelope and
averages the multiple harmonic coefficients obtained by FFT. Simulation experiments were
also carried out to demonstrate the superiority of the averaged range sidelobe method.
Dai et al. [12] proposed three different false-target recognition strategies for different kinds
of interference, and dynamically allocated the three false-target recognition strategies
based on the maximized payoff principle in the non-cooperative game between the radio
frequency proximity sensor and the interference, which can significantly improve the false-
target recognition performance of the radio frequency proximity sensor. A small sample
terrain recognition framework [13] based on the carrier-free UWB proximity sensor was
proposed to classify terrain echo signals using time–frequency feature maps. Insufficient
samples make the classifier prone to overfitting, so the author proposed an Improved
Auxiliary Classifier Generative Adversarial Networks for data enhancement in the paper.
Zhu et al. [14] proposed a hierarchical dictionary learning mechanism for vehicle recogni-
tion based on the carrier-free UWB radar. The hierarchical dictionary learning framework
aids the model in learning discriminative representations through reconstructing clean data
over the signal dictionary, which encourages the sub-dictionary to be representative for sig-
nals from the corresponding category but to be away from other categories. A classification
and identification method based on information entropy features in the frequency domain
was first used in radio fuze target identification [15] to suppress AM sweep jamming of FM
fuzes. The Shannon entropy and singular spectrum entropy of the fuze detection output
signal were extracted, and a support vector machine was used to classify and identify the
target signal and the jamming signal.

To summarise, all current research on LFM fuzes against sweeping frequency jam-
ming is based on the time and frequency domains, where the frequency domain research
focuses on the signal spectrum and power spectrum, i.e., the analysis of the second-order
spectrum. The higher-order spectrum contains a wealth of information about the signal,
but no research has been conducted in the literature on the use of higher-order spectrum
information for LFM radio fuze anti-jamming. Therefore, this paper takes a certain type
of LFM radio fuze as the object of analysis and proposes a method to classify and identify
the target and sweeping frequency jamming signals at the LFM radio fuze detector output
with the third-order spectrum information as the characteristic parameter, so as to improve
the ability of LFM radio fuze to combat sweeping jamming in the complex battlefield
electromagnetic environment.

The content of this paper is arranged as follows: Section 1 introduces the research
background and the current status of the study; Section 2 introduces the theory related
to high-order cumulants; Section 3 describes the methods of experimental data collection;
Section 4 researches the method of signal feature extraction based on higher order spectra;
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Section 5 provides experimental validation of the method proposed in this paper and the
last section gives the conclusion of this paper.

2. Higher-Order Statistics Theory
2.1. Higher-Order Moments and Higher-Order Cumulants

Compared with second-order statistics, higher-order statistics not only contain the
amplitude information of the signal but also retain the rich phase information that cannot
be obtained from second-order statistics, so that higher-order statistics can be used to
obtain more complete features of the signal. The application of higher-order statistics
to classification and recognition problems has significant advantages. Currently, scholars at
home and abroad have used higher-order statistics for human and animal recognition [16,17],
disease classification and diagnosis [18–20], mechanical fault diagnosis [21], modulation
type recognition [22–24], etc. Higher-order statistics include higher-order moments, higher-
order cumulants, and their spectra, i.e., higher-order moment spectrum and higher-order
cumulant spectrum.

Assuming that x = [x1, x2, . . . , xk]
T is a random vector, the first eigenfunction of the

random vector is defined by the following equation:

Φ(w1, w2, . . . , wk) = E
{

e[j(w1x1+w2x2+...+wkwk)]
}

(1)

Solving for the r = r1 + r2 + . . . + rk partial derivatives of the above equation, we get

∂rΦ(w1, w2, . . . , wk)

∂wv1
1 ∂wv2

2 . . . ∂wvk
k

= jrE
{

xr1
1 . . . xrk

k ej(w1x1+...+wkxk)
}

(2)

