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Abstract: In this paper, we consider a multiperiod, two-location inventory system with unknown
demand distributions and perishable products. Products can be transshipped from the location with
excess inventory to the other with excess demand to better fulfill customer demand. The demand
distributions are assumed to follow a family of parametric distributions and can only be learned
on the fly. To address the challenge, we propose a data-driven inventory management algorithm
called DD2LI that achieves a good performance in terms of regret. This algorithm, DD2LI, employs
maximum likelihood estimation to approximate the unknown parameter and determines the order
quantity based on these estimations. In addition, we emphasize a key assumption that tightens
regret bound. Finally, we test the effectiveness of our proposed algorithm by conducting numerical
experiments for two scenarios.

Keywords: data-driven algorithm; transshipment; inventory management; regret analysis

1. Introduction

Inventory management research is a significant branch of operations research that
addresses the challenges businesses face in meeting customer demand while minimizing
costs associated with excess and insufficient inventory. The traditional newsvendor model
has long been a cornerstone of inventory management theory, providing a framework for
single-location inventory decisions under uncertainty. However, in today’s globalized and
interconnected business environment, companies often operate across multiple locations,
each with its own unique demand dynamics and inventory [1]. For instance, a clothing
store chain may operate multiple outlets in a city [2]. In this way, the store chain can
carry out transshipment if one store has excess inventory and another is experiencing a
stockout [3]. In such a system, efficient management of inventory across multiple locations
is vital to maintaining customer satisfaction and operational efficiency.

The current literature on inventory management and transshipment primarily presup-
poses a known demand distribution, hence the inventory managers can derive optimal
inventory levels and transshipment strategies [3,4]. Yet in practice, the specific form of the
demand distribution is generally unknown, and inventory decisions must be made based
on limited demand samples. This serves the starting point for research on data-driven
inventory management strategies that can adapt to unknown demand patterns. When
demand distribution is unknown a priori, inventory managers must learn the demand on
the fly and make inventory decisions by past demand data [5,6]. Despite the prevalence of
data-driven inventory management studies, current studies mainly focus on single-location
inventory decisions.
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Given the aforementioned challenges, this paper considers a multiperiod, two-location
inventory system with perishable products. The firm can incur a cost to transship excess
inventory in one location to the other experiencing stockout. The model with full demand
information has been explored in [3,4]. Our work differs from previous research by as-
suming the demand distributions are unknown and by proposing data-drive algorithms
tailored for the two-location inventory system. In this paper, the demand distributions in
the two locations are assumed to follow a parametric family of distributions and are un-
known a priori. Inventory decisions can only be made by past demand data. The objective
of our paper is to design an adaptive algorithm for two-location inventory systems and to
establish the theoretical performance of the algorithm.

Next, we summarize the main results of our work. First, we propose a parametric data-
driven algorithm called DD2LI, specifically designed for the two-location inventory system
with transshipment. This algorithm utilizes past demand data, employs maximum likeli-
hood estimation to approximate the unknown demand parameters, and determines the
order quantity based on the estimations. Second, we characterize the regret bound of our
proposed algorithm based on asymptotics of the maximum likelihood estimator. The regret
bound of our algorithm is O(

√
T) and can be strengthened to O(log T) with an addi-

tional assumption that the optimal order quantity is Lipschitz continuous with respect to
parameters. Finally, the proved regret bound is validated through numerical experiments.

There are two main contributions in this paper. First, we design adaptive inventory
control algorithms for two-location inventory systems with unknown demand distributions.
This algorithm holds significant practical value, given the common scenario of unknown
demand in real-world applications. We also hope that our study will offer valuable insights
to store managers tasked with inventory management across multiple locations. Second,
our paper is among the first to explore data-driven inventory management strategies for
problems with more than one location. The novelty of our work lies in the performance
analysis of DD2LI, where we bound the difference between expected cost functions using
demand parameters. We provide proof that our proposed algorithm achieves an optimal
convergence rate.

The remainder of this paper is organized as follows. The literature is reviewed in
Section 2. In Section 3, we outline the classic standard newsvendor model and the two-
location inventory system with transshipment. In Section 4, we present the formulation
of a multiperiod, two-location inventory system. In Section 5, we propose a data-driven
algorithm called DD2LI, and we present its performance analysis in the section Perfor-
mance Analysis. In Section 6, we present results of numerical experiments under two
scenarios. We conclude our paper in Section 7.

2. Literature Review

We review the relevant literature from two aspects: two-location inventory systems
with transshipment and data-driven inventory management.

