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Abstract: Due to the complexity and uncertainty of decision-making circumstances, it is difficult to
provide an accurate compensation cost in strategic weight manipulation, making the compensation
cost uncertain. Simultaneously, the change in the attribute weight is also accompanied by risk,
which brings a greater challenge to manipulators’ decision making. However, few studies have
investigated the risk aversion behavior of manipulators in uncertain circumstances. To address this
research gap, a robust risk strategic weight manipulation approach is proposed in this paper. Firstly,
mean-variance theory (MVT) was used to characterize manipulators’ risk preference behavior, and a
risk strategic weight manipulation model was constructed. Secondly, the novel robust risk strategic
weight manipulation model was developed based on the uncertainty caused by the estimation error
of the mean and covariance matrix of the unit compensation cost. Finally, a case of emergency
facility location was studied to verify the feasibility and effectiveness of the proposed method. The
results of the sensitivity analysis and comparative analysis show that the proposed method can more
accurately reflect manipulators’ risk preference behavior than the deterministic model. Meanwhile,
some interesting conclusions are revealed.

Keywords: strategic weight manipulation; robust optimization; mean-variance; risk aversion;
uncertainty set

1. Introduction

Multi-attribute decision making (MADM) is a process of investigating an alternative
ranking under multiple attributes [1–6]. Identifying weights is an important challenge for
MADM [7].To integrate the evaluation values of an alternative under multiple attributes,
aggregation operators are often used by researchers [8,9]. In the development of human
decision making, objective conditions such as technology [10–15] and decision-making
information collection [16–23] no longer have the merit of dominating decision-making
results. On the contrary, researchers have attached great importance to subjective con-
ditions such as the motivation, decision consciousness, and knowledge level of decision
makers. In other words, decision makers are strategic. Decision makers may express their
opinion dishonestly to satisfy their interests [24], which will cause the decision results to
develop in the direction they expect [25,26]. Therefore, it is meaningful to study strategic
decision making.

In the real world, in order to realize their goal, decision makers will give a higher
weight to specific attributes of an alternative, helping to achieve the expected ranking.
This behavior is often referred to as strategic weight manipulation (SWM) [27]. Strategic
decision making has been widely investigated by scholars. Dong et al. [28] investigated
the strategic weight manipulation of multi-attribute decision making, and they reported
that decision makers could strategically set attribute weights to achieve their desired
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alternative ranking. Liu et al. [29] indicated that attribute weights played a key role in
alternative classification because different weights would lead to different alternative
classification results. Dutta et al. [30] studied the TOPSIS multi-attribute decision-making
approach for the case where the decision makers did not offer any weight information
and provided partial weight preference information. Liu et al. [31] introduced strategic
weight manipulation in interval attribute group decision making; they specified that the
modification of the initial attribute weights needed to pay the cost, and they developed a
linear programming model to optimize the cost. In the process of MADM, the allocation of
attribute weights has a great influence on the scheme ranking [32,33]. Different weighting
algorithms will obtain different sorting results when the criterion is weighted. For instance,
the methods for calculating weights using AHP (analytic hierarchy process), BWM (Best
Worst Method), and EWM (entropy weight method)—as well as the importance of the
weight results—are all distinct. Although the pairwise comparison technique will yield
inconsistent weight results, it is advantageous for risk preference decision makers. The
weighting method of direct rating and distance estimation will provide consistent weights.
Therefore, we acknowledge the varying importance of the weights in the different MADM
approaches [34–39] that employ criteria weighting [40]. In different MADM methods,
weights play different roles [41,42]. For example, expert weights can be dynamically
generated from the MADM matrix. The attribute weight of entropy weight TOPSIS is
improved by adjusting the weight coefficient, which improves the relative importance of
attributes and reduces the impact of criteria with a large weight. In addition, different
MADM methods consider different types of subjective or objective information. Because
the objective weighting method ignores the decision makers’ experience, and the subjective
weighting method ignores the performance ratings of alternatives across various criteria,
objective and subjective weights must be combined in MADM.

In actual decision making, it is difficult to modify the weight, which needs to pay
the corresponding cost. In SWM, the manipulator may use some resources (e.g., material,
financial) to compensate the manager to achieve a specific ranking of the alternative,
which is called the compensation cost. In strategic weight manipulation, each attribute
weight modification has its corresponding unit compensation cost, which is often disturbed
in the interval under an uncertain environment. In this paper, we abstractly represent
the unit compensation cost corresponding to each attribute weight in vector form in
order to quantitatively characterize the compensation cost. For more information, please
refer to Example 1. The manipulator wants to spend as little of the cost as possible to
achieve manipulation. However, decision makers are often in a complex and uncertain
decision-making environment, where they do not have enough information and historical
experience to determine how much compensation cost should be provided. Accordingly,
the compensation cost of decision makers will be in a range rather than a fixed value.

In this paper, robust optimization is utilized to characterize the uncertainty of the com-
pensation cost. Robust optimization is a powerful tool to tackle uncertain problems [43–45].
Different from stochastic programming [46,47] and fuzzy programming [48], robust op-
timization does not need to assume the probability distribution and fuzzy membership
function of uncertain parameters but puts the uncertain parameters in an interval. The goal
is to satisfy all implementations of the worst-case constraints [49,50]. In recent years, the
robust optimization approach has been widely used in consensus-reaching processes [51],
portfolios [52], location allocation [53], and other fields. However, few scholars have ap-
plied robust optimization to strategic weight manipulation. For example, Jin et al. [54]
found that an uncertain unit adjustment cost would lead to a higher weight allocation
cost, and they illustrated the effectiveness of their proposed model through an actual
anti-epidemic case. We note that the method proposed in this paper is different from theirs,
which only investigated the uncertain unit compensation cost. Ji et al. [55] discussed the
expected ranking of alternatives under uncertain attribute values, and they pointed out
that attribute weights were easier to manipulate when attribute values obeyed a linear
uncertain distribution.
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Uncertain circumstances in decision making are often accompanied by risks [56],
which cannot be completely eliminated. To describe the risks faced by the manipulator
in an uncertain environment, we introduce the concept of the risk-sensitive cost. The risk
cost refers to the expenses that people must pay due to the existence of risk. Decision risk
is present in SWM under uncertain settings. The quality of the model and the outcomes
of the solutions will suffer if the decision risk is not taken into account. As a result,
MVT is utilized to describe the risk of the compensation cost. In other words, the cost
vector’s mean or covariance matrix contains the estimation error, which poses a risk. Hence,
this paper reflects the risk cost by discussing the disturbance of the mean or covariance.
For more information, please refer to Example 2. The optimal decision scheme of the
manipulator is to minimize the compensation cost and reduce the impact of the risk-
sensitive cost [57,58]. To measure the risk-sensitive cost, we need to use risk measurement
tools in decision making. Risk measurement methods mainly include mean-variance
theory [59], conditional value at risk [60–62], and the Von Neumann–Morgenstern utility
measure [63]. MVT has a straightforward solution technique that can yield realistic and
practical solutions. Consequently, this paper describes the risk compensation cost of the
manipulator through mean-variance theory.