Letting w1 = w2 = . . . wk = 0 in the above equation give the r order moment of the
random vector, i.e.,

mr1 ...rk = E
{

xr1
1 . . . xrk

k
}
= (−j)r ∂rΦ(w1, . . . , wk)

∂wr1
1 . . . ∂wrk

k

∣∣∣∣∣
w1=...=wk=0

(3)

In particular, choose r1 = r2 = . . . = rk = 1 to obtain the k order moment of the
random vector x, denoted as

mkx = m1,...,1 = mom(x1, . . . , xk) (4)

Similarly, the second eigenfunction of the random vector x can be defined by Equation (1) as

Ψ(w1, . . . , wk) = ln Φ(w1, . . . , wk) (5)

Solve the second eigenfunction for its r = r1 + r2 + . . . + rk order partial derivative
and let w1 = w2 = . . . = wk = 0, i.e., obtain the r order cumulative of the random vector x,

cr1 ...rk = (−j)r ∂rΨ(w1, . . . , wk)

∂wr1
1 . . . ∂wrk

k

∣∣∣∣∣
w1=...=wk=0

= (−j)r ∂r ln Φ(w1, . . . , wk)

∂wr1
1 . . . ∂wrk

k

∣∣∣∣∣
w1=...=wk=0

(6)

As in Equation (4), taking r1 = . . . = rk = 1, we obtain the kth order cumulant of the
random vector x, denoted as

ckx = c1,...,1 = cum(x1, . . . , xk) (7)

2.2. Higher-Order Moment Spectrum and Higher-Order Cumulant Spectrum

The higher-order moment spectrum and the higher-order cumulant spectrum are the
multidimensional Fourier transforms of higher-order moments and higher-order cumulants,
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respectively. Assuming that the higher-order moments mk of Equation (4) are summable,
the spectrum of k-order moments of order is defined as

Mkx(w1, . . . , wk−1) = ∑
τ1

. . . ∑
τk−1

mkx(τ1, . . . , τk−1) exp[−j∑
i

wiτi] (8)

Similarly, assuming that the higher-order cumulants ckx of Equation (7) are summable,
the spectrum of k-order cumulants of order is defined as

Skx(w1, . . . , wk−1) = ∑
τ1

. . . ∑
τk−1

ckx(τ1, . . . , τk−1) exp[−j∑
i

wiτi] (9)

Due to the complexity of calculating the fourth-order spectrum and the real-time
nature of radio fusing, in this paper, the third-order spectrum of the signal is selected for
calculation and analysis. In this paper, the third-order spectrum of the signal is chosen for
calculation and analysis, i.e., the value of k in Equation (9) equals 3 is used to obtain the
third-order spectrum.

S3x(w1, w2) = ∑
τ1

∑
τ2

c3x(τ1, τ2) exp[−j
2

∑
i=1

wiτi] (10)

3. Signal Data Collection
3.1. Experimental Scenarios and Parameter Settings

This paper selects a type of continuous-wave FM radio fuze, in the microwave dark-
room environment, respectively, to simulate the target, noise AM sweep interference,
sinusoidal AM sweep interference, and square wave AM sweep interference on the fuze,
and to collect the fuze start signal generation moment before the detector output signal,
the experimental scenario is shown in Figure 1. The scenario is based on the parameters
of the US SEPS 3 radio fuze jammer, which has an effective jamming power of 800 W and
an effective jamming distance of not less than 200 m. The interference distance in the
experimental scenario is set to 1.75 m; the simulated target is a metal plate with an RCS of
1 m2, and the linear distance between the target and the fuze is 10 m; the centre frequency of
the FM radio fuze is f0 = 3 GHz, and the modulation bandwidth is ∆F = 15 MHz; and the
sweeping range of the interference signal is set to f0 ± 2∆F, and the amplitude modulation
frequency of the interference signal is set randomly.

Figure 1. Data acquisition experiment scenario.

