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Abstract: Escherichia coli carrying IncK-blaCMY-2 plasmids mediating resistance to extended-spectrum
cephalosporins (ESC) has been frequently described in food-producing animals and in humans.
This study aimed to characterize IncK-blaCMY-2-positive ESC-resistant E. coli isolates from poultry
production systems in Denmark, Finland, and Germany, as well as from Danish human blood in-
fections, and further compare their plasmids. Whole-genome sequencing (Illumina) of all isolates
(n = 46) confirmed the presence of the blaCMY-2 gene. Minimum inhibitory concentration (MIC) testing
revealed a resistant phenotype to cefotaxime as well as resistance to ≥3 antibiotic classes. Conjuga-
tive transfer of the blaCMY-2 gene confirmed the resistance being on mobile plasmids. Pangenome
analysis showed only one-third of the genes being in the core with the remainder being in the large
accessory gene pool. Single nucleotide polymorphism (SNP) analysis on sequence type (ST) 429
and 1286 isolates showed between 0–60 and 13–90 SNP differences, respectively, indicating vertical
transmission of closely related clones in the poultry production, including among Danish, Finnish,
and German ST429 isolates. A comparison of 22 ST429 isolates from this study with 80 ST429 isolates
in Enterobase revealed the widespread geographical occurrence of related isolates associated with
poultry production. Long-read sequencing of a representative subset of isolates (n = 28) allowed fur-
ther characterization and comparison of the IncK-blaCMY-2 plasmids with publicly available plasmid
sequences. This analysis revealed the presence of highly similar plasmids in ESC-resistant E. coli
from Denmark, Finland, and Germany pointing to the existence of common sources. Moreover, the
analysis presented evidence of global plasmid transmission and evolution. Lastly, our results indicate
that IncK-blaCMY-2 plasmids and their carriers had been circulating in the Danish production chain
with an associated risk of spreading to humans, as exemplified by the similarity of the clinical ST429
isolate to poultry isolates. Its persistence may be driven by co-selection since most IncK-blaCMY-2

plasmids harbor resistance factors to drugs used in veterinary medicine.

Keywords: plasmids; IncK; blaCMY-2; extended-spectrum resistant (ESC); Escherichia coli

1. Introduction

Extended-spectrum cephalosporins (ESC) are classified as critically essential antimi-
crobials by the World Health Organization. Therefore, their use is restricted to the treatment
of infections in humans and animals caused by multidrug-resistant (MDR) Gram-negative
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bacteria, particularly Enterobacteriaceae such as MDR Escherichia coli (E. coli) [1]. In Eu-
rope, the Antimicrobial Advice Ad Hoc Expert Group (AMEG) of the European Medicines
Agency (EMA) has classified third- and fourth-generation cephalosporins as belonging to
“Category B-Restrict” antibiotics, meaning their use in animals should be restricted and
preferably be based on antimicrobial susceptibility testing to mitigate the risk to public
health [2]. Resistance to ESCs has dramatically increased worldwide in this family of
bacteria and is encoded predominantly by the extended-spectrum β-lactamase (ESBLs)
and AmpC β-lactamase (AmpCs) genes [3,4]. The plasmid-mediated AmpC-like gene,
blaCMY-2, which reduces susceptibility to aztreonam, cephamycin, and third-generation
cephalosporins, is one of the most prevalent among E. coli strains [5]. In general, the gene
blaCMY-2 is located on plasmids belonging to several incompatibility groups, including
IncI1, IncA/C, IncF, and IncK [6–10].