The literature review mentioned above reveals that the current SWM issue has a lot of
flaws. For instance, there will be risks associated with the SWM problem in an uncertain
environment that cannot be entirely eradicated. The best decision-making strategy should
aim to cut costs and lessen risky outcomes. In order to achieve the least risk-sensitive
cost, this paper first proposes a risk strategic weight manipulation (rSWM) based on MVT.
Because minimax rSWM (Robust rSWM) is more suited to uncertain decision environ-
ments, it is the model we recommend. The proposed robust rSWM offers a solution to
address the ambiguity and estimation error of the mean and covariance, two parameters
connected to the uncertain unit adjustment cost. A set is used to describe the mean and
covariance uncertainty.

The contributions of this paper are summarized as follows: (1) Compared with the
deterministic compensation cost, the uncertain cost is characterized by the robust opti-
mization method in this paper. (2) In this paper, some errors in calculating the mean and
variance of the unit compensation cost are considered, and the risk aversion behavior of
the manipulator is described using MVT. A risk-averse robust strategic weight manipu-
lation model (RrSWM) is built, which is equivalently transformed into a tractable robust
counterpart model through duality theory. Meanwhile, the proposed model is an extension
of the robust strategic weight manipulation model (RSWM). To establish a connection with
the extant strategic weight manipulation models, the specific transformation conditions
between them are given. (3) Through a practical application of emergency facility location,
the applicability of the proposed model is covered. The approach in this paper is more
effective than prevenient methods, which is shown through comparative analysis and sen-
sitivity analysis. Our work can provide some reference for the government or enterprises
to carry out risk management.

The remainder of this paper is organized as follows: Section 2 presents some basic
knowledge utilized in this paper; Section 3 proposes a robust risk strategic weight manipu-
lation model; Section 4 specifies a case study and presents the comparative analysis and
sensitivity analysis; Section 5 concludes this paper and puts forward future research work.

2. Preliminaries

In order to assist the readers in understanding the proposed approach, some prelimi-
naries are introduced in this section. Several approaches, theories, and models of strategic
weight manipulation and robust optimization are presented.

2.1. Strategic Weight Manipulation

We define X = {x1, x2, · · · xm} as a set of alternatives. A = {a1, a2, · · · an} is a set of
multiple attributes. ω = {ω1, ω2, · · ·ωn} is the weight set corresponding to the attribute,
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where ωj ≥ 0 and ∑n
j=1 ωj = 1. We assume I = {1, 2, · · ·m} and J = {1, 2, · · · n} are

number sets. Therefore, the decision matrix is S =
[
sij
]

m×n, where sij indicates the attributes
value of an alternative xi ∈ X with respect to aj ∈ A.

Generally speaking, multi-attribute decision making is divided into three sections:
normalization of the decision matrix, aggregation of the standardized decision matrix, and
ranking of alternatives.

(1) Normalization of decision matrix
For benefit indicators, the standardized process is shown in Equation (1):

rij =

sij −min(sij)
i

max(sij)
i

−min(sij)
i

. (1)

For cost indicators, the standardized process is shown in Equation (2):

rij =

max(sij)
i

− sij

max(sij)
i

−min(sij)
i

. (2)

(2) Aggregation of the standardized decision matrix
Assume D(xi) is the comprehensive evaluation score of the alternative xi under

various attributes, which can be calculated by introducing the aggregation function. The
weighted average (WA) and ordered weighted average (OWA) operators are the most
often used aggregation operators. In this work, we utilize the WA operator to compute the
comprehensive evaluation score of alternatives, as shown in Equation (3):

D(xi) = WAω(ri1, ri2, · · · , rin) = ∑n
j=1 ωjrij. (3)

(3) Ranking of alternatives
The ranking order is determined by comparing the score D(xi) of alternative xi, which

ranks first with the higher value. When comparing the ranking of alternatives xi, (i ∈ I)
and xl , (l ∈ I), in order to calculate the ranking of alternative xl , we only need to find out
the number of alternatives that meet the cardinality set H = { xl |D(xi) > D(xl)}, (i 6= l).
Suppose p(xl) represents the ranking of alternative xl ; therefore, we have p(xl) = |H|+ 1.

In multi-attribute decision making, the attribute weights will be manipulated strategi-
cally by decision makers to realize their interests. Assuming that the manipulator wants
to change the ranking of alternative xl , we define the expected ranking of the manipu-
lator as p ∗ (xl); it is obvious that p ∗ (xl) = p(xl). Suppose the attribute weight vector
before manipulation is ω0 = (ω1

0, ω2
0, · · ·ωn

0)
T, the weight vector after manipulation is

ω = (ω1, ω2, · · ·ωn)
T, and the attribute weight deviation in the manipulation process is

dj =
∣∣ωj

0 −ωj
∣∣. Assuming that the unit compensation cost is cj, the total cost paid by the

decision makers to manipulate the attribute weight is cTd. We introduce an infinite constant
M and a binary variable yil .

In order to comprehensively treat the compensation cost, we propose an example to
illustrate it.

Example 1. Suppose the vector of the compensation cost is c = [3, 2, 4, 5, 2.5], and the unit
compensation cost corresponding to each attribute is 3, 2, 4, 5, and 2.5, respectively. The weight
adjustment deviation is d = [d1, d2, d3, d4, d5]; therefore, we can obtain the total cost cTd that the
decision maker should pay.