3.2. Radio Fuze Output Signal Capture

The radio fuze start pulse signal is used as the cut-off time for signal acquisition,
and 20,000 data points are selected forward for the output signal of the detector end at
this point, and the frequency of signal acquisition is 1000 kHz, i.e., the acquisition time is
20 ms. A total of 180 groups of target echo signals are acquired, and 60 groups of the
output signal of the detector end under the action of noise AM sweep, sinusoidal AM
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sweep, and square wave AM sweep interference signal are also acquired. The total number
of signals collected is 360. Figure 2 shows the measured waveforms of the time domain
signals from the detector side of the radio fuze under the effect of the target and different
interference signals.

Figure 2. Fuze output time–domain signals under the action of the target and jamming. (a) Target
action output signal; (b) Noise AM frequency sweep action output signal; (c) Sine AM frequency
sweep action output signal; (d) Square AM frequency sweep action output signal.

4. Signal Third-Order Spectral Feature Extraction
4.1. Third-Order Spectral Transformation of Signals

The third-order spectrum of a signal contains a richer set of properties than the
second-order spectrum, including not only information about the amplitude of the signal at
different frequencies, but also information about the phase of the signal that is not available
in the second-order spectrum. The richer signal properties help to improve the accuracy of
signal classification. At the same time, due to the insensitivity of the third-order spectrum
to Gaussian noise, the third-order spectrum of Gaussian noise is constant at zero [25].

A total of 180 sets of target signals and 60 sets of signals at the detector end under
the action of three types of interference signals were selected, and for a total of 360 sets of
signals, a third-order spectral transformation was carried out. The three order spectrum 3D
plots and contours of the different signals are shown in Figure 3.
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Figure 3. Contour plot of three order spectrum and 3D plot for fuze output signals under the action of
target and jamming. (a) Contour plot of three order spectrum and 3D plot for the target signal;
(b) Contour plot of three order spectrum and 3D plot for noise AM frequency sweep signal;
(c) Contour plot of three order spectrum and 3D plot for sine AM frequency sweep signal;
(d) Contour plot of three order spectrum and 3D plot for square AM frequency sweep signal.
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4.2. Feature Extraction Based on Third-Order Spectrum
4.2.1. Feature Extraction Area Selection

The symmetry of the third-order spectrum shows that the region defined by the
third-order spectrum can be divided into two parts symmetrical from the origin to the
symmetry line f2 = f1. To ensure the real-time processing of the fuzzy signal, reduce
the computational effort of the feature extraction process and ensure the completeness
of the signal feature information, the part enclosed by f2 ≤ f1, f1min ≤ f1 ≤ f1max,
f2min ≤ f2 ≤ f2max is selected as the region for the third-order spectrum feature extraction
in this paper. Taking the contour map of the third-order spectrum of the target signal as
an example, the points within the area enclosed by the green triangle are selected as the
calculation points for feature extraction, as shown in the Figure 4.

Figure 4. Schematic of selected area for feature extraction.

4.2.2. Third Order Spectral Amplitude Mean Characteristics

The third-order spectral amplitude means the feature is the average of the third-order
spectral amplitudes in the feature extraction region, such that the region enclosed by the
green line in Figure 4 is O, and the feature can be expressed as follows

Aavg =

∑
O
|B( f1, f2)|

N
(11)

The above equation Aavg denotes the third-order spectral amplitude mean feature,
B( f1, f2) denotes the third-order spectral value in the feature extraction region, which is a
complex number, and therefore ∑

O
|B( f1, f2)| denotes the sum of the absolute third-order

spectral values in the feature extraction region, and denotes the number of all points in
the region.