2.1. Two-Location Inventory Systems with Transshipment

First, our paper relates to the literature on two-location inventory systems with trans-
shipment. Ref. [7] first introduced the concept of inventory sharing across multiple locations.
It is demonstrated that, when the demand at each location follows an independent normal
distribution, inventory sharing can reduce the system’s total cost to O

(
1/
√

n
)
, where n is

the number of locations, without considering transportation costs. Ref. [7] serves as a
foundation for expanding the standard newsvendor model to incorporate multilocation
extensions. An important research stream is the study of inventory transshipment. For a
comprehensive review, please refer to [8]. When multiple locations can adjust inventory
through transshipment, Ref. [9] studied a centralized transshipment network of n newsven-
dors, establishing the optimality of a base-stock policy. Refs. [10–13] conducted research on
optimal strategies for two-location production and sales systems, considering various set-
tings and using different demand and supply models. Ref. [14] examined single-warehouse
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multilocation inventory systems and proved that there are five possible optimal strategies.
Ref. [4] considered the impact of the manufacturer’s pricing on multi-retailer systems, find-
ing that the manufacturer’s profit is significantly influenced by whether the manufacturer
is the price setter or price taker in the presence of retailer inventory sharing. Recent litera-
ture has examined general multilocation systems. Ref. [15] investigated multi-warehouse,
multi-store systems with no external replenishment, designing asymptotically optimal
policy via Lagrangian relaxation. Ref. [16] applied distributionally robust optimization
to analyze a multilocation newsvendor network with demand ambiguity. The authors
applied a moment-based uncertainty set and derived inventory levels that minimize the
worst-case expected cost. Ref. [17] studied a multilocation inventory system with an addi-
tive or multiplicative random yield. They found the comparison between centralization
and decentralization hinges significantly on demand uncertainty.

Another important stream explores the strategic behavior of decentralized newsven-
dors. Ref. [3] investigated the behavior of two newsvendors maximizing profits through
mutual transshipment, deriving equilibrium order quantities and transshipment prices.
Ref. [18] explored the impact of demand information asymmetry and designed an opti-
mal information coordination mechanism. Ref. [19] developed a two-stage game model
to examine the inventory and end-of-season transshipment decisions between com-
peting retailers. Ref. [20] examined the impact of inventory transshipment network
structures on transshipment equilibria. Additionally, from a behavioral perspective,
Ref. [21] studied the transshipment equilibrium between bounded rational newsvendors.
Ref. [22] found that overconfidence could undermine the benefits brought by transship-
ment. Ref. [23] discovered from the practices of procurement managers that they tend to
order less when inventory sharing is involved. Based on this observation, the authors
in [23] constructed a behavioral model to explain this phenomenon.

The existing literature on inventory transshipment primarily assumes that the under-
lying demand distribution is known. We complement this line of research by developing
data-driven inventory control strategies for a two-location inventory system with trans-
shipment when the demand distribution is unknown a priori.

2.2. Data-Driven Inventory Management

Our work is also related to data-driven inventory management, particularly focusing
on the parametric stream. The data-driven research on inventory management can primar-
ily be categorized into two parts: one assumes that the demand distribution falls within a
specific parametric family, while the other approach does not make such an assumption.
Our work belongs to the former category. Early studies in this category are mainly based
on Bayesian dynamic programming. Ref. [24] assumed that the demand distribution was
generated from a certain parametric family with unknown parameters, but the posterior
distribution of the parameters could be obtained from demand samples, thereby modeling
inventory decisions as a Bayesian Markov decision process. Refs. [25,26] examined cases
where the demand distribution follows a specific parametric family. Ref. [26] provides
explicit solutions for inventory control strategies when the demand distribution follows the
Weibull distribution. Ref. [27] studied nonstationary demand process. Nevertheless, meth-
ods based on Bayesian Markov decision processes only guarantee the convergence of the
algorithm, providing no performance analysis compared to full information benchmarks.
The methods’ performances are solely described through limited numerical experiments,
offering only a partial understanding of their effectiveness.

Recent research on parametric methods utilizes maximum likelihood estimation (MLE)
and concentration inequalities to obtain the regret bound. Ref. [5] studied a joint pricing
and inventory management problem for perishable products with changing demand distri-
butions. The authors in [5] considered that the random error in the demand distribution
follows an exponential family distribution and then used the maximum likelihood esti-
mation to estimate the parameters of the exponential family distribution. Refs. [28,29] in-
vestigated joint pricing and inventory management with limited price adjustments and
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parametric demand. Ref. [29] provided the concentration properties of the maximum
likelihood estimator for censored demand. In addition, there are other research studies that
employ different underlying methods. Ref. [30] studied the network revenue management
problem, assuming a parameterized prior distribution for the demand. They designed an
algorithm based on Thompson sampling by calculating the Bayesian posterior distribution
from demand samples. Ref. [31] introduced operational statistics, which integrate demand
estimation and inventory optimization.

