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Abstract: Disaster management requires efficient allocation of essential facilities with consideration
of various objectives. During the response and recovery phase of disaster management (RRDM),
various types of missions occur in multiple periods, and each of them needs different support from
facilities. In this study, a bi-objective mathematical model was derived to support multi-period
RRDM by optimal allocation of required facilities such as drone stations, shelters, emergency medical
facilities, and warehouses according to the mission life cycle. Connectivity between facilities was
considered to ensure inter-facility complementarity. For efficient derivation of Pareto solutions, a
modified epsilon-constraint algorithm for bi-objective optimization was developed. The algorithm
was tested with a realistic disaster simulation scenario using HAZUS 4.0 as a demonstration of the
benefits of the proposed approach. With the simulation experiments, the proposed approach was
expected to provide efficient operational plans and guidelines to decision makers for the bi-objective
optimization problem in RRDM systems. In addition, the consideration of inter-facility connectivity
can play an important role in the RRDM, especially for robustness and readiness.
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1. Introduction

According to the Centre for Research on the Epidemiology of Disasters (CRED),
disasters inflict high losses of both life and property. Disasters occurring between 2005
and 2014 caused damage to property estimated at 1.4 trillion USD and affected 1.7 billion
people [1]. More seriously, large-scale disasters will occur more frequently in the future
due to unplanned urbanization, environmental degradation, pandemics, and climate
change. Thus, disaster management systems that can perform their required missions more
efficiently are absolutely necessary in order to recover more agilely from damage.

Comprehensive disaster management is commonly described in terms of four pro-
grammatic phases: preparation, response, recovery, and mitigation [2,3]. The first phase of
the disaster management cycle is preparation, in which, prior to a disaster’s occurrence,
plans are prepared for various types of disasters that could strike within the area of respon-
sibility. The next phase is response, which takes place immediately after a disaster and
involves a wide range of activities such as warning, evacuation, life saving, detection of
further damage, distribution of emergency relief, etc. Next is the recovery phase, which
focuses on longer-term responses to the disaster such as cleanup and rebuilding. The
final phase is mitigation, which is activated to prevent similar disasters and their damages
from reoccurring.

Over the course of all four phases of disaster management, different types of missions
are accomplished. Figure 1 shows the various missions conducted sequentially as part of
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the overall disaster management process. Although every phase is vital in disaster manage-
ment, the combined response and recovery phase of disaster management (RRDM) focuses
crucially on post-disaster activities that can minimize the economic and human impacts
of disasters and accelerate, as well as facilitate, a return to ordinary life. Especially in the
RRDM, warnings to and evacuation of threatened populations are conducted immediately
after a disaster occurs. Shelters are opened, and emergency rescue, medical care, and relief
distributions are conducted simultaneously. Also, infrastructure restoration and rebuilding
is performed in sequence. Due to the dual, simultaneous, and time-sequential nature of
the RRDM, it is essential to understand required missions that sequentially occur and to
construct facility networks in a timely manner in order to efficiently handle the disaster
and minimize the impact on society.
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Figure 1. Summary of four-phase disaster management cycle. (Graphically modified from Altay and
Green [4]).

The majority of missions in the RRDM require high flexibility for facility allocation
and accessibility to disaster areas as access thereto generally is limited due to destruction of
infrastructure such as road and telecommunication systems. Also, in disaster areas, there
are many uncertainties, such as the risk of further disaster, the occurrence of unexpected
events generally, and emergencies. One of the significant advances that has improved
flexibility and accessibility is unmanned aerial vehicles (UAVs), also known as drones.
UAVs are widely used for both commercial and civil missions; for example, they provide
border security, coastguard, firefighting, emergency rescue, distribution infrastructure,
monitoring, aerial photography, and communication relay services [5]. Such advantages
recommend UAVs for use in disaster management, especially for integration in RRDM
scenarios to prevent the spread of damage and to facilitate quick recovery. For example,
Vincenzi et al. [6] applied UAVs to the RRDM in search, rescue, and disaster relief roles
and verified the benefits of UAVs in the management of historical disaster events (such as
California wildfires, hurricanes in Mississippi, and Washington state landslides) generally
and in real-time imagery, firefighting, and search and rescue functions specifically.

However, drones and small-sized UAVs have a fundamental dependence on limited
energy sources (e.g., batteries or fuels), which shortens their endurance and, so too, their
capacity to continuously execute missions [7]. These limitations can be alleviated by
locating battery recharge/replacement stations across the disaster area. In such cases,
discharged drones will visit one of these stations, recharge, and return to their missions.
The goal of this study was to optimize facility allocation for application of UAVs in the
RRDM. The facility allocation problem includes various facility types (such as drone
stations, shelters, emergency medical facilities, and warehouses) to support search, rescue,
evacuation, and medical services in the RRDM. As candidate locations for facilities, existing
social infrastructures including auditoriums, schools, hospitals, and warehouses will be
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considered. In order to find optimal solutions, a bi-objective mathematical model along
with a modified epsilon-constraint algorithm is proposed.

2. Literature Review

With the increasing importance of disaster management, various studies have been
conducted to address the key issue of important facility allocation. In this context, the
determination of shelter, emergency medical facilities, and warehouse locations has been
intensively studied to minimize loss in terms of both human lives and economic damage
and to facilitate recovery from disasters. The goal of the facility location problem is to
determine the location of shelter facilities to which threatened people in dangerous places
can be evacuated [8]. Sherali et al. [9] developed nonlinear mixed-integer programming to
minimize total congestion-related evacuation time under hurricane and flood conditions.
For optimality, an exact algorithm was developed based on the Benders’ decomposition
method, and the proposed model and algorithm were verified with a Virginia Beach
test problem. Kongsomsaksakul et al. [10] developed a bi-level mathematical model to
design a shelter location and allocation network. In the upper-level problem, the authority
determines the location of shelters with the objective of minimizing total evacuation time.
In the lower level, evacuees choose the shelter and evacuation route. As the solution
approached, a genetic algorithm was developed. Kar and Hodgson [11] suggested the use
of a geographic information system (GIS) to score the suitability of emergency evacuation
shelters in Southern Florida. Saadatseresht et al. [8] developed a multi-objective evacuation
planning method for the determination of shelter utilization and travelling distance, along
with an evolutionary algorithm to find Pareto-optimal solutions.