4.2.3. Third-Order Spectral Amplitude Entropy Characteristics

The third-order spectral amplitude entropy feature can be used to represent the
regularity of the third-order spectral amplitude of a signal. Suppose that the probability of
occurrence of an element in a random sequence is pi, and the total number of elements is
M, the entropy characteristic of the sequence is given by

En = −∑
M

pi × log2 pi (12)

The entropy characteristics of the third-order spectrum of the signal can be obtained
from the amplitude entropy characteristics of a one-dimensional random sequence as

Enp1 = −∑
M

p1 × log2 p1 (13)

Enp2 = −∑
M

p2 × log2 p2 (14)
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In the above equation

p1 =
|B( f1, f2)|

∑
O
|B( f1, f2)|

(15)

p1 =
|B( f1, f2)|2

∑
O
|B( f1, f2)|2

(16)

In this paper, the third-order spectral amplitude entropy feature of the signal is chosen
in Equation (14).

4.2.4. Third-Order Spectral Singular Spectral Entropy

The singular spectral entropy feature has unique performance in signal information
evaluation and information component analysis. The singular spectral entropy feature
extraction in this section firstly reconstructs the data points in the third-order spectral
feature extraction region of the signal shown in Figure 4 spatially to generate a new data
matrix, then performs singular value decomposition on the new data matrix, and finally
further performs singular spectral entropy calculation for the singular values. There are a
total of 16,512 data points in the third-order spectral feature extraction region in Figure 4,
so a new data matrix of size 129 × 128 will be formed, with the following expression:

M129×128 =


b1.1 b1.2 . . . b1.128
b2.1 b2.2 . . . b2.128

...
...

...
b129.1 b129.2 b129.128

 (17)

bi,j denotes the j-th magnitude of the i-th row of the reconstructed third-order spectral
matrix and the singular value decomposition of the matrix yields

M129×128 = LSMRT (18)

In the above equation, SM is the singular value matrix of the matrix M129×128, L is the
left singular value matrix, and R is the right singular value matrix. The matrix SMis a diag-
onal matrix which satisfies SM ∈ R129×128, and the diagonal elements {sm1, sm2, . . . , sm128}
of the matrix to obtain the singular spectral entropy of the signal are as follows

EM = −∑
i

pmi × log2 pmi (19)

where pmi = smi/∑
i

smi.

4.3. Analysis of the Significance of Differences in Characteristics

To verify the significance of the difference between the different signals based on
the third-order spectral features in the feature extraction section, the third-order spectral
amplitude mean features, the third-order spectral amplitude entropy features, and the
third-order spectral singular spectral entropy features of the target and interference signals
are analyzed for the significance of the difference. In this paper, the anova1 function in
the MATLAB statistical toolbox is used to do the test, which returns the value, specifically:
assuming that there is no significant difference between the test sets, at the level of signifi-
cance α = 0.05, p > 0.05 then the original hypothesis is accepted p < 0.05 then the original
hypothesis is rejected. The results of the test are shown in Table 1.

As can be seen from Table 1, all three feature significance tests returned extremely
small values and therefore the original hypothesis was rejected, i.e., the differences between
the three features of the target and interfering signals were all extremely significant. To
visualize the difference in the numerical distribution of the third-order spectral features of
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the target and interfering signals, statistical box plots and scatter plots are plotted as shown
below. Figure 5a–c show the box plots of the third-order spectral amplitude mean feature,
the box plots of the third-order spectral amplitude entropy feature, and the box plots of
the third-order spectral singular spectral entropy feature respectively. In Figure 5b,c the
third-order spectral amplitude entropy feature and the third-order spectral singular spectral
entropy feature of the target signal have a larger range of numerical distribution compared
to the interference signal. In Figure 5b, the values of the upper and lower 1/4 quantile of
the interference signal are included between the lower 1/4 quantile and the minimum of
the signal, but the upper and lower 1/4 quantile data of the target and interference are
completely staggered; In Figure 5c, the minimum of the target signal and the in Figure 5c,
there is an overlap between the minimum value of the target signal and the maximum
value of the interfering signal, and the upper and lower 1/4 quantile points are completely
staggered and more differentiated. Overall, the target and interfering signals are more
distinguishable within the selected feature range.