The incidence of blaCMY-2-related ESC resistance in E. coli belonging to various mul-
tilocus sequence types (STs) is common in livestock across several European countries,
while being rarely reported in E. coli from humans in Europe [11–13]. Previous studies
observed that IncI1 and IncK plasmids carrying blaCMY-2 occurred in ST38, ST131, and ST117
ESC-resistant E. coli isolates from human, livestock, and meat products in Germany, as well
as in the same E. coli STs from healthy urban dogs in France [14,15] Also, IncK and IncI
plasmids harboring blaCMY-2 were identified in Finnish poultry farms [16], while IncA/C
plasmids containing blaCMY-2 were detected in particular E. coli lineages in Swedish broiler
flocks [17]. Surveillance of antimicrobial resistance in Denmark in 2015–2016 documented
that E. coli isolates carrying blaCMY-2 in Danish broiler meat came from widely distributed
STs, i.e., ST38, ST154, ST2309, while imported broiler meat isolates belonged to ST23, ST117,
ST131, ST2040 [18]. A recent study from Denmark revealed a close phylogenetic relatedness
among E. coli ST131 IncI1- blaCMY-2 plasmids carrying isolates from broilers and a patient
with a bloodstream infection which highlights the risk of the potential zoonotic spread of
these antimicrobial-resistant bacteria [19]. A novel ST429 ESC-resistant E. coli harboring
blaCMY-2 was detected in the Danish surveillance of both domestic broilers and their meat,
in imported broiler meat [18] as well as in our previous study, which revealed that blaCMY-2
on IncI (ST2040) or IncK (ST429) plasmids dominated in a survey of ESC-resistant E. coli
from Danish poultry farms and slaughterhouses over the period 2015–2018 [20]. However,
knowledge is currently lacking regarding the IncK-blaCMY-2 plasmids’ relatedness among
different ESC-resistant E. coli STs, including ST429, in the poultry production chain in
Denmark and other countries, and from human clinical cases.

Therefore, the objective of this study was to investigate the genetic diversity of IncK-
blaCMY-2-positive ESC-resistant E. coli isolates (n = 46) and further to identify the similarity
of IncK-blaCMY-2 plasmids (n = 28) from the poultry production chains in Denmark, Finland,
and Germany as well as from Danish patients. Also, we determined the spread of ST429
ESC-resistant E. coli carrying blaCMY-2 globally and compared IncK-blaCMY-2 plasmids using
publicly available databases.

2. Results
2.1. Phenotypic Antimicrobial-Resistance Profiles

Results of MIC distributions are summarized in Table 1 for all ESC-resistant E. coli
IncK-blaCMY-2 isolates. Specific results for each of the isolates are provided in Supplemen-
tary Table S1. A total of 15 resistance profiles were observed. Based on the epidemiological
cut-off values (ECOFFs), all 46 isolates were classified as non-wild type (i.e., resistant to
antibiotics) to ampicillin, cefotaxime, and ceftazidime. Moreover, 93.5%, 84.8%, and 71.7%
of the ESC-resistant E. coli isolates were classified as resistant to sulfamethoxazole, tetracy-
cline, and gentamicin. In addition, the proportion of isolates classified as non-wild type
to trimethoprim, nalidixic acid, and ciprofloxacin ranged from 19.6% to 8.6%. For other
antimicrobials, MICs above ECOFFs were less common to azithromycin (2.2%) and chlo-
ramphenicol (2.2%), and all isolates were wild type with respect to amikacin, colistin, and
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tigecycline. Overall, all ESC-resistant E. coli isolates showed multidrug resistance, as they
exhibited resistance towards three or more antibiotics belonging to different classes [21].

Table 1. Distribution of MICs of several antibiotics in the ESC-resistant E. coli (n = 46) isolates included
in the study.

Resistant
Strains

(%)

Distribution (%) of Strains Linked to a Specific MIC Value (mg/L) *

Substance 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 ≥512
Amikacin 0 100
Ampicillin 100 2.2 97.8

Azithromycin 2.2 13.0 78.3 6.5 2.2
Cefotaxime 100 2.2 8.7 89.1
Ceftazidime 100 2.2 2.2 45.6 50.0
Chloramphenicol 2.2 93.5 4.3 2.2
Ciprofloxacin 8.6 69.6 21.8 4.3 4.3

Colistin 0 100
Gentamicin 71.7 8.7 17.4 2.2 23.9 47.8
Meropenem 0 100

Nalidixic
acid 8.7 91.3 8.7

Sulfamethoxazole 93.5 6.5 93.5
Tetracycline 84.8 15.2 84.8
Tigecycline 0 97.8 2.2

Trimethoprim 19.6 52.2 23.9 4.3 19.6

* Black vertical lines represent epidemiological cut-off values (ECOFFs) for resistance. Light blue fields represent
the range of dilutions tested for each antimicrobial agent, and light gray fields represent the non-tested dilutions.
The % of isolates is for antimicrobial resistance within the range under study. When the growth of isolates
was observed at the highest concentration of the antibiotic tested, the MIC value was recorded as the following
concentration (e.g., for ampicillin, 97.8% of the isolates exhibited visible growth at a concentration of 32 mg/L,
revealing an MIC of >32 mg/L and an annotation of the final MIC as 64 mg/L).