Locating emergency medical resources is another significant issue that has a direct
association with saving human lives, and thus, many studies have been conducted to
locate emergency medical resources, such as ambulances and medical facilities. Alsal-
loum and Rand [12] suggested goal programming as a means of locating emergency
vehicles and thereby maximizing coverage of expected demand while minimizing vehicle
number. Their developed model has been used to evaluate locations in Saudi Arabia.
Rajagopalan et al. [13] considered dynamic redeployment of ambulances with fluctuating
demand for time. Their proposed model pursued the minimum number of ambulances
and their locations for each time cluster and validated their initial findings by simulation
experiments. From the perspective of emergency medical facilities, Paluzzi [14] addressed
a P-median-based heuristic location model for locating emergency service facilities in
Carbondale. The goal of this model was to determine the optimal locations of emergency
service facilities while minimizing the total aggregated distance between demand points
and facilities. The effectiveness of the proposed model was validated by comparison with
different types of location models. Jia et al. [15] proposed a general medical-service facility
location model for large-scale emergencies such as earthquakes and terrorist attacks. The
model can be cast as a covering model, a P-median model or a P-center model. The model
was tested with illustrative examples in the Los Angeles area. Ko et al. [16] designed a
system for determining the location, capacity, and capability of emergency medical facili-
ties, considering multiple types of emergency diseases with corresponding survival rate
functions. Fiedrich et al. [17] addressed the issue of emergency resource allocation after
an earthquake disaster to minimize the total number of fatalities during the initial search
and rescue period. A dynamic optimization model was developed to calculate the resource
performance and efficiency for tasks related to the response. In addition, Fiedrich and
Burghardt [18] introduced the use of an agent-based system for disaster management for
more timely and enhanced data acquisition, information production, decision support, and
action coordination. More recently, Sharma et al. [19] addressed location and allocation
issues regarding temporary blood facilities for post-disaster periods with the objective
of minimizing maximum distance between new facilities, permanent blood centers, and
temporary blood centers.
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The main goal of response missions in the RRDM is to provide in-time relief goods
such as food, medicine, and hygiene products to affected areas [20,21]. Therefore, ware-
house location design must be optimized to enable efficient transport of relief goods from
suppliers to disaster victims. Barzinpour and Esmaeili [22] developed a location model
for relief chains in disaster management and addressed a multi-objective problem in order
to minimize setup costs for facilities and transportation costs while maximizing cumula-
tive coverage for a population. Mete and Zabinsky [23] considered the issue of medical
supply location and distribution in disaster management, following a two-stage stochastic
programming approach. In the first stage, the locations of warehouses and their inventory
decisions were determined with the objective of minimizing the total cost of warehouse op-
eration. In the second stage, transportation plans and demand satisfaction were addressed
by minimizing the total transportation cost and unsatisfied demand. Moshref-Javadi and
Lee [24] proposed a location-routing model for the minimization of total latency as a tool
for the distribution of supplies to affected areas in post-disaster relief contexts. As a solu-
tion approach, they proposed a memetic algorithm and a recursive granular algorithm to
find the most feasible solutions within a reasonable time. Rabiei et al. [25] focused on the
assignment of volunteers in the post-disaster phase. Unmet triage needs and unsatisfied
preferences of volunteers are formulated and considered as objective functions. Recently,
Wang et al. [26] developed a two-stage distributionally robust optimization model for
disaster relief logistics. The fixed costs of making contracts with suppliers, relief resource
reservation, and pre-positioning relief resources are considered as systemic costs of relief
logistics. To handle probability distribution of demand, a two-stage robust optimization
model is developed.

In order to perform RRDM missions in a timely manner, UAV applications are strongly
emphasized, due specifically to their high flexibility and accessibility. Vincenzi et al. [6]
introduced the role of UAVs in RRDM efforts such as search, rescue, and disaster relief.
Various UAV applications have been investigated: rescue missions in disasters [27], aerial
imaging for post-disaster assessment [28], routing for continuous monitoring [29], commu-
nication systems for disaster recovery [30], and others. However, the issue of locating UAV
battery recharge/replacement stations in disaster management has rarely been addressed.
Kim and Morrison [31] tackled the UAV system design issue for search and patrol missions,
deriving station location, UAV number per station, and UAV schedules simultaneously.
Bor-Yaliniz et al. [32] suggested an approach for determining the efficient placement of
aerial base stations. They considered the use of low-altitude UAVs to construct cellular
networks for cases of unexpected events and developed and tested a mathematical formu-
lation for the location of aerial base stations to maximize network revenue. However, all
of the above studies took a short-term perspective unsuitable for long-duration RRDM.
Also, there is uncertainty with respect to UAV flight distance. Kim et al. [33] addressed the
stochastic facility location issue for UAVs with consideration of uncertain flight distances.
Masroor et al. [34] suggested a multi-criterion optimization model for efficient deploy-
ment of UAVs for disaster management. The model pursues the maximization of users’
connectivity while considering the minimum number of UAVs deployed. And recently,
the effectiveness of drones in emergency situations was investigated by Zhang et al. [35].
The use and effectiveness of drones for firefighting in high-rise buildings and logistics
supports was validated based on the hybrid multi-criterion model of a fuzzy analytical
hierarchy process, analytical network process, and decision-making trial and evaluation
laboratory approaches.