Table 1. Third-order spectral features significance test results.

Feature Type p-Value

Third-order spectral amplitude mean feature 1.0285 × 10−55

Third-order spectral amplitude entropy feature 6.4729 × 10−45

Third-order spectral singular spectral entropy feature 7.3621 × 10−85
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Figure 6. Scatter plot of different signal features.
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5. Signal Classification and Identification Experiments
5.1. Classification Recognition Accuracy Experiment

The radio fuze is used in the actual battlefield environment, where the rendezvous
time is extremely short, and the real-time requirements for the target and interference signal
recognition algorithm are high. Therefore, the KNN algorithm based on the KD tree with
relatively low computational complexity is selected for the target and interference signal
classification and recognition experiments.

To avoid the influence of the number of targets and interfering signals on the exper-
imental results, the same number of targets and interfering signals are selected, that is,
180 groups of target signals, 60 groups of noisy AM sweep signals, 60 groups of sinu-
soidal AM sweep signals, and 60 groups of square wave AM sweep signals, for a total of
360 groups. Using the 10-fold cross-check method, the 360 sets of signals are randomly
divided into 10 groups of 36 signals each, one of which is selected each time as the test
sample set, and the remaining 9 groups are used as the training sample set, for a total of
10 tests. The average of the results of the 10 experiments was taken as the final test result.

To comprehensively evaluate the proposed method, the target recognition accuracy,
interference recognition accuracy, combined recognition accuracy, and the probability
of being interfered with are selected as the effect evaluation indexes, which are defined
as follows:

DRtt =
Numtt

Numt
× 100% (20)

DRjj =
Numjj

Numj
× 100% (21)

JRjr =
Numjr

Numj
× 100% (22)

DRall =
Numtt + Numjj

Numt + Numj
× 100% (23)

DRtt is the target identification accuracy, Numtt is the number of targets identified
as targets andNumt is the total number of targets in the test set; DRjj is the interference
identification accuracy, Numjj is the number of interference identified as interference, and
Numj is the total number of interference in the test set; JRjr is the interference proba-
bility Numjr is the number of interference identified as targets; and DRall is the overall
identification accuracy.

When the KNN classification and recognition algorithm classifies test points, it needs
to calculate the distance between test points and other points, and then discriminate the
test point attribute category. The distance calculation methods mainly include Euclidean
distance, Manhattan distance, and Chebyshev distance, which all belong to the Minkowski
distance. Suppose mi =

{
m1

i , m2
i , . . . , mD

i
}

and nj =
{

n1
j , n2

j , . . . , nD
j

}
are two points in

the dimensional real space, and the Minkowski distance between two points is shown
as follows

DP(mi, nj) = (
D

∑
k=1

∣∣∣mk
i − nk

j

∣∣∣P)1/P (24)

When P = 1, for Manhattan Distance

D1(mi, nj) = (
D

∑
k=1

∣∣∣mk
i − nk

j

∣∣∣) (25)

When P = 2, for Euclidean distance

D2(mi, nj) =

√√√√(
D

∑
k=1

∣∣∣mk
i − nk

j

∣∣∣2) (26)
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When P→ ∞ , for Chebyshev Distance

D∞(mi, nj) = max
k

(mk
i − nk

j ) (27)