Contrary to existing studies that mainly investigate single-location inventory problems,
our work contributes to the literature by proposing a parametric learning algorithm tai-
lored for two-location inventory systems. Moreover, we have successfully established the
performance of our algorithm and validated its effectiveness through numerical experiments.

3. Preliminaries
3.1. The Standard Newsvendor Model

This section provides a review of the setup and solution to the standard newsvendor
model. For a more comprehensive review of the newsvendor model, readers may refer
to [32,33].

The newsvendor model assumes that the demand distribution for a product is stochas-
tic, represented by the random variable D. At the beginning of the period, the risk-neutral
newsvendor must decide on the order quantity y. The product has a fixed unit retail price of
p, a unit purchase cost of c (with p > c), and, for simplicity, the salvage cost is normalized
to zero.

For a real number x, let x+ represent max{x, 0}. The expected profit of the newsvendor,
denoted as Π(y), is a function of the order quantity y. It is defined as follows:

Π(y) = pEmin{y, D} − cy.

When D is a continuous random variable, Π is differentiable. Setting the derivative of
Π to zero, it can be found that the optimal order quantity y∗ satisfies the equation

F(y∗) =
p− c

p
,

which shows that the optimal order quantity is the (p − c)/p quantile of the demand
distribution.

3.2. Two-Location Inventory System with Transshipment

To fulfill demand efficiently and maximize profits, a firm operating two outlets can
carry out transshipments whenever a stockout occurs in one location, while excess stock is
available at the other location.

We follow the framework established by [4]. Consider two retailers designated as i and
j (where j = 3− i). The two retailers are operated by a single firm. In the event of a stockout
at one location, excess demand can be met through transshipment if another location has
surplus inventory. We represent the random demand in the two locations as D1 and D2.
It is assumed that the demands are continuous random variables, each characterized by
differentiable cumulative distribution functions F1 and F2, as well as continuous probability
density functions f1 and f2.

A central planner decides the order quantity y1 and y2 for the two locations. The prod-
uct has a unit price p and a unit purchase c (with p > c), and transshipment can be carried
out at a cost of τ.

The transshipment quantity between the two retailers is the minimum of excess
demand and demand shortage. It can be expressed as min{(D1 − y1)

+ + (D2 − y2)
+,

(y1 − D1)
+ + (y2 − D2)

+}.
The central planner aims to maximize the per-period expected profit:
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Q(y1, y2) = E[p(min{D1, y1}+ min{D2, y2})]− c(y1 + y2)

+E[(p− τ)min{(D1 − y1)
+ + (D2 − y2)

+, (y1 − D1)
+ + (y2 − D2)

+}]
= −E

{
(p− c− τ)(D1 + D2 − y1 − y2)

+ + τ[(D1 − y1)
+ + (D2 − y2)

+]
}

(1)

+ (p− c)E[D1 + D2].

The expected profit comprises three components: the expected revenue generated
from direct sales at both locations, minus the associated costs, and the additional revenue
obtained through transshipment.

The equality (1) follows from the observation that

min{(D1 − y1)
+ + (D2 − y2)

+, (y1 − D1)
+ + (y2 − D2)

+}
= min{D1 + D2, y1 + y2} − (min{D1, y1}+ min{D2, y2}),

and the fact that min{a, b} = a− (a− b)+ and a = b− (b− a)+ + (a− b)+.
Taking partial derivatives of Q with respect to y1, y2, we obtain

∂Q
∂y1

= p− c− (p− c− τ)F12(y1 + y2)− τF1(y1),

∂Q
∂y2

= p− c− (p− c− τ)F12(y1 + y2)− τF2(y2)

and

∇2Q =

[
−(p− c− τ) f12(y1 + y2)− τ f1(y1) −(p− c− τ) f12(y1 + y2)

−(p− c− τ) f12(y1 + y2) −(p− c− τ) f12(y1 + y2)− τ f2(y2)

]
,

where and F12, f12 represent the distribution function and probability density function of
D1 + D2, respectively.