2.2. High Prevalence of Antimicrobial-Resistance Determinants

The heatmap of the ResFinder results obtained from analysis of the WGS from the
46 ESC-resistant E. coli isolates is presented in Figure 1, detailing the acquired resistance
genes and their predicted resistance phenotypes. A total of 18 different resistance genes
were identified with isolates carrying multiple resistance genes (2–12 genes, five being
the most common). The isolates were selected based on the presence of blaCMY-2, and this
gene was identified in all of them. The gene blaTEM-1B was also identified in nine (19.6%)
isolates. The most abundant co-resistance observed among the isolates was aminoglycoside
resistance (n = 44, 95.7%) followed by sulfonamide (n = 43, 93.5%) and tetracycline resistance
(n = 39, 84.8%). Aminoglycoside resistance was associated with the presence of aadA1 (n = 40,
87.0%), aac (3)-Vla (n = 31, 67.4%), aph (3′′)-Ib and aph (6)-Id (n = 4, 8.7%), aac (3)-IId (n = 2,
4.3%), aadA5 (n = 1, 2.2%), aph (3′)-Ia (n = 3, 6.6%). Sulfonamide resistance was encoded by
either sul1 (n = 34, 74.0%) or sul2 (n = 9, 19.6%), while tetracycline resistance was encoded
by tet(A) (n = 36, 78.3%) or tet(B) (n = 3, 6.6%).
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ESC-resistant E. coli (n = 46) using Resfinder 2.0 on the CGE tool. The heatmap shows the presence 
or absence of antimicrobial-resistance genes in each isolate. Rows and columns represent isolates 
and predicted antimicrobial-resistance genes, respectively. Colors indicate the predicted resistance 
phenotype to different classes of antibiotics for each isolate based on genotype. 

2.3. Results from Conjugation Assays 
The conjugation experiments showed that all 46 ESC-resistant E. coli isolates could 

transfer cefotaxime resistance to the sensitive E. coli MG1655 with PCR results confirming 
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blaCMY-2 gene in all ESC-resistant E. coli isolates regardless of their ST-types was located on 
a conjugative plasmid (Table 2). 

 

Figure 1. Antimicrobial-resistance gene determinants were identified in the IncK-blaCMY-2-positive
ESC-resistant E. coli (n = 46) using Resfinder 2.0 on the CGE tool. The heatmap shows the presence
or absence of antimicrobial-resistance genes in each isolate. Rows and columns represent isolates
and predicted antimicrobial-resistance genes, respectively. Colors indicate the predicted resistance
phenotype to different classes of antibiotics for each isolate based on genotype.

2.3. Results from Conjugation Assays

The conjugation experiments showed that all 46 ESC-resistant E. coli isolates could
transfer cefotaxime resistance to the sensitive E. coli MG1655 with PCR results confirming
the presence of the blaCMY-2 gene in the transconjugants. These results indicate that the
blaCMY-2 gene in all ESC-resistant E. coli isolates regardless of their ST-types was located on
a conjugative plasmid (Table 2).



Antibiotics 2024, 13, 349 5 of 23

Table 2. Overview of characteristics of IncK-blaCMY-2 plasmids present in the 46 ESC-resistant E. coli isolated from poultry, meat, and clinical samples, collected in
different countries over the period 2012–2020.

Isolate ID Host Species Sample Type Year Country * ST

IncK Plasmid Characterization

ONT
Sequenced

Plasmid
Name

Plasmid
Size (bp)

ESC-
Resistance

Gene
Other AMR Genes

Virulence Genes &
Mercury-Resistance

Genes

Conjugative
Transferability of

blaCMY-2

PS15001 Farm a Environment 2015 DK 429 + pPS25001 109821bp blaCMY-2
sul1, aac (3)-Via,

aadA1 cib, traT Positive

PS15002 Farm Environment 2015 DK 429 Positive
PS16001 Farm Environment 2016 DK 429 Positive

PS16002 Farm Environment 2016 DK 429 + pPS16002 119378bp blaCMY-2
sul1, aac (3)-Via,

aadA1, tet(A) cib, traT, mer Positive

PS16003 Farm Environment 2016 DK 429 Positive
PS16004 Farm Environment 2016 DK 429 Positive
PS16005 Farm Environment 2016 DK 429 Positive
SA17021 Slaughterhouse b Thighs 2017 DK 429 Positive