The manipulator wants to make the compensation cost as low as possible. Hence, the
minimum cost strategic weight manipulation model built in this paper is as follows:
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min cTd

s.t.
n
∑

j=1
ωjrij >

n
∑

j=1
ωjrl j − (1− yil)M, ∀i ∈ I

n
∑

j=1
ωjrij ≤

n
∑

j=1
ωjrl j + yil M, ∀i ∈ I

m
∑

i=1,i 6=l
yil + 1 = p∗(xl), ∀l ∈ I∣∣∣ω0

j −ωj

∣∣∣ ≤ dj, ∀j ∈ J
n
∑

j=1
ωj = 1, ∀j ∈ J

yil ∈ {0, 1}, ∀i ∈ I, ∀l ∈ I
0 ≤ ωj ≤ 1, ∀j ∈ J

(4)

The objective function is to minimize the total cost to be compensated by the manip-
ulator to change the attribute weight. The specific constraints are as follows. The first
constraint and the second constraint represent the comprehensive evaluation score compar-
ison between alternatives xi, (i ∈ I) and xl , (l ∈ I). We introduce an infinite constant M and
a binary variable yil in model (4). When yil = 1, we have D(xi) > D(xl). On the contrary,
when yil = 0, we have D(xi) ≤ D(xl). The third constraint represents the expected ranking
of alternative xl . The fourth constraint indicates that the attribute aj weight deviation in the
manipulation process is less than or equal to dj. The fifth constraint indicates that the sum
of attribute weights is 1. The sixth constraint is the binary variable. The seventh constraint
indicates that the weight of attribute aj is greater than 0 but not greater than 1.

2.2. Robust Optimization

Uncertainty exists extensively in MADM. For example, the compensation cost of SWM
in real life is often uncertain, because the manipulator cannot know the probability distribu-
tion information of the compensation cost in advance. Therefore, this paper utilizes robust
optimization to deal with the uncertainty of the parameters. The key to robust optimization
is to select an appropriate uncertainty set to characterize the random parameters and meet
the realization of all constraints in the worst case.

We first introduce a general linear programming problem:

min cTd
s.t. cTd ≤ H

Ad ≤ h
(5)

where the variable c is the given data, d ∈ Rn is the decision variable vector, A ∈ Rm×n is
the coefficient matrix of the uncertain parameters, and h ∈ Rm is the right-hand-side vector.
When the uncertain parameters fluctuate in the uncertainty set U, the robust optimization
model can be expressed as

min cTd
s.t. cTd ≤ H

Ad ≤ h
A, h ∈ U

(6)

The perturbation vector ζ changes in the form of an affine transformation in a given
perturbation set Z, which is expressed as follows:

U =

{
[ai; hi] = [a0

i ; h0
i ] +

B

∑
b=1

ζb [ab
i ; hb

i ] : ζ ∈ Z

}
(7)

where ai denotes the i− th row of matrix A, and hi denotes the i− th element of vector h.
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Assume ai
Td ≤ hi is the i− th constraint in Ad ≤ h. We let ai = ai

0 + ∑B
b=1 ζbai

b and
hi = hi

0 + ∑B
b=1 ζbhi

b, where ai
0 and hi

0 are the nominal values of the uncertain parameters,
ai

b and hi
b are basic shifts. In order to control the range of uncertainty, the new variable ζ

is introduced. Hence, the inequality can also be written as

ai
0d +

B

∑
b=1

ζbai
bd ≤ hi

0 +
B

∑
b=1

ζbhi
b. (8)

Then, the robust counterpart of model (6) can be expressed as

min cTd
s.t. cTd ≤ H

ai
0d + sup

ζ∈ Z

B
∑

b=1

{
ζbai

bd− ζbhi
b
}
≤ hi

0
(9)

The feasible solution and optimal value of model (6) are equivalent to the feasible
solution and optimal value of model (9). Because model (9) is a semi-infinite programming
problem, it is difficult to solve it in polynomial time. In this paper, we equivalently
transform model (9) into convex optimization problems under different scenarios.

3. The Proposed Model

Previous studies investigated the uncertainty of the compensation cost in SWM. How-
ever, the risk preference of decision makers was not taken into account. The uncertainty
of decision making is often accompanied by risk. The lowest cost and the lowest risk
are expected by decision makers. Accordingly, we introduce the risk function to describe
the risk associated with decision making. It is assumed that the compensation cost c is a
random parameter with a mean value α and variance β = E

[
(c− α)(c− α)T

]
. The risk

aversion cost of the manipulator is E(cTd) + λ · var (cTd), where E(cTd) = αTd represents
the expected cost that the manipulator needs to compensate for adjusting the attribute
weight of the alternative, and var (cTd) = dTβd stands for the variance of the cost. λ ≥ 0
indicates the risk aversion coefficient of the manipulator. Generally speaking, with the
increase in the value of λ, the risk aversion degree of the manipulator gradually increases.

In order to comprehensively treat the risk-sensitive cost, an example is proposed.

Example 2. Suppose the evaluation value of the compensation cost is a matrix C = [cij]10×5.
We can obtain the mean value α = [m1, m2, m3, m4, m5] and covariance matrix β = [covij]5×5
using the MATLAB tool. The weight adjustment deviation is d = [d1, d2, d3, d4, d5]; therefore,
we can obtain the total risk cost αTd + λ · dT βd that the decision maker should pay. λ is the risk
aversion coefficient.

Therefore, the model with risk aversion (rSWM) constructed in this paper is as follows.
We define model (10) as model D1:

min αTd + λ·dTβd

s.t.
n
∑

j=1
ωjrij >

n
∑

j=1
ωjrl j − (1− yil)M, ∀i ∈ I

n
∑

j=1
ωjrij ≤

n
∑

j=1
ωjrl j + yil M, ∀i ∈ I

m
∑

i=1,i 6=l
yil + 1 = p∗(xl), ∀l ∈ I∣∣∣ω0

j −ωj

∣∣∣ ≤ dj, ∀j ∈ J
n
∑

j=1
ωj = 1, ∀j ∈ J

yil ∈ {0, 1}, ∀i ∈ I, ∀l ∈ I
0 ≤ ωj ≤ 1, ∀j ∈ J

(10)
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The objective function includes the risk aversion behavior of the manipulator, in-
cluding the mean value and covariance of the compensation cost. The objective is to
minimize the sum of the mean value and covariance evaluation errors. The details of the
constraints are as follows. The first constraint and the second constraint represent the
comprehensive evaluation score comparison between alternatives xi, (i ∈ I) and xl , (l ∈ I).
An infinite constant M and a binary variable yil are introduced here. When yil = 1, we
have D(xi) > D(xl). On the contrary, when yil = 0, we have D(xi) ≤ D(xl). The third
constraint represents the expected ranking of alternative xl for the manipulator. The fourth
constraint indicates that the attribute aj weight deviation is less than or equal to dj. The
fifth constraint indicates that the sum of attribute weights is 1. The sixth constraint is the
binary variable. The seventh constraint indicates that the weight of attribute aj is greater
than 0 but not greater than 1.