Following the analysis in [4,9], we claim that Q(y1, y2) is jointly concave in (y1, y2), and
the profit-maximizing central planner chooses optimal order quantity (y∗1 , y∗2) satisfying
the first order condition if the distributions of D1 and D2 are known:

∂Q
∂y1

(y∗1 , y∗2) = 0,
∂Q
∂y2

(y∗1 , y∗2) = 0.

4. Problem Formulation

In this section, we consider a T-period two-location inventory system with parametric
demand distributions.

For each period t = 1, 2, . . . , T, we denote D1
t , D2

t as the demand distributions for
the two locations and d1

t , d2
t as their realizations. For ease of exposition, we introduce the

random vector Dt = (D1
t , D2

t ) and its realization dt = (d1
t , d2

t ). Specifically, we assume
D is parameterized by θ ∈ Θ ⊂ Rk, where Θ is a compact subset of Rk and represents
the domain of θ. We denote this parameterized demand distribution as D(θ) and its
corresponding probability density function as f (d; θ).

We make the following assumptions about the demand distributions.

Assumption 1. The random vector Dt is independently and identically distributed (i.i.d.) across
time period t.

Assumption 2. The family of distributions { f (d; θ) : θ ∈ Θ)} is identifiable: the probability
function f (d; θ1) ̸= f (d; θ2) for θ1 ̸= θ2.
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Assumption 3. The Fisher information matrix I(θ) is bounded and positive definite. I(θ) is
defined by

[I(θ)]ij = E
[
− ∂2

∂θi∂θj
logLθ(D)

]
,

where Lθ(D) is the likelihood function.

Assumption 1 assumes the demand process is stationary. This assumption is com-
mon in inventory literature [6,34,35]. Assumption 2 assumes the family of parametric
demand distributions under consideration is identifiable, ensuring that each parameter
vector uniquely determines the corresponding probability distribution. Identifiability is
an important concept in mathematical statistics, and it has been extensively employed
in the literature [36]. Assumption 3 ensures the convergence of the maximum likeli-
hood estimator (MLE). Notably, exponential family distributions inherently satisfy both
Assumptions 2 and 3. Consequently, the analysis presented in our paper applies to a wide
range of common parametric distribution families.

At the beginning of each period t, the central planner decides the order quantities
yt = (y1

t , y2
t ) for both outlets. The central planner has no knowledge of the true underlying

demand distribution a priori but can rely on historical demand data and make adaptive
inventory decisions based on the available information.

In this work, we consider only perishable products, implying there are no inventory
carryovers across periods. Therefore, in each period t, the central planner collects the profit
(p− c− τ)(d1

t + d2
t − y1− y2

t )
+ + τ[(d1

t − y1
t )

+ + (d2
t − y2

t )
+] + (p− c)(d1

t + d2
t ). We define

Q(yt, θ) as the per-period expected profit function when the order quantity is yt and when
the demand parameter is θ:

Q(yt, θ) = −ED∼D(θ)

{
(p− c− τ)(D1

t + D2
t − y1

t − y2
t )

+ + τ[(D1
t − y1

t )
+ + (D2

t − y2
t )

+]
}

+ (p− c)E[D1
t + D2

t ].
(2)

Let {Ht : t ≥ 0} represent the sequence of filtrations generated by demand data
and decisions accumulated up to time t. Precisely, Ht is defined as the sigma algebra
σ(yk, dk : k = 1, 2, . . . , t) with H0 = ∅. A feasible policy ϕ is a sequence of functions
yt = ϕ(Ht−1), which maps the historical information to current inventory decisions.

According to the analysis in Section 3.2, if the underlying demand distribution is
known, then there exists an order quantity y∗ that maximizes the per-period profit, i.e.,
y∗ = arg max

y
Q(y, θ). In the system with perishable products, the optimal policy is a

myopic policy ϕ∗ that sets the order quantity as y∗ = (y∗1 , y∗2). We refer to y∗ as the
clairvoyant optimal solution and ϕ∗ as the clairvoyant optimal policy.

To measure the performance of data-driven policy ϕ, we use regret as the criterion,
which is defined as the expected total profit loss incurred by ϕ when compared to the
clairvoyant optimal policy ϕ∗:

RT(ϕ) = Q(y∗, θ)−E
[

T

∑
t=1

Q(yt, θ)

]
. (3)

Regret is a widely adopted metric in the literature on data-driven inventory man-
agement [6,29,37]. The metric quantifies the reduced profit caused by a lack of demand
information. A lower regret value indicates a more effective policy. Thus, the central
planner’s goal is to devise an algorithm that minimizes regret.

Finally, we make the following assumptions about the problem.