SA17022 Slaughterhouse Thighs 2017 DK 429 + pSA17022 119378bp blaCMY-2
sul1, aac (3)-Via,

aadA1, tet(A) cib, traT, mer Positive

SA17023 Slaughterhouse Thighs 2017 DK 429 + pSA17023 119378bp blaCMY-2
sul1, aac (3)-Via,

aadA1, tet(A) cib, traT, mer Positive

SA17024 Slaughterhouse Thighs 2017 DK 429 + pSA17024 120714bp blaCMY-2
sul1, aac (3)-Via,

aadA1, tet(A) cib, traT, mer Positive

SB17033 Slaughterhouse Thighs 2017 DK 429 + pSB17033 120714bp blaCMY-2
sul1, aac (3)-Via,

aadA1, tet(A) cib, traT, mer Positive

SB17034 Slaughterhouse Thighs 2017 DK 429 + pSB17034 120714bp blaCMY-2
sul1, aac (3)-Via,

aadA1, tet(A) cib, traT, mer Positive

SB17035 Slaughterhouse Thighs 2017 DK 429 Positive
SB17036 Slaughterhouse Thighs 2017 DK 429 Positive

SB17037 Slaughterhouse Thighs 2017 DK 429 + pSB17037 120714bp blaCMY-2
sul1, aac (3)-Via,

aadA1, tet(A) cib, traT, mer Positive

SB17038 Slaughterhouse Thighs 2017 DK 429 Positive
SB17039 Slaughterhouse Thighs 2017 DK 429 Positive

SB17040 Slaughterhouse Thighs 2017 DK 429 + pSB17040 120714bp blaCMY-2
sul1, aac (3)-Via,

aadA1, tet(A) cib, traT, mer Positive

SB17121 Slaughterhouse Intestine 2017 DK 429 Positive
SB17122 Slaughterhouse Intestine 2017 DK 429 Positive
SB17123 Slaughterhouse Intestine 2017 DK 429 Positive

SB17103 Slaughterhouse Intestine 2017 DK 1286 + pSB17103 132580bp blaCMY-2,
blaTEM-1

dfrA1, sul2, tet(A) cib, traT Positive

SB18102 Slaughterhouse Intestine 2018 DK 1286 + pSB18102 133311bp blaCMY-2,
blaTEM-1

dfrA1, sul2, tet(A) cib, traT Positive

SB18001 Slaughterhouse Thighs 2018 DK 1286 + pSB18001 132529bp blaCMY-2,
blaTEM-1

dfrA1, sul2, tet(A) cib, traT Positive
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Table 2. Cont.

Isolate ID Host Species Sample Type Year Country * ST

IncK Plasmid Characterization

ONT
Sequenced

Plasmid
Name

Plasmid
Size (bp)

ESC-
Resistance

Gene
Other AMR Genes

Virulence Genes &
Mercury-Resistance

Genes

Conjugative
Transferability of

blaCMY-2

SB18002 Slaughterhouse Thighs 2018 DK 1286 + pSB18002 133297bp blaCMY-2,
blaTEM-1

dfrA1, sul2, tet(A) cib, traT Positive

SB18003 Slaughterhouse Thighs 2018 DK 1286 + pSB18003 133303bp blaCMY-2,
blaTEM-1

dfrA1, sul2, tet(A) cib, traT Positive

SB18004 Slaughterhouse Thighs 2018 DK 1286 + pSB18004 133315bp blaCMY-2,
blaTEM-1

dfrA1, sul2, tet(A) cib, traT Positive

SA17101 Slaughterhouse Intestine 2017 DK 162 + pSA17101 120668bp blaCMY-2
sul1, aac (3)-Via,

aadA1, tet(A) cib, traT, mer Positive

SB17032 Slaughterhouse Thighs 2017 DK 350 + pSB17032 85947bp blaCMY-2 - traT Positive
SB17042 Slaughterhouse Thighs 2017 DK 57 + pSB17042 86724bp blaCMY-2 - traT Positive

HBI01 Clinical c Blood 2017 DK ST429 + pHBI01 119331bp blaCMY-2
sul1, aac (3)-Via,

aadA1, tet(A) cib, traT Positive

HBI02 Clinical Blood 2020 DK ST69 + pHBI02 85938bp blaCMY-2 - traT Positive
HBI03 Clinical Blood 2021 DK ST131 + pHBI03 85954bp blaCMY-2 - traT Positive
HBI04 Clinical Blood 2019 DK ST95 + pHBI04 98160bp blaCMY-2 - traT Positive
HBI05 Clinical Blood 2017 DK ST12 + pHBI05 96311bp blaCMY-2 - traT Positive