Clearly, as seen in the review of the above-noted studies, location allocation issues
regarding various types of essential facilities (e.g., shelters, emergency medical facilities,
and warehouses) have been comprehensively addressed. However, most of the relevant
studies are limited to the individual facility perspective and lack a holistic view of an
integrated system with its inter-facility connectivity. For example, Yahyaei and Bozorgi-
Amiri [36] emphasized the importance of integrated allocation of shelters and supply
facilities. Furthermore, various RRDM missions (e.g., evacuation, search, transportation of
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injured people and relief goods) occur throughout the entire period, and thus it is necessary
to allocate facilities that are close enough for inter-connectivity. Additionally to the issues
of connectivity between facilities and multi-period missions, the location of UAV stations
for replenishment and recharging must be considered simultaneously so as to facilitate the
efficient use of UAVs in disaster management.

This paper addresses the optimization problem of facility allocation for multi-period
missions in the RRDM in consideration of two objectives: minimization of total distance
and minimization of the sum of setup and operation costs. First, in Section 3, we present
the characteristics, constraints, and objectives of RRDM missions. In Section 4, we present
a corresponding bi-objective mathematical model, and in Section 5, we propose a suitable
solution approach. In Section 6, we verify the applicability of the proposed approach with
simulation experiments and consider inter-facility connectivity as well.

3. Problem Description
3.1. Multi-Period Missions

Throughout the course of the RRDM, different types of missions must be pursued over
multiple periods. Wallace and Baligh [37] classified post-disaster management missions
into three temporal categories, within 0.1 year, from 0.1 year to 1 year, and after 1 year. For
example, within 0.1 years of the occurrence of a disaster, the duties of damage assessment,
epidemiological surveillance, and evacuation are performed, and search and rescue, treat-
ment of injured, and relief logistics are performed sequentially thereafter. Similarly, Moe
and Pathranarakul [38] suggested that disaster management phases (prediction warning,
emergency relief, rehabilitation and reconstruction missions, in order) should occur dur-
ing the RRDM. The study matches each phase with appropriate timing and activities for
effective post-disaster management.

Balcik and Beamon [39] proposed a relief mission life cycle with different amounts of
relative mission frequencies according to the phases of disaster management. As shown in
Figure 2, it is clear that each phase has a different life cycle and required resources during
the RRDM. The missions covered in the present study are limited to search, evacuation,
emergency patient transfer, and relief distribution. It is assumed that the RRDM proceeds
over T periods. Each mission has a different occurrence period and life cycle. A mission
consists of a set of tasks that can be defined by location, period, and demand. A task in a
specific location can be defined over several time periods and can have different amounts
of demand for each time period.
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3.2. Facility Candidates

In a disaster situation, undamaged or damaged but usable civil facilities are prefer-
entially considered as facility candidates. Coppola [40] suggested a number of candidate
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shelter and emergency medical facilities. Nurre et al. [41] recommended well-known,
central entities in the city as candidates for relief goods warehouses. Table 1 summarizes
possible facility candidates. A single candidate can be used for a variety of purposes. For
example, in Table 1, both schools and warehouses are suitable candidates for evacuation
and relief distribution. In addition, in order to serve search operations such as surveillance,
facilities with large spaces such as schools and parks can be considered as drone stations.

Table 1. Examples of facility candidates for each type.

Facility Type Facility Candidates

Search School, auditorium, park
Evacuation Stadium, auditorium

Medical treatment Hospital, local clinics
Relief distribution Park, warehouse

In this study, existing and usable civil facilities in the disaster area were considered
as priority candidate sites. One candidate can be used for various purposes, as noted
above, and the usability of a candidate site is known in advance. The available capacity
and operation costs of each candidate site also are given in advance.

3.3. Objectives

The goal of this study was to achieve two objectives: minimization of total trans-
portation distance (for serving of all tasks) and minimization of the sum of the setup and
operating costs of facilities. Minimizing the total distance and cost is critical and standard
in disaster management (see [14,19,22,23,26], etc.). Furthermore, the two objective functions
are in inverse relation, providing a suitable basis for analyzing trade-offs among Pareto
solutions. The choice of the objective function can vary depending on the nature of the
problem and the decision maker’s subjectivity. Additionally, it is worth considering that, if
computational power allows, the development of a multi-objective mathematical model
with more than two objective functions is also feasible. Minimization of evacuation time,
resources, and maximizing coverage can be an appropriate candidate for more objective
functions, as seen in the literature [9,10,12,17,22].

The best allocation of facilities may change as the RRDM proceeds. In this light,
Figure 3 provides an illustrative example of a feasible solution to a problem instance
with 30 tasks, 5 candidate sites, and 10 time periods. As can be seen, the entire RRDM
entails 30 tasks that occur within the 10 time periods of the mission life cycle. There are
5 facility candidates, namely a school, hospital, two warehouses, and a drone station. The
different types of tasks (i.e., search, evacuation, medical treatment, and relief distribution)
are distinguished by different colors.
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4. Mathematical Formulation

We present a mathematical model of bi-objective optimization of facility allocation
for post-disaster missions utilizing drones. The indices, sets, parameters, and decision
variables are defined in the following section.