Assumption 4. The clairvoyant optimal order quantity y∗ is upper-bounded by M > 0: y∗1 ,
y∗2 ≤ M.
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Assumption 5. The profit function Q(y, θ) is Lipschitz continuous with respect to θ: there exists
a constant L1 > 0 such that |Q(y, θ1)−Q(y, θ2)| ≤ L1∥θ1 − θ2∥2 for θ1, θ2 ∈ Θ.

Assumption 6. y∗(θ) is Lipschitz continuous with respect to θ: there exists a constant L2 > 0
such that ∥y∗(θ1)− y∗(θ2)∥2 ≤ L2∥θ1 − θ2∥2 for θ1, θ2 ∈ Θ, where y∗(θ) is the optimal order
quantity given the demand parameter θ.

Assumption 4 is mild. It claims the clairvoyant optimal order quantity is upper-
bounded, which can be met with common demand distributions. This assumption facili-
tates our theoretical analysis. Assumption 5 assumes that the per-period profit function
exhibits Lipschitz continuity with respect to demand parameters. This assumption suggests
that an accurate estimation of the unknown demand parameter can lead to a close approxi-
mation of the actual per-period profit function. Assumption 6 assumes the optimal order
quantity is Lipschitz continuous with respect to demand parameters. This assumption
implies that minor changes in the parameter will not result in significant variations in the
optimal order quantity. Similar assumptions can be found in [5,29].

While Assumption 6 is not an absolute necessity for our algorithm, it plays a pivotal
rule in improving the regret bound. We remark that, although Assumption 6 is generally
satisfied in most situations, there exist degenerate cases where it may not hold true by the
following example.

Example 1. Consider a two-location system where one location’s demand is equal to zero and
where the demand distribution in the other location is a Bernoulli distribution with a cumulative
distribution function (CDF)

F(0) = (p− c)/p + θ, F(1) = 1,

where θ is the parameter under consideration. For a small enough ϵ > 0, the slight change in θ from
θ = −ϵ to θ = ϵ will lead to a shift in its optimal order quantity, from 1 to 0.

5. Data-Driven Inventory Control Algorithms

Without any knowledge of the true underlying distribution of Dt a priori, we aim to
find a provably good, adaptive, data-driven inventory control policy that makes the total
expected system profits close to the optimal strategy. In this section, we introduce the data-
driven algorithm DD2LI (Data-Driven Two-Location Inventory Management Algorithm)
and prove its theoretical performance.

Detailed steps of DD2LI are presented below.
DD2LI: Data-Driven Two-Location Inventory Management Algorithm

Step 0. (Initialization.) In period t = 1, order an initial quantity y1 = 0 or select any other
permissible value. Collect demand d1 and initialize the demand dataset S = {d1}
to be the available demand data up to decision time.

For each period t = 2, 3, . . . , T, repeat the following steps:

Step 1. (Maximum Likelihood Estimation.) Given the past demand dataset S, compute the
maximum likelihood estimation of parameter θ:

θ̂t−1 = arg max
θ∈Θ

t−1

∑
i=1

log f (di; θ). (4)

Step 2. (Order Quantity Optimization.) Using the estimated parameter θ̂t−1 from Step 1,
compute yt = arg max

y
Q(y, θ̂t−1), and order yt for the current period t.

Step 3. (Demand Data Update.) Observe the realized demand dt, and update the demand
dataset S by adding the new data point: S← S ∪ {dt}.
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Throughout the algorithm, we maintain a set containing past demand data that can be
used to make adaptive inventory decisions. In Step 1, given the available demand data,
we compute the MLE of the unknown demand parameter constrained on the compact
parameter set Θ. In Step 2, we use the MLE estimator to obtain an empirically optimal
order quantity and implement it. Lastly, in Step 3, we update the demand dataset.

Performance Analysis

In this subsection, we analyze the performance of our proposed algorithm. To fa-
cilitate our analysis, we initially introduce several lemmas that serve as useful tools in
our investigation.

Lemma 1 is the direct result of Theorem 36.3 in [36].

Lemma 1. Defining θ̌t as the unconstrained maximum likelihood estimator given demand data
{d1, d2, . . . , dt}:

θ̌t = arg max
θ

t

∑
i=1

log f (di; θ),

then there exists the positive constant K1, K2 > 0, such that, for ϵ > 0,

P(
√

t∥θ̌t − θ∥2 ⩾ ϵ) ≤ K1e−K2ϵ2
. (5)

It is well-known in mathematical statistics that maximum likelihood estimators are
asymptotically normal under proper conditions. Additionally, Lemma 1 provides a further
concentration inequality pertaining to MLE, which plays a vital role in performance analysis.