Using the 10-fold cross-check experiment method mentioned earlier, the test sample
set was calculated 10 times and then the average value was taken as the final result. In the
experiment of the KNN classification recognition algorithm based on the KD tree, different
distance calculation methods and the number of nearest neighbours were selected to
calculate the comprehensive recognition accuracy, target recognition accuracy, interference
recognition accuracy, and the probability of being interfered with in the evaluation index
respectively. The graphs of the calculation results are shown in Figure 7. Figure 7a shows
the graph of comprehensive recognition accuracy, Figure 7b shows the graph of target
recognition accuracy, Figure 7c shows the graph of interference recognition accuracy and
Figure 7d shows the graph of the probability of being interfered. From Figure 7a,b, it can
be seen that using Manhattan distance calculation has the highest recognition accuracy
compared to Euclidean distance and Chebyshev distance, and using Euclidean distance
calculation has higher recognition accuracy compared to Chebyshev distance for the same
number of nearest neighbours. When the number of nearest neighbours exceeds 80, both
the combined recognition accuracy and the target recognition accuracy start to show a
decreasing trend, dropping sharply to around 43% and 50% when the number of nearest
neighbours exceeds 300, i.e., it is almost impossible to classify targets and interferences
for recognition.

Figure 7. Plot of experiment results. (a) comprehensive recognition accuracy; (b) target recognition
accuracy; (c) jamming recognition accuracy; (d) probability of being jammed.

As can be seen from Figure 7c, when the number of nearest neighbours reaches a
certain number, the jamming recognition accuracy can reach 100%, but at this moment,
the target recognition accuracy decreases seriously. As the radio fuze is used in the actual
battlefield environment, it needs to identify the target accurately while identifying the
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interference; otherwise, it will cause no bombing or near bombing to touch bombing,
making the effective killing performance reduced, so it needs to take into account the target
identification accuracy and interference identification accuracy at the same time.

Table 2 shows the overall recognition accuracy, target recognition accuracy, interference
recognition accuracy, and the corresponding interference probability for different distance
calculation methods and the number of nearest neighbours. As can be seen from Table 2, the
comprehensive recognition accuracy achieves 98% or more under the Euclidean distance,
Manhattan distance, and Chebyshev distance calculation methods, and the probability of
being interfered with is less than 1.5%. The target recognition accuracy was 99.0% when the
number of nearest neighbours was 3, and the probability of being interfered with was 1.39%.
However, a larger number of nearest neighbours means lower computational real-time
performance, and in Figure 7c, we can see that the interference recognition accuracy is
greater than 95% when the number of nearest neighbours is less than 50, so the number
of nearest neighbours can be reduced appropriately to balance computational simplicity,
Therefore, the number of nearest neighbours can be reduced appropriately to balance the
computational simplicity and recognition accuracy.

Table 2. Optimal recognition results of different parameters.

Evaluation
Indicators Distance Calculation Number of Nearest

Neighbours Results Probability of
Being Jammed

Comprehensive
recognition

accuracy

Euclidean distance 27 98.06% 0.83%
Manhattan distance 4 98.33% 1.11%
Chebyshev distance 3 98.06% 1.11%

Target
recognition

accuracy

Euclidean distance 6 98.64% 1.39%
Manhattan distance 3 99.0% 1.39%
Chebyshev distance 6 98.64% 1.39%

Jamming
recognition

accuracy

Euclidean distance 130 100% 0
Manhattan distance 98 100% 0
Chebyshev distance 146 100% 0

In summary, the proposed method can guarantee comprehensive recognition accuracy,
target recognition accuracy, and interference recognition accuracy, while having a very low
probability of being interfered with, and the number of nearest neighbours can be selected
below 10 to meet the computational simplicity of fuze signal processing.

5.2. Performance Comparison

In order to verify the superior performance of the method proposed in this paper,
especially the effectiveness of the signal feature extraction method based on third-order
spectrum features, the signal feature extraction methods mentioned in references [15,16]
are selected as comparison in this section. The comparison experiments are conducted
based on the same dataset, and the same KD tree-based KNN classifier, with the difference
that different feature extraction methods are utilised. In particular, the frequency domain
Shannon entropy and singular spectral entropy of the fuze output signal were extracted in
reference [15], and the signal high-order cumulant feature was extracted in reference [16].