4.1. Notations

I : Set of tasks;
J : Set of candidate sites;

K :
Set of facility types, {S,E,M,R} ∈ K. S, E, M, and R, stand for search, evacuation,
medical treatment, and relief distribution, respectively;

T : Set of periods;
ui : Set of periods in which task i is defined, ui ⊆ T;
mi : Type of task i, mi ∈ K;
nj : Set of available types of candidate facility j, nj ⊆ K;
(xi, yi) : Location of task I;
(xj, yj) : Location of candidate infrastructure facility j;
Dij : Distance between task i and candidate facility j;
Tij : Travelling time between task i and candidate facility j. Tij is not proportional to Dij;
Ai

t : Demand quantity of task i, t ∈ ui. It is equal to 0 for t /∈ ui;
Qj,k : Capacity of facility j when it is used as type k ∈ nj. It is equal to 0 for k /∈ nj;
Cj,k

t : Operation cost of facility j of type k ∈ nj for period t ∈ T. It is equal to 0 for k /∈ nj;
Sj,k : Setup cost of candidate j for type k ∈ nj facility;
R : Service radius of drone station;
Smax : Maximum allowed transportation time of emergency patients;
M : A large positive real number;

Oj,k :
Binary setup decision variable. It is equal to 1 if candidate facility j is used for type
k ∈ nj facility;

Yj,k
t :

Binary location decision variable. It is equal to 1 if candidate facility j of type k ∈ nj
is opened for period t;

Xi,j
t :

Binary assignment decision variable. It is equal to 1 if task i of k = mi, t ∈ Ui is
served by facility j;

4.2. Formulation

Minimize F1 : ∑
i∈I

∑
j∈J

∑
t∈ui

Dij·Xi,j
t (1)

F2 : ∑
j∈J

∑
k∈nj

Sj,k·Oj,k + ∑
j∈J

∑
k∈nj

∑
t∈T

Cj,k
t·Yj,k

t (2)

Subject to ∑
j∈J

Xi,j
t = 1 ∀i ∈ I, t ∈ ui (3)

∑
i∈I,i|mi /∈nj

Xi,j
t = 0 ∀j ∈ J, t ∈ ui (4)

∑
t/∈ui

Xi,j
t = 0 ∀i ∈ I, j ∈ J (5)

∑
i∈I,i|mi∈nj

Ai
t·Xi,j

t ≤ Qj,k·Yj,k
t ∀j ∈ J, k ∈ K, t ∈ T (6)

∑
i∈I,i|mi∈nj

Ai
t ≥ Yj,k

t ∀j ∈ J, k ∈ K, t ∈ T (7)
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∑
k∈nj

Yj,k
t ≤ 1 ∀j ∈ J, t ∈ T (8)

Oj,k ≥ ∑
t∈T

Yj,k
t/T ∀j ∈ J, k ∈ nj (9)

Dij·Xi,j
t ≤ R·Yj,k

t ∀i|mi = D, j ∈ J, k = D, t ∈ ui (10)

Tij·Xi,j
t ≤ Sj, kt

i imax (11)

Oj,k ∈ {0, 1} ∀j ∈ J, k ∈ nj (12)

Yj,k
t ∈ {0, 1} ∀j ∈ J, k ∈ nj, t ∈ T (13)

Xi,j
t ∈ {0, 1} ∀i ∈ I, j ∈ J, t ∈ T (14)

The proposed mathematical model serves the two objectives noted above: mini-
mization of total distance and minimization of the sum of setup and operation costs.
Equations (1) and (2) show the bi-objective functions of the proposed study, F1 and F2. This
study deals with four types of mission, each of which includes a transportation context.
Equation (1) is used to minimize the total transportation distance (F1) while serving all tasks.
Equation (2) is formulated to minimize the total setup cost and operation cost of facilities
(F2). Equation (3) represents the single-assignment constraint. Via Equation (3), each task
should be served by a single facility. The role of Equation (4) is to match the task with the
facility type. The variable mi signifies the task type, thereby having one of the values among
{S, E, M, R}, and nj is defined as a subset of {S, E, M, R} (refer to Appendices A and B). If
candidate facility j ∈ J is not able to serve task i with mi, which means that the value of
mi is not an element of set nj, Equation (4) makes the assignment link impossible. Using
Equation (5), the assignment link between task i ∈ I and candidate j ∈ J becomes valid
only for the time period t ∈ ui. Equation (6) shows the capacity restriction of each facility.
Equation (7) is formulated to reduce the search effort of locating and operating facility
candidate j ∈ J during time period t ∈ T. If there is no demand for task type nj during t, the
candidate facility j ∈ J will not be opened during t ∈ T for type nj. This is a useful constraint
because each mission in this study has a different life cycle. During t ∈ T, the facility
candidate j ∈ J can be opened for a single purpose out of nj via Equation (8). The occurrence
of facility setup is confirmed via Equation (9). In this study, it is assumed that setup occurs
only once for each facility j ∈ J and type k ∈ nj. Equations (10) and (11) are formulated to
limit the service ranges of drone stations and emergency medical facilities. These ranges
are limited by the drone station service radius (R) and the maximum allowed travel time of
emergency patients (Smax). Decision variables are denoted in Equations (12)–(14).

4.3. Estimation of Facility Service Range

The service ranges of emergency medical facilities are limited by the degree of injury
of victims, and UAVs’ service time is limited by their energy source. To consider such
limitations, the service ranges of drone stations and emergency medical facilities are limited
by drone station service radius (R) and maximum allowed travel time of emergency patients
(Smax), as just noted. R and Smax will guarantee feasible and realistic facility allocation that
can serve every search and patient transfer task in the system. For estimation of R, let
V be the set of heterogeneous drones that are used in RRDM. FQv and TSv stand for the

flight capacity (minutes) and travel speed (meters per minute) of drone v ∈ V.
∼
Pi means

the service time (minutes) of a search task, and it takes values between [Pi − P̂i and Pi + P̂i].
The notations Pi and P̂i denote the nominal value and the maximum deviation from the
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nominal value, respectively. Equation (15) describes the service range of a drone station,

and minimum estimation of R can be obtained when
∼
Pi = Pi + P̂i.