Corollary 1. For ϵ > 0, the projection onto Θ of the maximum likelihood estimator θ̂t defined in
(4) satisfies

P(∥θ̂t − θ∥2 ≥ ϵ) ≤ K1e−tK2ϵ2
.

Proof. Note ∥θ̌t − θ∥2 ≥ ∥θ̂t − θ∥2 ⇒ P(∥θ̂t − θ∥2 ≥ ϵ) ≤ P(∥θ̌t − θ∥2 ≥ ϵ). Replacing ϵ
with

√
tϵ in (5) yields the result.

Below, we introduce a lemma that is widely used in probability. Lemma 2 states the
expectation of X can be obtained by the integral of its survival function.

Lemma 2. Suppose a continuous random variable X ∼ F(·) is nonnegative; if E[X] < ∞, then

E[X] =
∫ ∞

0
[1− F(x)]dx.

Proof. We relegate the detailed proof of Lemma 2 to Appendix A.1.

Theorem 1 below presents one of the main results in our paper.

Theorem 1. With Assumption 6, there exists some positive constant A1 > 0 such that, for T ≥ 1,

RT = Q(y∗, θ)−E
[

T

∑
t=1

Q(yt, θ)

]
≤ A1 log T,

where yt is the order quantity generated by algorithm DD2LI.

Proof. First, we apply Taylor’s expansion to Q(yt, θ) at the maximizer y = y∗,

Q(yt, θ) = Q(y∗, θ) + ⟨∇yQ(y∗, θ), yt − y∗⟩
+ ⟨yt − y∗,∇2

yQ(ξyt + (1− ξ)y∗, θ)(yt − y∗)⟩, ξ ∈ [0, 1].
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Since Q(y, θ) is maximized at y = y∗, we have ∇yQ(y∗, θ) = 0.
In addition, given Assumption 4, we claim that ∇2Q is continuous and hence upper-

bounded in a compact set. Therefore, we get the inequality that there exists a constant
K3 > 0 such that

|Q(yt, θ)−Q(y∗, θ)| ≤ K3∥yt − y∗∥2
2 ≤ L2K3∥θ̂t − θ∥2

2. (6)

The second inequality follows from Assumption 6.
Next, we define an event E1 by

E1 =

{
∥θ̂t − θ∥2 <

√
log t
K2t

}
. (7)

According to Corollary 1, we have

P(E1) > 1− K1

t
, P(E c

1) ≤
K1

t
.

Now, we decompose E[∥θ̂t − θ∥2
2] by event E1:

E[∥θ̂t − θ∥2
2] = P(E1)E[∥θ̂t − θ∥2

2 | E1] + P(E c
1)E[∥θ̂t − θ∥2

2 | E c
1 ]

≤ E[∥θ̂t − θ∥2
2 | E1] +

K1

t
(diam Θ)2 (8)

≤
∫ log t/(K2t)

0
K1e−tK2ϵdϵ +

K1

t
(diam Θ)2 (9)

≤ K4

t
. (10)

The inequality (8) follows from P(E1) ≤ 1,P(E c
1) ≤ K1/t and ∥θ̂t − θ∥2 ≤ diam Θ.

Here, diam Θ = max
θ1,θ2∈Θ

∥θ1 − θ2∥2 is the diameter of the set Θ. The inequality (9) is due to

Lemma 2 and Corollary 1. By inequality (10), we claim the result is bounded by O(1/t).
Combining (6) and (10) yields

Q(y∗, θ)−E
[

T

∑
t=1

Q(yt, θ)

]
≤

T

∑
t=1

E[|Q(y∗, θ)−Q(yt, θ)|]

≤ L2K3

T

∑
t=1

E[∥θ̂t − θ∥2
2]

≤ L2K3K4

T

∑
t=1

1
t

.

Recall a well-known result in mathematical analysis that the sequence

f (n) =
n

∑
k=1

1
k
− log n

converges to Euler’s constant as n→ ∞, which indicates
T

∑
t=1

1
t
∼ log T. Hence, we claim

the theorem holds.

Theorem 1 states the regret bound is O(log T) if Assumption 6 holds. According
to [37], it will never be possible to find a policy with a regret smaller than O(log T). Hence,
our proposed algorithm can achieve the best possible regret bound.

In contrast, for cases where Assumption 6 does not hold, we have the following
theorem:
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Theorem 2. Without Assumption 6, there exists some positive constant A2 > 0 such that,
for T ≥ 1,

RT = Q(y∗, θ)−E
[

T

∑
t=1

Q(yt, θ)

]
≤ A2

√
T,

where yt is the order quantity generated by algorithm DD2LI.