However, the cost change caused by the evaluation error of the cost mean and variance
cannot be sufficiently measured with the above model. The robustness of model D1 is poor.
Therefore, we characterize the perturbation of the cost mean and variance through robust
optimization. We discuss the minimum cost incurred by the manipulator in three cases:
in the first case, we research the uncertain risk of the cost mean when the cost variance is
known; in the second case, we investigate the uncertain risk of the cost variance when the
cost mean is known; in the third case, we discuss the uncertain risk when the evaluation
errors of cost mean and covariance are both present.

3.1. The Mean Value of the Compensation Cost Is Uncertain

When the covariance of the unit compensation cost is known, we may compute the min-
imum risk-sensitive cost under the given uncertainty set U =

{
α = α0 + ∑B

b=1 ζbαb : ζ ∈ Z
}

.
The model we constructed is as follows:

min
d,ωj

sup
α∈U

{
αTd + λ·dTβd

}
s.t.

n
∑

j=1
ωjrij >

n
∑

j=1
ωjrl j − (1− yil)M, ∀i ∈ I

n
∑

j=1
ωjrij ≤

n
∑

j=1
ωjrl j + yil M, ∀i ∈ I

m
∑

i=1,i 6=l
yil + 1 = p∗(xl), ∀l ∈ I∣∣∣ω0

j −ωj

∣∣∣ ≤ dj, ∀j ∈ J
n
∑

j=1
ωj = 1, ∀j ∈ J

yil ∈ {0, 1}, ∀i ∈ I, ∀l ∈ I
0 ≤ ωj ≤ 1, ∀j ∈ J

(11)

Because the goal function involves an operator min − sup, model (11) cannot be
solved directly. When the mean value of the unit compensation cost is uncertain, we
characterize the perturbation of the cost using two commonly used uncertainty sets in
robust optimization, namely, a box set and an ellipsoid set.

3.1.1. Box Uncertainty Set

Theorem 1. If the mean value of the uncertain cost is defined as a box uncertainty set, that
is, Zbox =

{
ζ ∈ RB : ‖ζ‖∞ ≤ Ψ

}
, where Ψ is the level of parameter uncertainty, the robust

counterpart of model (11) can be constructed as model (12). We define model (12) as P1.
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min
d,ωj

α0
Td + Ψ

B
∑

b=1
αb

Td + λ·dTβd

s.t.
n
∑

j=1
ωjrij >

n
∑

j=1
ωjrl j − (1− yil)M, ∀i ∈ I

n
∑

j=1
ωjrij ≤

n
∑

j=1
ωjrl j + yil M, ∀i ∈ I

m
∑

i=1,i 6=l
yil + 1 = p∗(xl), ∀l ∈ I∣∣∣ω0

j −ωj

∣∣∣ ≤ dj, ∀j ∈ J
n
∑

j=1
ωj = 1, ∀j ∈ J

yil ∈ {0, 1}, ∀i ∈ I, ∀l ∈ I
0 ≤ ωj ≤ 1, ∀j ∈ J

(12)

Proof of Theorem 1. [64] According to the definition of the box set, the uncertain cost to be
compensated by the risk manipulator can be written as

α0
Td + ∑B

b=1 ζbαb
Td + λ · dTβd ≤ H, (ζ ∈ RB : ‖ζ‖∞ ≤ Ψ).

Then, we can obtain

∑B
b=1 ζbαb

Td ≤ H − α0
Td− λ · dTβd, (ζ ∈ RB : ‖ζ‖∞ ≤ Ψ).

In the worst case, we have

max
‖ζ‖∞≤Ψ

∑B
b=1 ζbαb

Td ≤ H − α0
Td− λ · dTβd.

Because the maximum value on the left side of the inequality is Ψ∑B
b=1
∣∣αb

Td
∣∣, the

explicit constraint form can be obtained:

α0
Td + Ψ∑B

b=1

∣∣∣αb
Td
∣∣∣+ λ · dTβd ≤ H.

As a result, the box uncertainty set model is proven. �

3.1.2. Ellipsoid Uncertainty Set

Theorem 2. If the mean value of the uncertain cost is defined as an ellipsoid uncertainty set, that
is, Zellipsoid =

{
ζ ∈ RB : ‖ζ‖2 ≤ Ω

}
, where Ω is the level of parameter uncertainty, the robust

counterpart of model (11) can be built as model (13). We define model (13) as P2.

min
d,ωj

α0
Td + Ω

√
B
∑

b=1
(αb

Td)2 + λ·dTβd

s.t.
n
∑

j=1
ωjrij >

n
∑

j=1
ωjrl j − (1− yil)M, ∀i ∈ I

n
∑

j=1
ωjrij ≤

n
∑

j=1
ωjrl j + yil M, ∀i ∈ I

m
∑

i=1,i 6=l
yil + 1 = p∗(xl), ∀l ∈ I∣∣∣ω0

j −ωj

∣∣∣ ≤ dj, ∀j ∈ J
n
∑

j=1
ωj = 1, ∀j ∈ J

yil ∈ {0, 1}, ∀i ∈ I, ∀l ∈ I
0 ≤ ωj ≤ 1, ∀j ∈ J

(13)
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Proof of Theorem 2. [65] According to the definition of the ellipsoid set, the uncertain cost
to be compensated by the risk manipulator can be written as

α0
Td + ∑B

b=1 ζbαb
Td + λ · dTβd ≤ H, (ζ ∈ RB : ‖ζ‖2 ≤ Ω).

Then, we can obtain

∑B
b=1 ζbαb

Td ≤ H − α0
Td− λ · dTβd, (ζ ∈ RB : ‖ζ‖2 ≤ Ω).

In the worst case, we have

max
‖ζ‖2≤Ω

∑B
b=1 ζbαb

Td ≤ H − α0
Td− λ · dTβd.

Consequently, the explicit form of the above formula can be obtained:

α0
Td + Ω

√√√√ B

∑
b=1

(αb
Td)2

+ λ · dTβd ≤ H.