R =

[minv∈V{FQv}−
∼
Pi

]
·minv∈V{TSv}

2
(15)

Now, using Equation (15), Equation (10) can be reformulated to Equation (16) as follows:

Dij·Xi,j
t ≤ R·Yj

t = Dij·Xi,j
t ≤

[
minv∈V{FQv}−

∼
Pi

]
·minv∈V{TSv}

2 ·Yj
t

→ minv∈V{FQv}·Yj
t − 2·Dij ·Xi,j

t

minv∈V{TSv} ≥
∼
Pi·Yj

t

' minv∈V{FQv}·Yj
t − 2·Dij ·Xi,j

t

minv∈V{TSv} ≥ (Pi + P̂i)·Yj
t ∀i|mi = D, j ∈ J, k = D, t ∈ ui

(16)

For estimation of Smax, there are many guidelines regarding emergency patient transfer.
Typically, many patients in a disaster area suffer traumatic injury. The terminology “golden
hour” represents the first 60 min after traumatic injury has been incurred. The idea is that
trauma patients have better outcomes if they are provided definitive care within 60 min of
their injuries [42]. In this context, Song et al. [43] theoretically estimated the service ranges
of UAV service stations. Also, legislation can be used to facilitate the estimation of Smax. For
example, in June 2005, New Hampshire law was amended to enable alternative health care
to participate in inter-facility transfer if the availability of conventional providers exceeds
30 min according to the National Highway Traffic Safety Administration [44].

5. Approach to Finding Pareto-Optimal Solutions
5.1. Pareto Optimality

This section reviews the main concepts and definitions pertaining to the bi-objective
optimization problem (BOP). In general, BOP minimization is formulated as

Minimize f (x) = (f 1(x), f 2(x))

Subject to x ∈ D;

where x = (x1, x2, . . ., xn) is the vector representing the decision variables, and D is the set
of feasible solutions. A BOP usually does not have a unique optimal solution but rather a
set of solutions known as the Pareto-optimal set. Each Pareto-optimal solution represents a
compromise between different objectives, and the components of the corresponding vector
of objectives cannot all be simultaneously improved. In the minimization setting, Pareto
dominance and Pareto optimality are defined as follows.

Definition 1. (Pareto dominance). A given vector u ∈ D dominates a vector v ∈ D in the Pareto
sense, if and only if u is partially less than v (u < v), i.e.,{

fi(u) ≤ fi(v) for ∀i ∈ {1, 2}
f j(u) < f j(v) for at least one j ∈ {1, 2} .

Definition 2. (Pareto-optimal solution). A solution u ∈ D is a Pareto-optimal solution, if and
only if there is no v ∈ D such that v dominates u. Pareto-optimal solutions are also called efficient
non-dominated solutions.

Definition 3. (Pareto-optimal set). The Pareto-optimal set or the efficient set is defined as P = {x ∈ D:
x is a Pareto-optimal solution in D}.



Systems 2024, 12, 69 10 of 20

5.2. Modified Epsilon-Constraint Algorithm

Chankong and Haimes [45] proved that for the general multi-objective optimization
problem, exact Pareto-optimal solutions can be found by the epsilon-constraint method.
This methodology is still widely used and has been improved for various multi-objective
optimization problems [46–48]. In the present study, a modified epsilon-constraint method
was introduced to find every Pareto-optimal solution of the proposed bi-objective mathe-
matical problem.

The epsilon-constraint method solves a constrained single-objective problem set that is
obtained by choosing one objective as the only objective to optimize, incorporating epsilon
constraints for the remaining objectives, as shown in Equation (17), and assigning different
values to the components of the epsilon vectors. In this study, an exact Pareto set was
obtained by solving the following epsilon-constraint model (MEC) problem iteratively while
changing the value of ε.

(MEC, ε) Minimize F1
Subject to F2 < ε

x ∈ D
(17)

F1 and F2 are depicted in Equations (1) and (2), respectively. D is the feasible region
defined by constraints (3) to (14). The value of F2 has a strict upper bound. The upper
bound of F2, UB(F2), is obtained by solving maxx∈DF2(x).

Let t and εt be the iteration index and the value of ε at the tth iteration of MEC,
respectively. The proposed epsilon-constraint method starts with ε0 = UB(F2) and iteratively
decreases ε using the F2 value of the optimum of the previous single-objective run. The
solution procedure continues as long as the resulting problem MEC is feasible. Proposition 1
demonstrates the Pareto relationship between F1 and F2. Proposition 2 guarantees that
the proposed iterative procedure will search all Pareto solutions. The optimal solution for
(MEC,εt) is denoted by opt(MEC,εt). The values of F1 and F2 in opt(MEC,εt) are denoted by
F1*(MEC,εt) and F2 (MEC,εt), respectively. Note that F2 (MEC,εt) = εt+1. Let D(MEC, εt) be the
feasible region defined by (MEC, εt).

Proposition 1. F1*(MEC,εt) monotonically increases as t increases. And there exists a Pareto
relationship between F1 and F2.

Proof. The monotonic increase in F1*(MEC,εt) with respect to t comes from the differences
in the feasible region. As t increases, εt (=F2*(MEC,εt−1)) decreases, thus limiting the feasible
region. Because D(MEC, εt) ⊂ D(MEC, εt−1), F1*(MEC,εt) ≥ F1*(MEC,εt−1) while εt < εt−1.
As a result, Pareto optimality exists between F1 and F2. �

Proposition 2. There is no Pareto solution vector λ ∈ D(MEC,εt−1) with εt−1 < f2(λ) ≤ εt.