2E151-R FI farm d Egg 2017 FI b ST429 Positive

PS310-R FI farm Parent bird 2017 FI ST429 + pPS310-R 122067bp blaCMY-2
sul1, aac (3)-Via,

aadA1, tet(A) cib, traT, mer Positive

PS184-R FI farm Parent bird 2017 FI ST429 + pPS184-R 122085bp blaCMY-2
sul1, aac (3)-Via,

aadA1, tet(A) cib, traT, mer Positive

PS148-R FI farm Parent bird 2017 FI ST429 Positive
PS378-R FI farm Parent bird 2017 FI ST429 Positive
Y13-R FI farm Environment 2017 FI ST429 Positive
PS57-R FI farm Parent bird 2017 FI ST429 Positive

RL97 Food e Chicken
Meat 2012 DE c ST429 + pRL97 120705bp blaCMY-2

sul1, aac (3)-Via,
aadA1, tet(A) cib, traT, mer Positive

RL316 Food Chicken
Meat 2012 DE ST429 + pRL316 117209bp blaCMY-2

sul1, aac (3)-Via,
aadA1, tet(A) cib, traT, mer Positive

RL320 Food Chicken
Meat 2012 DE ST429 + pRL320 117209bp blaCMY-2

sul1, aac (3)-Via,
aadA1, tet(A) cib, traT, mer Positive

* Countries: DK: Denmark; FI: Finland; DE: Germany. a,b—ESC-resistant E. coli isolates from Danish poultry farms and slaughterhouses, collected in a previously published study [20].
c—Clinical ESC-resistant E. coli isolates obtained from the Statens Serum Institut in Denmark; d—ESC-resistant E. coli isolates from Finnish poultry farms collected in a previously
published study [22]. e—ESC-resistant E. coli isolates from the German chicken meat, collected in a previously published study [14].
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2.4. Pangenome Analysis

Pangenome analysis accounts for the genomic flexibility among the 46 IncK-blaCMY-2-
positive ESC-resistant E. coli isolates by considering the core and pangenome structure of the
isolates, as shown in Figure 2. The pangenome in Figure 2a consisted of 11,804 genes in total,
which could be divided into core genes, soft-core genes, shell genes, and cloud genes. The
core genome (3094 genes, 27.91%) made up less than one-third of the collective pangenome
genes for the ESC-resistant E. coli isolates; in contrast, results from the Roary pipeline
generated 7990 accessory genes in total showing large variability among the isolates. Of
these genes, soft-core genes found in 95–99% of the isolates comprised 351 genes (3.17%).
Shell genes (2339 genes, 21.10%) were detected in between 15 and 95% of the isolates.
Cloud gene families (5300 genes, 47.82%) were represented in less than 15% of the isolates,
highlighting the high genomic variability. The pangenome clustering tree in Figure 2b
shows the relatedness among ST429 isolates from different sources and countries of origin
vs. the other STs, e.g., 57, 162, and 1286 (see Table 2 for information on ST), found in a
separate cluster. Figure 2c visualizes the presence and absence of annotated genes in each
of the isolates, clearly showing the shared core genes and the range of shell and clouds
genes. Further details are found in Supplementary Table S2.
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Figure 2. Pangenome analysis of all ESC-resistant E. coli carrying IncK-blaCMY-2 (n = 46). (a) Dis-
tribution of total genes (100%): core genes (27.91%) found in ≥99%, soft-core genes (3.17%) found
in between 95% and 99%, shell genes (21.10%) found in between 15% and 95%, and cloud genes
found in <15% of the E. coli in the study. (b) Maximum likelihood phylogenetic tree inferred from
the alignment of the 3094 core genes of 46 ESC-resistant E. coli by FastTree. (c) Annotation of gene
presence (blue) and absence (white) matrix across the pangenome of the E. coli. The top scale shows
the complete genome size (kbp). Each row shows the gene content of an E. coli isolate. Each column
shows the comparative gene clusters. The data were visualized using Phandango.
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2.5. Phylogenetic Tree Analysis