Therefore, the model based on the ellipsoid uncertainty set is proved. �

3.2. The Compensation Cost Covariance Matrix Is Uncertain

When the mean value of the unit compensation cost is known, we can compute the
minimum risk-sensitive cost under the provided uncertainty set regarding the covariance
of the unit compensation cost. The model we constructed is as follows:

min
d,ωj

sup
β∈Γ

{
αTd + λ·dTβd

}
s.t.

n
∑

j=1
ωjrij >

n
∑

j=1
ωjrl j − (1− yil)M, ∀i ∈ I

n
∑

j=1
ωjrij ≤

n
∑

j=1
ωjrl j + yil M, ∀i ∈ I

m
∑

i=1,i 6=l
yil + 1 = p∗(xl), ∀l ∈ I∣∣∣ω0

j −ωj

∣∣∣ ≤ dj, ∀j ∈ J
n
∑

j=1
ωj = 1, ∀j ∈ J

yil ∈ {0, 1}, ∀i ∈ I, ∀l ∈ I
0 ≤ ωj ≤ 1, ∀j ∈ J

(14)

where Γ is an uncertainty set provided in advance.
The simplest way to describe the uncertainty set Γ is to add a set of interval positivity

constraints: Γ = {β < 0|ξ− 4 β 4 ξ+}, where ξ− and ξ+ are the lower and upper limits of
β, which are positive semidefinite matrices.

Theorem 3. When the evaluation error of the cost variance change in the set of uncertainty intervals
Γ = {β < 0|ξ− 4 β 4 ξ+}, model (14) is equivalently transformed into model (15). We define
model (15) as P3.
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min
d,ωj

αTd + λ·dTξ+d

s.t.
n
∑

j=1
ωjrij >

n
∑

j=1
ωjrl j − (1− yil)M, ∀i ∈ I

n
∑

j=1
ωjrij ≤

n
∑

j=1
ωjrl j + yil M, ∀i ∈ I

m
∑

i=1,i 6=l
yil + 1 = p∗(xl), ∀l ∈ I∣∣∣ω0

j −ωj

∣∣∣ ≤ dj, ∀j ∈ J
n
∑

j=1
ωj = 1, ∀j ∈ J

yil ∈ {0, 1}, ∀i ∈ I, ∀l ∈ I
0 ≤ ωj ≤ 1, ∀j ∈ J

(15)

Proof of Theorem 3. [59] The internal maximization problem of model (14) is

max
β

αTd + λ · dTβd

s.t. ξ− 4 β 4 ξ+

β < 0

(16)

when β < 0 is not considered, for all i, di ≥ 0, we have didj ≥ 0. When all βij take the upper
bound value—that is, βij = ξij

+—the relaxation problem dTβd = ∑ i,jdiβdj of model (16)
reaches the maximum value. Because ξ+ is assumed to be a positive semidefinite matrix, it
must be optimum for the non-relaxation model (16). The proof is finished. �

3.3. Both the Mean Value and Compensation Cost Covariance Matrix Are Uncertain

In this section, we introduce the interval uncertainty sets U = {α ≥ 0|µ− ≤α ≤ µ+}
and Γ = {β < 0|ξ− 4 β 4 ξ+} to characterize the perturbations of the mean value and
covariance matrix of the unit compensation cost. µ−, µ+, ξ−, and ξ+ represent the lower
and upper bounds of α and β, respectively. ξ− and ξ+ are positive semidefinite matrices. A
new model is constructed as follows:

min
d,ωj

sup
α∈U,β∈Γ

{
αTd + λ·dTβd

}
s.t.

n
∑

j=1
ωjrij >

n
∑

j=1
ωjrl j − (1− yil)M, ∀i ∈ I

n
∑

j=1
ωjrij ≤

n
∑

j=1
ωjrl j + yil M, ∀i ∈ I

m
∑

i=1,i 6=l
yil + 1 = p∗(xl), ∀l ∈ I∣∣∣ω0

j −ωj

∣∣∣ ≤ dj, ∀j ∈ J
n
∑

j=1
ωj = 1, ∀j ∈ J

yil ∈ {0, 1}, ∀i ∈ I, ∀l ∈ I
0 ≤ ωj ≤ 1, ∀j ∈ J

(17)

where U and Γ are the given uncertainty sets.

Theorem 4. When the mean value and covariance of the unit compensation cost change in the
uncertainty intervals U = {α ≥ 0|µ− ≤α ≤ µ+} and Γ = {β < 0|ξ− 4 β 4 ξ+}, model (17)
is equivalently transformed into model (18). We define model (18) as P4.
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min
d,ωj

µ+Td + λ·dTξ+d

s.t.
n
∑

j=1
ωjrij >

n
∑

j=1
ωjrl j − (1− yil)M, ∀i ∈ I

n
∑

j=1
ωjrij ≤

n
∑

j=1
ωjrl j + yil M, ∀i ∈ I

m
∑

i=1,i 6=l
yil + 1 = p∗(xl), ∀l ∈ I∣∣∣ω0

j −ωj

∣∣∣ ≤ dj, ∀j ∈ J
n
∑

j=1
ωj = 1, ∀j ∈ J

yil ∈ {0, 1}, ∀i ∈ I, ∀l ∈ I
0 ≤ ωj ≤ 1, ∀j ∈ J

(18)

Proof of Theorem 4. [59] Because the internal maximizing issue of model (17) is divisible,
it may be separated into two maximization problems: maxα∈UαTd and maxβ∈ΓdTβd. For
the first maximization problem:

max
α∈U

αTd

s.t. µ− ≤ α ≤ µ+
(19)

Because d ≥ 0, when each vector element takes its upper bound—that is, α = µ+—the
maximum value is obtained by the objective function in model (19). The proof of the
procedure for the second maximizing issue is identical to that of Theorem 3. �

4. Case Simulation

This section verifies the RrSWM proposed in Section 3 using specific examples. Addi-
tionally, sensitivity analysis and comparative analysis are carried out to demonstrate the
merits of the proposed models.

4.1. Case Study

A case is utilized to illustrate the feasibility of the proposed model in this section. All
the necessary codes were run in MATLAB R2016a on a MacBook Air 2019 (1.6 GHz Intel
Core i5), coupled with the CPLEX solver and YALMIP toolbox.

Since the beginning of COVID-19 in 2019, millions of people around the world have
been infected, which has caused huge losses to the economy and society of each country
and region. In order to effectively block the social transmission of the pandemic in a timely
manner, resolute measures have been taken by the Chinese government to establish a
number of module hospitals (MHs) to treat people with mild infection or isolate close
contacts. MHs are modular healthcare facilities, with the functions of emergency treatment
and surgical procedures. They have the merits of good mobility, rapid deployment, and
strong environmental adaptability. Hence, they are widely utilized in emergency medical
rescue tasks. After the outbreak of the pandemic, understanding how to choose the location
of MHs to ensure that patients are treated timely and effectively was a great test for the
urban emergency management system.