Proof. First, we decompose the per-period regret E[Q(y∗, θ)−Q(yt, θ)] into three parts:

E[Q(y∗, θ)−Q(yt, θ)] = E[Q(y∗, θ)−Q(y∗, θ̂t)] +E[Q(y∗, θ̂t)−Q(yt, θ̂t)]

+E[Q(yt, θ̂t)−Q(yt, θ)].
(11)

Since Q(·, ŷt) is maximized at y = yt, the second part in (11) is

E[Q(y∗, θ̂t)−Q(yt, θ̂t)] ≤ 0. (12)

For the first and third parts, by Assumption 5 we have

E[Q(y∗, θ)−Q(y∗, θ̂t)] +E[Q(yt, θ̂t)−Q(yt, θ)] ≤ 2L1E[∥θ̂t − θ∥2]. (13)

Recall the definition of E1 in (7). Now, we decompose E[∥θ̂t − θ∥2] by event E1:

E[∥θ̂t − θ∥2] = P(E1)E[∥θ̂t − θ∥2 | E1] + P(E c
1)E[∥θ̂t − θ∥2 | E c

1 ]

≤ E[∥θ̂t − θ∥2 | E1] +
K1

t
diam Θ

≤
∫ √log t/(K2t)

0
K1e−tK2ϵ2

dϵ +
K1

t
diam Θ (14)

≤ K5√
t
. (15)

Since
∫ ∞

0 e−tϵ2
=
√

π

2
√

t
, the integral in (14) can be bounded by O(1/

√
t). By (15), we

claim the result is bounded by O(1/
√

t).
Combining (11), (12), (13), and (15) yields

Q(y∗, θ)−E
[

T

∑
t=1

Q(yt, θ)

]
≤ 2L1

T

∑
t=1

E[∥θ̂t − θ∥2]

≤ 2L1K5

T

∑
t=1

1√
t

≤ 4L1k5
√

T,

where the last inequality follows from the fact
T

∑
t=1

1
t
≤ 2
√

T.

By comparing the proofs of Theorems 1 and 2, it is shown that Assumption 6 serves to
strengthen the continuity between per-period profit function and the parameter (see the
difference between (6) and (13)). Specifically, the inclusion of Assumption 6 allows for a
more precise estimation of the per-period profit function compared to scenarios where this
assumption is not applicable.

In addition, we remark on the analogy between Assumption 6 in our paper and
Assumption (iii) in [37]. As discussed in [38], the absence of a key assumption about the
optimal quantity and the parameter will lead the cumulative regret to change from O(log T)
to O(

√
T).

Overall, in this section, we have proposed the algorithm DD2LI and proved its regret
bound. The algorithm’s regret bound is at least O(

√
T) under proper conditions. Further-
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more, with a stronger assumption about the optimal quantity’s continuity with respect to
the parameter, we are able to further enhance the regret bound to O(log T). These regret
bounds demonstrate that our algorithm is close to the optimal strategy on average when
the time periods are large enough.

6. Numerical Experiments

In this section, we conduct numerical experiments for two scenarios. Following [39],
we measure the performance of a learning algorithm by the percentage of relative regret
defined as

RT
T ·Q(y∗, θ)

× 100%.

In both scenarios, we set unit price p = 10, unit cost c = 3, and unit transshipment
cost τ = 1.

In the first scenario, we consider that the demand distributions in the two locations
follow exponential distributions Exp(λ1) and Exp(λ2). Hence, the demand parameter
θ = (λ1, λ2).

Given the demand data up to period t, the parameters λ1, λ2 can be estimated by

λ̂1,t =
t

∑t
k=1 d1

k
, λ̂2,t =

t
∑t

k=1 d2
k

.

For two parameter sets, we conduct N = 100 runs and compute the average. The re-
sults are shown in Figures 1 and 2.

0 25 50 75 100 125 150 175 200
T
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0.2
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0.7
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ta

ge
 o

f r
eg

re
t

average percentage of regret
0.88log T/T

Figure 1. Curve of average percentage of regret in Scenario 1 with λ1 = 2 and λ2 = 3.