The SNP-based trees revealed close relationships among isolates belonging to ST429 and
ST1286, respectively. Isolates were obtained from different sources, i.e., poultry, poultry meat,
and humans, over a long period from 2012 to 2018. As shown in Figure 3a, ST429 isolates
obtained in a Danish slaughterhouse (SA17021, SA17022) and one human clinical case (HBI01)
were highly similar with only 4–7 SNPs, indicating possible transfer from poultry to humans.
Notably, two ST429 isolates (SA17023, SA17024), collected from the same slaughterhouse
in Denmark, belonged to the same subcluster as the three German isolates from 2012 and
all seven Finnish isolates also obtained in 2017, which suggests the introduction of the ST
subcluster from a common source and clonal transmission in the poultry production chain.
Furthermore, German isolates from 2012 clustering with Danish poultry and one human
clinical isolate from 2015–2017, with 51 SNPs between the German RL97 and the Danish
SA17023, again point out the longevity of this ST429 in chicken production and possible
common sources transcending country boundaries. All six ST1286 isolates in Figure 3b came
from one slaughterhouse in Denmark between 2017 and 2018 and differed by SNPs ranging
from 13 (SB17103 vs. SB18102) to 90 (SB18001 vs. SB18004), suggesting a temporal colonization
or repeated introduction of ST1286 in the Danish slaughterhouse. The resulting SNP matrices
of ST429 and ST1286 are shown in Supplementary Table S3.
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(see Table 2 for isolate information). Each SNP-based tree was constructed with CSI Phylogeny 1.4
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date and source are presented in the same color. The observed number of SNPs among these isolates
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The minimum spanning tree based on the 102 ST429 ESC-resistant E. coli isolates from
this study (Danish isolates 2015–2017, n = 22) and Enterobase (n = 80, 2010–2021) is shown
in Figure 4. Overall, our results demonstrated the worldwide spread of ST429 ESC-resistant
E. coli over the past decade, suggesting a role for global trade in the dissemination of these
isolates. Of the 102 isolates depicted in Figure 4, 84 were related to poultry production
(Supplementary Table S4). The Danish ST429 blaCMY-2-positive isolates were mainly found
in two closely related clusters with isolates collected from other countries, with allelic
differences ≤ 15. To note, the Danish isolates were observed to be highly similar to isolates
(at the center of the tree) originating from UK poultry between 2013 and 2016, suggesting
the possibility that ST429 blaCMY-2-positive Danish isolates were initially imported from
Britain. Interestingly, SA17023 (Supplementary Table S4) grouped into the same subcluster
with the two Sweden poultry isolates ESC_RA0430AA (accession no. SRR11473342) and
ESC_RA0434AA (accession no. SRR11473346) in 2016 with only three SNP differences, and
PS16004 showed five allelic differences with one isolate ESC_UA5215AA (accession no.
ERR5443272) from Spain poultry in 2016. Meanwhile, these two subclusters with SA17023
and PS16004 also included UK poultry isolates from 2015, indicating that the poultry parent
birds of Denmark, Sweden, and Spain possibly were imported from Britain.
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Figure 4. Minimum spanning tree of 102 ST429 E. coli isolates collected from poultry production
(this study, Danish isolates, n = 22) and Enterobase (n = 80) based on an ad hoc 2513 gene cgMLST
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in the color legend. Numbers of allelic differences between isolates are shown in the connecting
lines. More detailed information on isolates and the minimum spanning trees can be found in
Supplementary Table S4 and Figure S3a–d.

2.6. Plasmid Characterization

The short-read sequencing and subsequent hybrid assembly (long- and short-reads
combined) of plasmids from a subset of 28 representative E. coli blaCMY-2 isolates belong-
ing to nine STs revealed that all isolates harbored IncK plasmids carrying blaCMY-2, with
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predicted sizes ranging from 85,938 to 133,315 bp (Table 2). Also, all hybrid assembled
IncK-blaCMY-2 plasmids were found to be in one circular contig. Resfinder confirmed that
six IncK plasmids harbored only the blaCMY-2 resistance gene, i.e., plasmids pSB17032 and
pSB17042 from poultry samples, and pHBI02, pHBI03, pHBI04, and pHBI05 from clinical
isolates. Plasmids present in all ST429 and ST162 isolates in this study contained the addi-
tional resistant genes sul1, aac (3)-Via, aadA1, and tet(A), except for plasmid pPS15001 (tetA
was absent). We also found that six IncK plasmids from ST1286 isolates carried blaTEM-1 and
blaCMY-2, which co-occurred with the dfrA1, sul2, and tet(A) resistant genes. VirulenceFinder
detected traT (n = 28, 100%) and cib (n = 22, 78.6%) in all or most plasmids.