Considering the emergency facility location of MHs during COVID-19, we assumed
that {x1, x2, · · · , x9, x10} are ten candidate locations of MHs, and we chose three of them
to better serve patients. {a1, a2, a3, a4, a5} represents the number of infected people, the
number of medical staff, the facility infrastructure of MHs (beds), the average relative posi-
tion of the infected people’s residence (kilometers), and the time taken for the construction
of MHs (hours), respectively. a1, a4, and a5 are cost indicators, and a2 and a3 are benefit
indicators. The data desired in this paper are shown in Table 1.



Systems 2023, 11, 151 12 of 22

Table 1. Initial data of MH facility location.

MHs a1 a2 a3 a4 a5

x1 1408 2850 1400 8 56
x2 220 1486 500 11 75
x3 15,027 8937 16,750 35 123
x4 1492 3349 1638 9 48
x5 957 783 1233 6 46
x6 475 1000 555 13 56
x7 1488 1542 1568 24 66
x8 1185 1566 974 7 80
x9 651 565 788 16 36
x10 2939 4574 3956 31 89

We standardized the data in Table 1 through Equations (1) and (2) to obtain a standard-
ized decision matrix, as shown in Table 2. Then, we assumed that the initial weight vector
of the five attributes is ω0 = (0.2, 0.2, 0.2, 0.2, 0.2)T, B = 3. Simultaneously, we assumed
that the uncertain parameters are Ψ = 1 and Ω = 1. Assuming the compensation cost is
a random variable, the mean value is α = (2.3 3.0 3.1 1.7 2.5), and the covariance matrix
is as follows:

β =


1.6603 0.1339 −0.1397 0.3489 −0.4533
0.1339 1.0846 −0.3261 −0.1722 −0.4477
−0.1397 −0.3261 0.9668 −0.4481 −0.0953
0.3489 −0.1722 −0.4481 1.0727 0.7202
−0.4533 −0.4477 −0.0953 0.7202 2.5967

.

Table 2. Standardized data of MH facility location.

MHs a1 a2 a3 a4 a5

x1 0.9198 0.2729 0.0554 0.9310 0.7701
x2 1 0.1100 0 0.8276 0.5517
x3 0 1 1 0 0
x4 0.9141 0.3325 0.0700 0.8966 0.8621
x5 0.9502 0.0260 0.0451 1 0.8851
x6 0.9828 0.0520 0.0034 0.7586 0.7701
x7 0.9144 0.1167 0.0657 0.3793 0.6552
x8 0.9348 0.1196 0.0292 0.9655 0.4943
x9 0.9709 0 0.0177 0.6552 1
x10 0.8164 0.4789 0.2127 0.1379 0.3908

As a result of α = α0 + ∑3
b=1 αbζ, we let α0 = α; that is, α0 = (2.3 3.0 3.1 1.7 2.5). αb is

a basic shift coefficient matrix, as follows:

αb =


−0.20 0.16 −0.25 0.37 0.15
0.20 −0.27 0.14 −0.09 0.24
−0.25 0.15 0.14 −0.09 0.26

.

In order not to lose generality, we assumed that the risk aversion coefficient of the
manipulator is λ = 10, α+ = 1.2 ∗ α0, ξ+ = 1.3 ∗ β.

The actual emergency decision-making environment is full of uncertain factors, and
the manipulator has to pay higher compensation costs in order to ensure the stability of
the location decisions. To illustrate this fact through numerical simulation, the calculation
results of the proposed model for when the ranking of x8 is equal to 2, for instance, are
shown in Table 3.
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Table 3. The results of the proposed model.

Model Minimum Compensation Cost Weight Results

D1 3.1701 {0.2991, 0.0153, 0.3330, 0.3346, 0.0180}
P1 3.2890 {0.2998, 0.0172, 0.3306, 0.3351, 0.0172}
P2 3.2392 {0.2999, 0.0171, 0.3314, 0.3345, 0.0171}
P3 3.5487 {0.2937, 0 , 0.3508, 0.3314, 0.0241}
P4 3.9328 {0.2969, 0.0093, 0.3393, 0.3340, 0.0205}

As we can see in Table 3, the cost of model D1 is lower than that of model P1 to model
P4, which is in line with the actual location decision. However, the optimal value of model
P2 is closer to the rSWM model. In other words, the decision maker incurs the lowest
cost when the ellipsoid uncertainty set is utilized to describe the risk cost. In addition,
model P1 to model P4 take into account the manipulator’s risk-averse behavior, so the
decision results are also conservative. The above analysis results verify the applicability of
the proposed model.

The following Table 4 shows the running time of the computer in solving the model.
As we can see, the solution time of the five models is relatively short, with the longest time
not exceeding 0.5 s. Therefore, the model proposed in this paper is suitable for emergency
facility location decisions.

Table 4. Running times of the proposed models.

Model Running Time

D1 0.064 s
P1 0.092 s
P2 0.453 s
P3 0.093 s
P4 0.084 s

4.2. Model Discussion

In this section, firstly, sensitivity analysis is performed to specify some parameters
that affect the model to reveal how the uncertain factors affect the manipulator’s decision
making. Then, the relationship between the proposed model and the extant strategic weight
manipulation model is discussed. Finally, comparative analysis is performed between the
proposed method and the existing strategic weight manipulation approaches.

4.2.1. Sensitivity Analysis

In strategic weight manipulation, the behavior of the manipulator will be affected by
some uncertain parameters, and sensitivity analysis is often utilized to explore the impact
of parameter fluctuations on the proposed model results [66]. The data in Section 4 are also
used here. The key parameters in this paper are the manipulator’s risk aversion coefficient
λ, nominal value α0, basic shift coefficient matrix αb, covariance matrix β, and uncertain
level parameters ζ. We keep the other parameters constant.