The blue curves in Figure 1 and Figure 2 show the average percentage of regret for
(λ1, λ2) = (2, 3) and (λ1, λ2) = (0.5, 0.2), respectively, while the red dashed curves in the
two figures represent function 0.88 log T

T and 0.7 log T
T , respectively. This comparison shows

that the regret of our proposed algorithm is close to the rate of O(log T).
In the second scenario, we consider that the demand distributions in the two locations

follow a multivariate normal distribution with mean vector (µ1, µ2) and covariance matrix[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
. Hence, the parameter θ =

(
(µ1, µ2),

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

])
. Note that, in this

scenario, the demand distributions in the two locations may be correlated.
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Figure 2. Curve of average percentage of regret in Scenario 1 with λ1 = 0.5 and λ2 = 0.2.

Given the demand data up to period t (t ≥ 2), the parameters can be estimated by

µ̂1,t =
∑t

k=1 d1
k

t
, µ̂2,t =

∑t
k=1 d2

k
t

σ̂2
1,t =

∑t
k=1(d

1
k − µ̂1,t)

2

t− 1
, σ̂2

2,t =
∑t

k=1(d
2
k − µ̂2,t)

2

t− 1
, ρ =

∑t
k=1(d

1
k − µ̂1,t)(d2

k − µ̂2,t)

t− 1

.

For two parameter sets, we conduct N = 100 runs and compute the average. The re-
sults are shown in Figures 3 and 4.
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Figure 3. Curve of average percentage of regret in Scenario 2 with µ1 = 8, µ2 = 12, σ2
1 = 4, σ2

2 = 9,
and ρ = 0.1.
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Figure 4. Curve of average percentage of regret in Scenario 2 with µ1 = 5, µ2 = 6, σ2
1 = 1, σ2

2 = 4, and
ρ = −0.5.

The blue curves in Figure 1 and Figure 2 show average percentage of regret for
µ1 = 8, µ2 = 12, σ2

1 = 4, σ2
2 = 9, ρ = 0.1 and µ1 = 5, µ2 = 6, σ2

1 = 1, σ2
2 = 4, ρ = −0.5,

respectively, while the red dashed curves in the two figures represent functions 0.32 log T
T and

0.28 log T
T , respectively. This comparison shows that the regret of our proposed algorithm is

close to the rate of O(log T), and it is also applicable to correlated demands.
Based on the outcomes of four experiments, we can also conclude that Assumption 6

holds when demand follows exponential distributions or Gaussian distributions.

7. Conclusions

When a firm operates multiple stores, to better fulfill customer demand and make more
profit, transshipment can be carried out if one location has excess inventory while another
is experiencing a stockout. Despite the extensive research on transshipment between
newsvendors, most assume the demand distribution is known a priori.

In this work, we introduce a data-driven inventory management algorithm for a
multiperiod, two-location inventory system with perishable products and unknown de-
mand distributions, which are assumed to follow a family of parametric distributions.
The proposed algorithm, called DD2LI, uses past demand data to make adaptive inventory
decisions. By using maximum likelihood estimation to estimate the unknown parameters,
the algorithm determines the order quantity based on these estimations. We successfully
derive the regret bound of the proposed algorithm under proper assumptions, which shows
the algorithm is close to the optimal strategy on average. Additionally, we emphasize the
assumption that the continuity of optimal order quantity with respect to parameters plays
a key role in a tighter regret bound. Finally, to validate the effectiveness of our proposed
algorithm, we conduct numerical experiments in two distinct scenarios.

There are several future research directions. First, future studies can design algorithms
for two-location inventory systems when demand data are censored. Note that the demand
censoring may be more intricate in two-location inventory systems with transshipment
than in the single-location newsvendor problem. Second, while our work considers the
stationary demand process, it is worth exploring algorithms that handle shifting demand.
Third, our work only considers two locations, which restrict its use in practice. Future
research can try to design algorithms for more complex inventory networks.
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Appendix A

Appendix A.1. Proof of Lemma 2

Proof. Because the cumulative distribution function gives the probability of a random
variable being smaller than a given value, we can obtain FX(x) = Pr(X ≤ x), and then
we have 1− FX(x) = Pr(X > x) such that

∫ ∞
0 (1− FX(x))dx =

∫ ∞
0 Pr(X > x). By the

probability density function, it can be written as follows:∫ ∞

0
(1− FX(x))dx =

∫ ∞

0

∫ ∞

x
fX(z)dzdx

=
∫ ∞

0

∫ z

0
fX(z)dxdz

=
∫ ∞

0
fX(z)

∫ z

0
dxdz

=
∫ ∞

0
z · fX(z)dz.

Then, we apply the definition of the expectation and obtain∫ ∞

0
(1− FX(x))dx =

∫ ∞

0
z · fX(z)dz = E[X].

This completes the proof.
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