2.7. Comparison of IncK-blaCMY-2 Plasmids from This Study and Public Databases

A comparison of the IncK-blaCMY-2 plasmids under study showed that all have the
conjugative transfer genes encoding pilus (pilI, pilP, pilR, pilS, pilM, pilN, and pilV), genes
from the transference operon tra (traC-F, traH, traJ, traM-T, traV-W, and traX-Y), and
genes encoding for a DNA primase (T7 DNA primase) and an endonuclease relaxase
(nikB) (Figure 5 and Supplementary Figure S1). They also shared genes involved in plas-
mid partition/stability. Interestingly, four plasmids of poultry origin belonging to ST429
(n = 3) and ST162 (n = 1), namely, pSB17040, pRS184-R, pRL97, pSA17101, and the plas-
mid pHBI01 from a human blood ST429 isolate, showed 99.9% identity: they displayed
common virulence factors and resistance genes (Table 2) although their origin (production
systems, slaughterhouses, or clinical, as well as years and countries of isolation) differed.
The plasmid pPS15001, found in an E. coli ST429, lacked a 10 kb region with tet(A) and
mercury-resistance genes compared to the remaining plasmids linked to ST429 (Table 2).
Importantly, ST1286 E. coli isolates emerging in 2018 contained the largest IncK-blaCMY-2
plasmid (132–133 kb) that harbored some unique genes encoding a transposase, the toxin–
antitoxin system (relE/parE), and the SOS inhibition genes psiAB not found in the other
IncK-blaCMY-2 plasmids. However, the mercury-resistance operon (mer) was not detected
in IncK-blaCMY-2 plasmids from E. coli ST1286 (Supplementary Table S5). IncK-blaCMY-2
plasmids from ST429 E. coli included in this study exhibited a high similarity with publicly
available IncK plasmids present in E. coli ST429 from Norway and the USA (Supplemental
Material Figure S2), while a Norwegian IncK-blaCMY-2 plasmid from an E. coli ST162 isolate
lacked a 45 kb fragment compared to the Danish pSA17101 from E. coli ST162. In addition,
plasmids pSB17032 and pSB17042, from E. coli ST57 and ST350 isolated from slaughter-
houses, were almost identical to the pHBI003 plasmid from the Danish human blood E. coli
ST131 isolate, as shown in Figure 5.

The phylogenetic tree with 53 IncK-blaCMY-2 complete sequences from the GenBank
database (Supplementary Table S6) and 28 IncK-blaCMY-2 plasmids from the current study is
shown in Figure 6. Among these plasmids, 75 plasmids, showing a worldwide distribution,
harbored only one β-lactamase gene, blaCMY-2, while six plasmids, restricted to Denmark,
also contained the blaTEM-1 resistance gene. The plasmid sizes ranged from 70 kb to
133 kb. The conjugation-associated traT gene was found in 79 (98%) plasmids, while
40 plasmids showed, in addition, the virulence factor colicin Ib (cib gene), which is a
polypeptide toxin acting against E. coli and closely related bacteria. Phylogenetic analysis
showed that three plasmids, pPS15001 from Denmark, p30P2 from the USA (accession
no. LC557961.1), and p22C121-2 from Japan (accession no. LC501554.1), containing the
same additional antimicrobial-resistance (aac (3)-Via, aadA1, sul1) and virulence genes
(cib, traT) clustered with plasmids that, besides the above-mentioned genes, also carried
tet(A), indicating a putative common ancestor and subsequent introduction of the tet(A)
gene. The IncK-blaCMY-2 plasmid pN16S065 (accession no. CP082750.1) recovered from a
Salmonella enterica isolate in the USA clustered with plasmids from E. coli, suggesting the
spread of these plasmids to other Enterobacteriaceae. Moreover, IncK-blaCMY-2 plasmids
isolated from human clinical cases were interspersed with plasmids from animals, food,
and the environment, suggesting that IncK-blaCMY-2 plasmids and their hosts circulate in
the entire ecosystem.
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3. Discussion

This study characterized the genetic diversity of 46 IncK-blaCMY-2-positive ESC-resistant
E. coli isolates previously collected from the Danish poultry production system and human
clinical samples during 2015–2021, Finnish broilers in 2017, and German chicken meat
in 2012. Using public databases and data from the present study, the epidemiology of
ST429 E. coli isolates and IncK-blaCMY-2 plasmids in the context of poultry production
and possible links to clinical cases was evaluated. The results indicated that genetically
diverse ESC-resistant E. coli STs with IncK-blaCMY-2 plasmids have been circulating in the
poultry production chain in Denmark and other countries for over a decade. Moreover,
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this study strongly suggests that transfers to humans are occurring with links to blood
infections. Previous studies have also documented the spread of IncK-blaCMY-2 plasmids
in ESC-resistant E. coli isolates obtained from 2006 to 2012 across different host species,
including humans in Denmark [23].