(1) The impact of the risk aversion coefficient λ on D1
The influence of the manipulator’s risk aversion coefficient on the minimal compensa-

tion cost is interesting to examine. As shown in Figure 1, under the condition of keeping the
other parameters constant, the compensation cost of the manipulator gradually increases
with the increase in the risk aversion coefficient. This means that increasing the value
of risk factors within a certain range will have a significant impact on the cost for the
manipulator to set strategic weights. In other words, the risk factors in decision making
will increase the cost of decision making. Manipulators should master more comprehensive
information to reduce the uncertainty and risk in decision making. For the problems
in actual circumstances, we should control the variability in the parameters within an
acceptable range.
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(2) The effect of the nominal value α0 on D1, P1, and P2
The perturbation of the nominal value α0 can affect the compensation cost of the

manipulator and the attribute weight value. With the other conditions unchanged, the
analysis results of different nominal values are shown in Figure 2. With the increase in the
nominal value α0, the compensation cost of the manipulator increases gradually. It is found
that the minimum compensation cost of model P1 and model P2 is basically consistent
with the rSWM model under the same nominal value. It is also found that the change
in the nominal value will increase the compensation cost. However, it is not sensitive to
different models.
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In addition, the influence of α0 ± 0.2 on the attribute weight and minimum cost was
investigated, as shown in Table 5. When an α0 of 0.2 is added, the minimum compensation
cost of the manipulator increases from 3.1701 to 3.3162. The rSWM model does not take into
account the uncertainty in the decision-making environment. However, when we use the
robust optimization approach to characterize the uncertain mean value of the compensation
cost, the optimal values of models P1 and P2 are sufficient to meet the aim of strategic
weight manipulation.

Table 5. The influence of the nominal value α0 on the decision result.

∆α0 −0.4 −0.2 0 0.2 0.4

D1

ω1 0.2946 0.2968 0.2991 0.3014 0.3036
ω2 0.0050 0.0102 0.0153 0.0205 0.0257
ω3 0.3407 0.3369 0.3330 0.3292 0.3253
ω4 0.3367 0.3357 0.3346 0.3335 0.3324
ω5 0.0230 0.0205 0.0180 0.0154 0.0129
Mc 2.8746 3.0229 3.1701 3.3162 3.4613

P1

ω1 0.2999 0.2999 0.2998 0.2998 0.2997
ω2 0.0167 0.0169 0.0172 0.0175 0.0178
ω3 0.3353 0.3329 0.3306 0.3283 0.3260
ω4 0.3315 0.3333 0.3351 0.3369 0.3386
ω5 0.0167 0.0169 0.0172 0.0175 0.0178
Mc 2.9961 3.1427 3.2890 3.4351 3.5810

P2

ω1 0.2997 0.2999 0.2999 0.2998 0.3007
ω2 0.0160 0.0169 0.0171 0.0174 0.0196
ω3 0.3362 0.3337 0.3314 0.3291 0.3262
ω4 0.3312 0.3327 0.3345 0.3362 0.3369
ω5 0.0169 0.0169 0.0172 0.0174 0.0166
Mc 2.9462 3.0928 3.2392 3.3854 3.5313

(3) The effect of a basic shift on P1 and P2
The coefficient matrix is a small disturbance of the cost mean based on the nominal

value α0. For the sake of researching the influence of the coefficient matrix αb on the
manipulator’s compensation cost, we utilized Monte Carlo simulation to randomly generate
300 novel data sets. The 300 data sets were divided into 15 groups as the input parameters
of models P1 and P2, so as to solve the minimum compensation cost. Then, the average
value of each group was taken as the final cost result. The data analysis results are shown
in Figure 3.
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As can be seen in Figure 3, with the perturbation of the basic shift, the minimum
compensation cost of the manipulator also changes. However, the cost value is generally
distributed around a certain value. For example, the cost value of model P1 is distributed
around 3.26. The minimum cost value of model P2 is smaller than that of model P1.
In other words, the ellipsoid uncertainty set model, which measures the manipulator’s
compensation cost, is less conservative.

(4) The impact of the covariance matrix β on D1 and P3
The influence of the covariance matrix β on the minimum compensation cost of the

manipulator is worth studying. Table 6 shows the data analysis findings assuming that the
covariance matrix changes from 0.7β to 1.2β.

Table 6. The impact of the covariance matrix β on the decision result.

β 0.7β 0.8β 0.9β β 1.1β 1.2β

D1

ω1 0.3114 0.3063 0.3023 0.2991 0.2965 0.2943
ω2 0.0490 0.0350 0.0241 0.0153 0.0082 0.0023
ω3 0.2979 0.3126 0.3239 0.3330 0.3405 0.3467
ω4 0.3380 0.3366 0.3355 0.3346 0.3339 0.3333
ω5 0.0037 0.0096 0.0143 0.0180 0.0210 0.0235
Mc 2.7587 2.9018 3.0382 3.1701 3.2986 3.4245

P3

ω1 0.3019 0.2980 0.2949 0.2937 0.2943 0.2947
ω2 0.0231 0.0123 0.0039 0 0 0
ω3 0.3249 0.3362 0.3449 0.3508 0.3543 0.3572
ω4 0.3354 0.3343 0.3334 0.3314 0.3281 0.3253
ω5 0.0147 0.0192 0.0228 0.0241 0.0234 0.0228
Mc 3.0516 3.2218 3.3870 3.5487 3.7092 3.8690

It can be seen in Table 6 that with the increase in the covariance matrix, the com-
pensation cost of the manipulator increases. In model P3, when the covariance matrix is
greater than or equal to β, the weight of attribute two is 0. When the covariance matrix
increases from β to 1.2β, the compensation cost of D1 changes from 3.1701 to 3.4245. With
the increase in the covariance matrix, the compensation cost changes slightly. In order
to achieve their own goals, the manipulator must be able to afford certain compensation
costs. The compensation cost of model P3 is higher than that of D1. If the uncertainty of the
covariance matrix in model P3 is not considered, the solution of model D1 cannot reflect
the risk and uncertainty in strategic weight manipulation.

(5) The effect of uncertain level parameters on P1 and P2
It is worth investigating the impact of different uncertain level parameters on the ma-

nipulator’s compensation cost. Suppose the following three alternatives are manipulated:
x3, x6, and x8, with ranks of 2. Assuming that Ψ and Ω increase from 1 to 6, the other
parameters remain constant. The data results are shown in Figures 4 and 5. In models
P1 and P2, with the increase in uncertain level parameters, the minimum compensation
cost of the manipulator increases. However, alternative x3 is less affected by the pertur-
bation of the uncertain level parameters. The manipulator can achieve their goal without
paying a certain cost, so the ranking of alternative x3 can easily be manipulated. The
manipulation cost of alternative x6 changes rapidly with the uncertain parameters, and its
robustness is superior. Additionally, it is hard for the manipulator to change the ranking of
alternative x6.
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4.2.2. Relationships between the RrSWM and Extant Models

In order to investigate the relationships between the proposed model and the extant
strategic weight manipulation models, a relationship diagram of several models was
constructed, as shown in Figure 6. As stated in Section 3, under the risk aversion behavior
of the manipulator, the SWM model is transformed into the rSWM model. When the
uncertain factors in decision making are considered, the SWM model is converted to the
RSWM model through the robust optimization method. By considering the uncertain
factors in the rSWM model, it can be transformed into the RrSWM model. When the risk
measure function is added to the RSWM model, we obtain the RrSWM model.
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4.2.3. Comparative Analysis

This paper compares the proposed method with the extant strategic weight manipula-
tion approaches to illustrate the merits of the proposed method.