Proof. Let vector b be the opt(MEC,εt−1). Then, f 1(b) ≤ f 1(λ) and f 2(λ) ≥ f 2(b) because
f 2(b) = εt. Therefore, any feasible vector λ ∈ D(MEC,εt−1) with εt−1 < f 2(λ) ≤ εt cannot
dominate the optimal solution vector b (MEC,εt−1) in the Pareto sense. �

Algorithm 1 summarizes the overall solution procedure of the proposed epsilon-
constraint method. In this algorithm, set S stands for the set of Pareto solutions, and s ∈ S
is a single Pareto solution. Steps 6 and 7 in Algorithm 1 are required to handle multi-
optimality on F1. In the multiple optimal solutions on F1, the same F1 value can be achieved
with different F2 values. However, only one, that with the lowest F2 value, is selected for
the Pareto solution among the multiple optimal solutions on F1. As Algorithm 1 proceeds,
the value of F2 (MEC,εt) gradually diminishes, ultimately causing the right-hand side of
Equation (17) to decrease, resulting in the emergence of an infeasible case.
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Algorithm 1: Modified epsilon-constraint method

1: S:= ∅, t = 0
2: εt = UB(F2)
3: While MEC has a feasible solution, do
4: X* = opt(MEC,εt)
5: S = S ∪ {X*}
6: for all s ∈ S
7: If (X* < s), then S = S-s
8 end for
9: ε = F2 (MEC,εt)
10: t← t + 1
11: end while
Output: Set of Pareto-optimal solutions

6. Experimental Results
6.1. Illustrative Case Study

The simulation data on the earthquake in San Diego were generated using Hazus
4.0 [49], which is a software package with a geographic information system (GIS) called
ArcGIS. The earthquake module in Hazus can evaluate a wide range of losses resulting
from earthquake scenarios and can be used to transform the information of ArcGIS into
quantitative estimates of damage and loss. The damaged area and number of casualties
and shelters are calculated by two modules: the direct damage module and the direct loss
module.

To generate the damage data on the earthquake, we made a hazard scenario of magni-
tude 9.0 for San Diego by setting an epicenter. The detailed parameters are provided in
Table 2.

Table 2. Parameters for case study.

Parameter Value(s)

Location San Diego, CA
Magnitude 9.0
Scenario Type Deterministic and Arbitrary
Epicenter 33.006, −116.906
Attenuation Function West US. Extensional 2008—Strike Slip
Depth and Width 10 km
Fault Type Strike + Slip

Based on the demographic and building information, four types of demand (Search,
Evacuation, Medical treatment, and Relief Logistics) were calculated with the Hazus
software. Also, five facility types (Auditorium, Hospital, Park, School, and Warehouse)
were selected from the actual data on the facilities. Detailed facility and task information
can be found in Appendices A and B, respectively. All of the demand and facility locations
for the earthquake scenario are indicated in Figure 4 below.

The results of the experiment using the proposed algorithm are summarized in Table 3.
The algorithm is coded in C++ with IBM ILOG CPLEX 12.4 and runs on an Intel Xeon
E5-1620 3.6 GHz processor with 16 GB RAM. The service radius of a drone station (R) and
the maximum allowed transportation time for emergency patients (Smax) are specified as
7 km and 20 min, respectively. Based on these Pareto solutions, a Pareto curve is drawn in
Figure 5. This result shows that the proposed algorithm can find Pareto solutions effectively
within a reasonable time.
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For example, Figure 6 illustrates the results of facility allocations of a Pareto solution
wherein F1 and F2 are 1030.67 and 78,684, respectively. According to the solution, Christian
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Unified Schools supports evacuation and relief distribution by changing setups three times,
while Liberty Charter School supports the same missions by changing setups twice. In
addition, John F Kennedy Park is allocated as a drone station only for the three beginning
periods even though it is available for all time periods, due to the life cycle of the search
mission and the relatively shorter distances from searching locations. Throughout the case
study, it was demonstrated that the proposed mathematical model can utilize existing
facilities for various purposes and change their roles during a long-duration RRDM in
order to efficiently achieve missions. Also, the Pareto set was derived in a reasonable time
to support decision making, particularly considering the trade-offs between objectives.
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6.2. Results of Large-Sized Experiments

To evaluate the applicability for more realistic problems of greater complexity, we
designed large-sized experiments by increasing the numbers of tasks and facilities. With
the various sizes of task sets and candidate site sets, Pareto solutions were generated, and
the ranges of F1 and F2 values, the number of Pareto solutions and the computation times
were confirmed for each example. T was set to 10 for every example, and the numbers of
the four tasks were set as 25, 50, 75, and 100, respectively. The number of facilities was
determined to be 10, 20, 30, 40, and 50 for each experiment and quartered into four types.
The demands of tasks and the capacities of facilities were generated from the range of
Hazus simulation results. The density of tasks in the experiment was defined as ∑i∈I ui. The
environment and computer configurations for the experiments were the same as described
in the precious section.

Table 4 summarizes the results of the large-sized implementations. Because an in-
crease in |J| causes the expansion of the solution space, the minimum values of F1 and
F2 were consistently decreased as |J| increased for each case of |I| = (25, 50, 75, 100).
In addition, the larger solution space generated a greater number of Pareto solutions for
the computation cost. The total computation time and computation time per Pareto solu-
tion increased continuously as the problem size became larger. In the largest case, with
(|I|, |J|) = (100, 50), the solution procedure required 6125 s (>1.7 h), which is reasonable
in terms of RRDM system design.
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Table 4. Results of large-sized experiments.

|I|
(∑i∈I ui)

|J|
Value of F1 Value of F2 Number of

PS

Total
CPU Time

(s)

CPU Time
per PS

(s)Min Max Min Max

25
(61)

10 20,894.4 32,217.2 2651 7312 27 11.61 0.43

20 13,284.2 37,113.7 2332 16,700 125 107.85 0.86

30 10,636.9 31,443.1 2306 25,731 204 210.04 1.03

40 10,178.8 29,411.8 2291 34,636 270 309.13 1.14

50 9213.68 29,083.1 2248 42,409 316 409.60 1.30

50
(120)