Using the comprehensive recognition accuracy, target recognition accuracy, and jam-
ming recognition accuracy as comparison metrics, Table 3 presents the comparison results
obtained with the references and method in this study.

The results show that the target and jamming signal classification method based on
third-order spectrum features proposed in this paper has a better comprehensive recogni-
tion accuracy, target recognition accuracy, and jamming recognition accuracy in the dataset
used in this paper. Compared with the feature extraction method based on signal frequency
domain Shannon entropy and singular spectral entropy features in reference [15] and the
feature extracted method based on higher-order cumulant in reference [16], the method in
this paper is superior.
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Table 3. Comparison of the performance of the proposed signal feature extraction method with
the reference.

Signal Feature
Extraction Methods

Distance
Calculation

Number of Nearest
Neighbours

Comprehensive
Recognition Accuracy

Target Recognition
Accuracy

Jamming Recognition
Accuracy

Our Method Chebyshev distance 3 98.06% 98.11% 95.43%
Reference [15] Chebyshev distance 3 92.01% 94.12% 91.14%
Reference [16] Chebyshev distance 3 94.17% 93.58% 94.87%

The classification algorithm in this paper uses a KD tree-based KNN classifier, which
has lower computational complexity than the exhaustive-based KNN algorithm when
the algorithm is running and can meet the requirements of computational real-time. We
chose the algorithm running time as a measure of algorithm complexity. The algorithm
runtime experiments were performed on a computer. The computing platform is MatLab
R2021a, the computer operating system is Windows 10-2022TAHRW, and the CPU model
is Intel(R)-Core(TM) i7-8565U @1.80Hz. RAM: 16GB. The number of test samples selected
for each calculation was 36 test samples, and the experiment was conducted using a 10-fold
cross-validation approach, with the average calculation time of the 10 operations used as
the final calculation result.

Table 4 represents the running time comparison between the KD tree-based KNN and
exhaustive-based KNN.

Table 4. Algorithm running time comparison (unit: seconds).

Distance
Calculation

KNN Algorithm
Search Method

K Value

50 100 150

Euclidean
distance

KD tree-based 1.3346 × 10−4 1.5592 × 10−4 2.3757 × 10−4

exhaustive-based 1.8121 × 10−4 2.0652 × 10−4 2.4106 × 10−4

Manhattan
distance

KD tree-based 1.1571 × 10−4 1.3203 × 10−4 1.7362 × 10−4

exhaustive-based 1.7081 × 10−4 1.8351 × 10−4 1.9569 × 10−4

Chebyshev
distance

KD tree-based 1.0857 × 10−4 1.2173 × 10−4 1.5153 × 10−4

exhaustive-based 1.5446 × 10−4 1.7651 × 10−4 1.8902 × 10−4

As can be seen from Table 4 above, the KD tree-based KNN algorithm runs in less
time and the complexity of the algorithm is lower compared to the exhaustive-based KNN
algorithm. The application scenario of radio fuzing requires signal processing algorithms
with fast and strong real-time characteristics, so the KD tree-based KNN algorithm can
meet the requirements.

6. Conclusions

A method is proposed to classify and identify the target of a radio fuze and the
AM sweeping interference signal using third-order spectral features and to effectively
classify and identify the output signal of the detector under the action of the target and
the typical AM sweeping interference signal of an FM fuze. The third-order spectrum of
the signal contains not only the frequency information but also the phase information of
the signal compared with the second-order spectrum, which can extract the characteristic
information of the signal to a greater extent. To reduce the complexity of calculation, some
of the third-order spectral regions are selected for feature extraction, and the third-order
spectral amplitude means, third-order spectral amplitude entropy, and third-order spectral
singular spectral entropy are used as three-dimensional features. The results show that the
third-order spectral features-based radio fuze target and interference signal classification
and identification method can effectively identify the target and interference signal, and
the highest comprehensive recognition accuracy can reach 98.33%, which has important
reference significance for the research of radio fuze anti-interference design.
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