(1) Comparing Dong et al.’s model [28] with our work from the perspective of whether
the manipulator compensates the cost

The optimization goal of the SWM model proposed by Dong et al. is to minimize the
sum of the weight deviation. However, the cost of weight manipulation is not considered
in Dong et al.’s work. We utilized the data in Section 4, and the results are shown in Table 7.

Table 7. Decision result of Dong et al.’s method [28] and our work.

ω1 ω2 ω3 ω4 ω5 Object

[28] 0.2000 0.0983 0.2000 0.5017 0.0000 0.6034
Our work 0.2998 0.0172 0.3306 0.3351 0.0172 3.2890

It can be seen in Table 7 that the sum of the attribute weights’ adjusted deviation
in this paper is 0.7311, which is higher than that of the SWM model proposed in Dong
et al.’s work. However, combined with the emergency facility location problems, there are
many uncertain factors in the MH facility locations, and the manipulator has to compensate
certain risk costs. The cost uncertainty and manipulator’s risk behavior are considered in
this paper, which is more practical than the deterministic model in MADM.

(2) Comparing Jin et al.’s model [54] with our work from the perspective of the strategic
weight manipulation of the uncertain unit compensation cost

In strategic weight manipulation, the manipulator evaluates the compensation cost
according to the change in the expected ranking of alternatives. Jin et al. researched the
uncertainty of the compensation cost in strategic weight manipulation through the robust
optimization method. The risk mentality of the manipulator, however, was not taken into
account in Jin et al.’s method. Accordingly, we verified the advantages of the proposed
method by comparing the experimental results of the two methods. Ten groups of random
data were generated, which were input into the model of this paper and Jin et al.’s model.
The data comparison results are shown in Table 8.
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Table 8. Decision result of Jin et al.’s method [54] and our work.

Groups ω1 ω2 ω3 ω4 ω5 Mc

[54] 1 0.2000 0.0983 0.2000 0.5017 0 1.4352
2 0.2000 0.0983 0.2000 0.5017 0 1.4087
3 0.2000 0.0983 0.2000 0.5017 0 1.3778
4 0.2000 0.0983 0.2000 0.5017 0 1.3875
5 0.2000 0.0983 0.2000 0.5017 0 1.3932
6 0.2000 0.0983 0.2000 0.5017 0 1.3269
7 0.2000 0.0983 0.2000 0.5017 0 1.3541
8 0.2000 0.0983 0.2000 0.5017 0 1.3902
9 0.2000 0.0983 0.2000 0.5017 0 1.4123

10 0.2000 0.0983 0.2000 0.5017 0 1.4119
Our work 1 0.2999 0.0171 0.3315 0.3344 0.0171 3.2356

2 0.2998 0.0172 0.3311 0.3347 0.0172 3.2625
3 0.2999 0.0171 0.3316 0.3343 0.0171 3.2284
4 0.2999 0.0171 0.3319 0.3341 0.0171 3.2116
5 0.2999 0.0171 0.3321 0.3339 0.0171 3.1975
6 0.2999 0.0171 0.3314 0.3345 0.0171 3.2417
7 0.2999 0.0171 0.3317 0.3343 0.0171 3.2240
8 0.2999 0.0171 0.3316 0.3343 0.0171 3.2301
9 0.2999 0.0171 0.3317 0.3342 0.0171 3.2190

10 0.2999 0.0172 0.3313 0.3346 0.0172 3.2480

It can be seen from the data in Table 8 that the weight setting of the proposed method
is relatively reasonable without a certain attribute weight being too large. When the risk
attitude of the manipulator is considered in the RrSWM model, reasonable attribute weight
distribution results can be acquired at a greater compensation cost. When the manipulator
is confronted with ambiguous decision-making circumstances, they will provide a more
relaxed mode to realize their goal because of the existence of risk. Therefore, greater costs
will be compensated by the manipulator. Decision making in reality is similar to this.

5. Conclusions and Future Work

The SWM model focuses on MADM under complete information. However, in prac-
tice, the manipulator needs to compensate for a certain cost in order to achieve their
desired ranking of alternatives. Due to the complexity and uncertainty of decision-making
circumstances, the manipulator’s compensation cost is difficult to measure accurately.
Simultaneously, the uncertainty of the decision-making environment is accompanied by
a risk cost. In this paper, an RrSWM model is proposed to solve the above issues. The
strategic weight manipulation behavior of risk aversion in three cases was investigated
using MVT. The impact of the mean value change of the unit compensation cost on the
minimum compensation cost and weight setting was investigated for when the cost co-
variance of the unit compensation cost was known in advance. Similarly, the impact of
the covariance change of the unit compensation cost on the minimum compensation cost
and weight setting was studied for when the cost mean of the unit compensation cost was
known in advance. Further, the impact on the minimum compensation cost and weight
setting was researched for when the cost mean and covariance were unknown. Finally, the
effectiveness of the proposed model was verified by a case of emergency facility location.
The following are some intriguing conclusions:

(1) The risk behavior of the manipulator has a substantial influence on the decision
outcomes. The manipulator will incur higher compensation expenses as their risk
aversion level rises. Similarly, the increase in uncertain level parameters will also
cause the manipulator to pay a greater compensation cost. However, the effect of the
basic shift on the compensation cost of models P1 and P2 is different from the other
parameters, and it converges near a certain value;
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(2) There is a certain conditional transformation relationship between the model proposed
in this paper and the extant SWM models. The robust optimization method and risk
function are the sources of the transformation;

(3) Compared with the risk-neutral strategic weight manipulation problem, the uncertain
factors and risk factors are fully considered in the proposed method, and we obtained
a more reasonable attribute weight setting result in the case simulation.

With the development of information technology and the advent of the big data era,
the sources of decision-making information are becoming more abundant [67]. Under-
standing how to make good use of this information to guide decision making is a big
challenge. Based on this, a data-driven robust optimization method can be constructed to
investigate the risk-averse strategic weight manipulation behavior of the manipulator in
uncertain circumstances. Another meaningful research direction is to choose other forms of
uncertainty sets to research the impact of the manipulator’s risk aversion behavior on the
minimum compensation cost.
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