10 41,242.6 62,526.6 2765 7635 55 28.12 0.51

20 24,329.7 69,823.7 2446 17,691 270 286.68 1.06

30 20,015.6 63,905.2 2422 27,245 455 655.60 1.44

40 18,924.1 58,223.1 2407 36,569 502 827.57 1.65

50 17,883.8 58,515.0 2364 44,805 629 1257.74 2.00

75
(180)

10 61,708.7 92,592.0 2765 8103 110 75.58 0.69

20 44,396.1 102,131.0 2446 17,324 432 607.59 1.41

30 39,627.6 89,874.4 2422 26,604 515 992.71 1.93

40 36,652.0 84,114.4 2407 35,175 643 1501.30 2.33

50 35,848.2 84,413.3 2364 43,564 815 2322.84 2.85

100
(241)

10 80,662.7 119,578.0 2846 8037 153 107.61 0.70

20 48,081.7 132,402.0 2514 17,860 685 1203.66 1.76

30 39,241.8 119,377.0 2490 27,441 1005 2699.69 2.69

40 35,816.0 111,656.0 2470 35,746 1364 4345.28 3.19

50 33,413.0 111,836.0 2424 44,411 1576 6125.36 3.89

6.3. Connectivity for Complementary Response

In a previous study [50], two facilities were defined as ‘connected’ if the distance
between them was less than a given value. The concept of connectivity is critical to the
provision of seamless RRDM operations when certain important facilities are not available.
In addition, nearby facilities of the same type can share their emergency supplies, enabling
more flexible responses. In order to improve preparedness by considering connectivity, we
propose the following additional constraint

n(1− Yj,k
t) + ∑

j′∈Vj

Yj′,k
t ≥ n ∀j ∈ J, k ∈ K, t ∈ T (18)

where the new parameter Djj′ represents the distance between facilities j and j′ in J, Vj is
defined as a set of facilities within a given range MR for facility j (Vj =

{
j′
∣∣Djj′ ≤ MR

}
),

and the new variable n determines the number of facilities within the range.
The new Equation (18) was applied to the case study discussed in Section 6.1. By

adding the constraint with a range (MR = 5 km) and n = 2, a new Pareto solution was
derived with the same epsilon (ε = 80,000), as shown in Figure 7. By adding this additional
constraint, the computation time was slightly increased (by 0.23 s in CPU time) per solution
under the same epsilon. To graphically investigate the connectivity, two minimum F1
solutions of time period 1 (with/without connectivity constraint) were plotted, as depicted
in Figures 8 and 9. As shown in Figure 8, some facilities in the solution were distant and
without connectivity; in fact, due to their long distances, they would not be able to provide
complementary responses in continuous operations when uncertainties (e.g., beyond-
prediction demand, additional damage to facilities, etc.) arose. But with constraint (18),
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more than one facility can easily collaborate in disaster scenarios, as shown in Figure 9,
with the benefit of connectivity. However, in the solution shown in Figure 9, the facilities
conceded the distance to the task nodes in order to ensure connectivity. As a consequence,
the total distance to the task nodes increased slightly (to 114.37 km) compared with the
original solution.
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This result exemplifies the trade-offs between two operational issues, connectivity
and service quality. Consideration of connectivity can improve the preparedness and
robustness of solutions by connecting facilities of the same type within a given distance.
However, it may also cause inefficiency, in terms of service and response quality, by locating
facilities in long-distance areas. Thus, the results showed that decision makers can use the
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proposed model to conduct a quantitative analysis of potential increases in objective value
to improve connectivity.
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7. Concluding Remarks

Disasters impart great impacts on human life and civil infrastructure. To minimize
such harms and promote a return to ordinary life, various missions are conducted during
the RRDM. The key aspects of the RRDM are concurrency and a long-term perspective.
Various missions occur simultaneously, and each of them has a different mission life
cycle. Furthermore, some missions need high flexibility and accessibility. As a result,
RRDM system design requires a flexible, integrated, and long-term approach. In this study,
an integrated system design was pursued for the entire RRDM. Locations and mission
allocations of drone stations, shelters, emergency medical facilities, and warehouses were
determined via a mathematical optimization approach. By considering the life cycle of each
mission and the usability of existing social infrastructure facilities, the proposed system
provides real-world applicability as well as academic value.

To derive a complete Pareto set with the proposed bi-objective mathematical model, a
modified epsilon-constraint algorithm was developed. The mathematical model and algo-
rithm proposed in Sections 4 and 5, respectively, were tested using simulation experiments
based on HAZUS 4.0, and the applicability for large-sized problems was demonstrated
via large-size implementation. With the simulation experiments, the proposed approach
is expected to provide efficient operational plans and guidelines to decision makers for
the bi-objective optimization problem in RRDM systems. Additionally, in terms of the
inter-facility connectivity as a constraint, the trade-offs between connectivity and service
quality issue were examined to provide complementary and flexible responses. The consid-
eration of inter-facility connectivity can play an important role in the RRDM, especially for
robustness and preparedness.

Possible future research may include operational levels such as detailed routing of
vehicles (e.g., trucks). In addition, various scenarios in earthquake-prone countries such
as RISK-UE can be considered for additional verifications. Lastly, for optimally efficient
RRDM, a set of heterogeneous vehicles (e.g., trucks, drones, and mobile robots) would be
worthy of further investigation.
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Appendix A. Facility Information

Num Name
Location
(Altitude,

Longitude)

nj Qj ,k Sj ,k Cj ,k
t

S E M R S E M R S E M R S E M R

1
Pepper Drive
Elementary

School
32.832 −116.953 1 1 0 1 20 156 0 130 115 1056 0 1237 52 562 0 362

2
Liberty
Charter
School

32.825 −116.949 1 1 0 1 20 150 0 136 103 1498 0 859 51 627 0 531

3
St Kieran’s

Catholic
School

32.819 −116.929 0 1 0 1 20 130 0 190 107 809 0 1048 91 353 0 629

4
Christian
Unified
Schools

32.805 −116.903 0 1 0 1 20 112 0 68 122 667 0 455 52 558 0 258

5
Holy Trinity

Catholic
School

32.788 −117.177 0 1 0 1 20 136 0 136 169 712 0 1209 51 544 0 384

6

Winter
Gardens

Elementary
School

32.835 −116.931 0 1 0 1 20 190 0 90 182 1768 0 689 75 921 0 286

7 Lakeside
Middle School 32.860 −116.937 0 1 0 1 20 134 0 44 160 1131 0 404 54 540 0 148

8
Lakeside

Community
Center

32.861 −116.910 1 1 0 1 20 70 0 70 115 615 0 496 79 350 0 237

9 Extra Space
Storage 32.727 −117.148 0 1 0 1 0 150 0 336 0 1129 0 2264 0 641 0 1185

10 A-1 Self
Storage 32.862 −116.948 0 1 0 1 0 178 0 250 0 1285 0 1402 0 823 0 913

11

Granite Hills
Healthcare &

Wellness
Centre

32.803 −116.935 0 0 1 0 0 0 314 0 0 0 1693 0 0 0 862 0

12
El Cajon
Medical
Center

32.810 −116.920 0 0 1 0 0 0 250 0 0 0 1410 0 0 0 1244 0

13
Sharp

Rees-Stealy El
Cajon

32.809 −116.938 0 0 1 0 0 0 264 0 0 0 1962 0 0 0 1114 0

14

Kaiser
Permanente

Bostonia
Medical
Offices

32.809 −116.923 0 0 1 0 0 0 196 0 0 0 1959 0 0 0 717 0

15 Scripps Clinic 32.751 −116.959 0 0 1 0 0 0 198 0 0 0 1002 0 0 0 963 0

16 Audish Hanid
DO 32.745 −116.970 0 0 1 0 0 0 174 0 0 0 1170 0 0 0 496 0

17 Sharp Daniel
Hoefer 32.812 −116.939 0 0 1 0 0 0 150 0 0 0 1313 0 0 0 489 0
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18 John F
Kennedy Park 32.804 −116.918 1 0 0 0 20 0 0 0 170 0 0 0 67 0 0 0

19
Lakeside’s
River Park

Conservancy
32.846 −116.910 1 0 0 0 20 0 0 0 132 0 0 0 81 0 0 0

20 River View
Park 32.851 −116.932 1 0 0 0 20 0 0 0 171 0 0 0 75 0 0 0

21 Hilton Head
County Park 32.749 −116.924 1 0 0 0 20 0 0 0 143 0 0 0 66 0 0 0

Appendix B. Task Information

Task Type Demand
Location Ai

t Facility
(Figure 7)

Latitude Longitude 1 2 3 4 5 6 7 8 9 10

1 S 2 32.830 −116.945 1 1 0 0 0 0 0 0 0 0 20

2 S 5 32.743 −116.941 1 2 1 1 0 0 0 0 0 0 21

3 S 5 32.808 −116.902 2 1 2 0 0 0 0 0 0 0 18

4 S 4 32.716 −116.899 1 2 1 0 0 0 0 0 0 0 21

5 S 2 32.807 −116.907 1 1 0 0 0 0 0 0 0 0 18

6 S 3 32.849 −116.939 1 1 1 0 0 0 0 0 0 0 20

7 S 1 32.906 −116.950 1 0 0 0 0 0 0 0 0 0 20

8 S 4 32.810 −116.868 2 1 1 0 0 0 0 0 0 0 18

9 S 2 32.790 −116.951 2 0 0 0 0 0 0 0 0 0 18

10 E 335 32.798 −116.944 33 143 94 65 0 0 0 0 0 0 2, 3, 6

11 E 320 32.797 −116.944 94 72 60 49 45 0 0 0 0 0 1, 2

12 E 348 32.628 −116.992 157 84 57 50 0 0 0 0 0 0 6, 9

13 E 284 32.578 −117.001 87 64 53 43 37 0 0 0 0 0 4, 9

14 E 256 32.863 −116.913 75 61 49 37 24 10 0 0 0 0 7

15 E 195 32.830 −116.945 75 54 37 29 0 0 0 0 0 0 2

16 E 201 32.743 −116.941 75 54 37 29 6 0 0 0 0 0 2, 3, 4

17 E 194 32.808 −116.902 72 49 36 24 13 0 0 0 0 0 3, 4

18 M 246 32.807 −116.907 36 61 32 28 26 18 17 13 10 5 12

19 M 315 32.849 −116.939 36 120 35 32 26 22 19 15 10 0 17

20 M 124 32.776 −116.920 0 0 11 29 27 20 15 11 9 2 11

21 M 124 32.810 −116.868 0 0 0 0 12 38 27 22 15 10 12

22 M 215 32.790 −116.951 0 10 22 35 42 40 30 22 14 0 11

23 R 395 32.860 −116.907 15 21 34 42 52 59 64 56 40 12 8

24 R 402 32.629 −116.990 9 25 35 43 52 65 70 48 44 11 1, 3, 4, 9

25 R 356 32.747 −116.939 0 11 41 42 49 65 68 56 24 0 3, 4

26 R 321 32.807 −116.907 0 12 25 32 49 55 61 56 21 10 3, 4

27 R 309 32.833 −116.950 0 21 25 32 49 66 41 32 26 17 1

28 R 245 32.576 −116.954 7 12 25 38 46 53 42 12 10 0 3, 4, 9

29 R 268 32.777 −116.935 13 22 35 42 40 32 29 24 20 11 3, 4

30 R 275 32.814 −116.944 0 0 12 22 35 43 53 61 32 17 2, 3
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