Antimicrobial susceptibility testing showed resistance of all (n = 46) ESC-resistant
E. coli isolates to ampicillin, cefotaxime, and ceftazidime. This resistance pattern resembled
previous reports for veterinary isolates in other countries [14,24,25]. Moreover, the major-
ity of the IncK-blaCMY-2-positive ESC-resistant E. coli isolates (43/46, 93.5%) presented a
multidrug-resistance profile, i.e., being resistant to at least three classes of antimicrobials,
which is higher than the 84% observed in a Spanish study of ESC-resistant E. coli isolates
from a laying hen farm [26]. The most common plasmid-mediated co-resistance, found
in the present study, to sulfamethoxazole (93.5%, 43/46), tetracycline (84.8%, 39/46), gen-
tamicin (71.7%, 33/46), and trimethoprim (19.6%, 9/46), suggests a concerning spread of
resistance among the IncK-blaCMY-2-positive ESC-resistant E. coli population, especially
since tetracycline, penicillin, and sulfamethoxazole, in combination with trimethoprim,
were reported to be the most commonly used antimicrobials for poultry farming in Denmark
in 2016 [27]. Interestingly, resistance levels of 21.3, 25.9, 69.7, and 22.8% against cefotaxime,
tetracycline, sulfamethoxazole, and trimethoprim, respectively, were recently reported in
E. coli isolated from cloacal swabs from Danish broiler flocks in 2016–2017 [28], pointing to
the presence of multidrug-resistant E. coli strains in the poultry production pyramid.

All the blaCMY-2-positive E. coli isolates carry multiple resistance genes, with the in silico
results agreeing with the phenotypic analysis (Figure 2, Table 1). The gentamicin-resistance
genes aac (3)-Vla and aac (3)-IId were frequently detected in the IncK-blaCMY-2-positive
ESC-resistant E. coli isolates, genes also observed in E. coli from chicken and human sources
in Canada [29].

One human isolate (HBI02) harbored both the azithromycin-resistance gene mph(A)
and the chloramphenicol-resistance gene catA1. Co-harborage of the blaCMY-2, mph(A), and
catA1 genes was previously reported in E. coli isolates from calves in the USA [30]. A
recent study from Korea detected the catA1 gene in blaCMY-2-producing pathogenic E. coli
in pigs, but there were no chloramphenicol-resistant genes in the strains isolated from
humans [31]. In addition, four of the IncK-blaCMY-2-positive blaCMY-2-positive E. coli isolates
showed chromosomal point mutations yielding fluoroquinolone resistance (Figure 1). These
isolates had at least two mutations in the gyrA gene combined with high MIC values of
ciprofloxacin (0.25–0.5 mg/L) and simultaneously nalidixic acid MIC values ≥ 128 mg/L.
Single mutations in the gyrA gene altering leucine at position 83 (S83L), as well as double
mutations in the same gene altering positions at aspartic acid (D87N) and serine (S83L), are
known to turn E. coli strains resistant to fluoroquinolones [32].

All 46 IncK-blaCMY-2-positive ESC-resistant E. coli could transfer the blaCMY-2 gene
by conjugation to a recipient, pointing to the potential for horizontal transmission of the
plasmid-borne blaCMY-2 gene. A previous study in Denmark identified that exogenous E. coli
of human or animal origin could readily transfer blaCMY-2-encoding plasmids to the human
fecal microbiota [33]. Furthermore, an IncK-blaCMY-2 plasmid was transferable between
E. coli and S. Heidelberg isolates, but the transfer was unsuccessful between S. Heidelberg
isolates, as described by [34]. Also, a previous study demonstrated the presence of IncK-
blaCMY-2 plasmids in Salmonella enterica in the USA [35], plasmids which interestingly were
similar to the ones detected in the present study (Figure 6).

The pangenome analysis revealed that the IncK-blaCMY-2 E. coli isolates possess a
large source gene pool and the capacity to acquire novel genetic elements. The pool of
conserved core genes is three times smaller than the pools of accessory and cloud genes,
which suggests a flexible genome [36]. Other studies have also described the core genome
of E. coli as being comparatively small [37–39]. However, it is worth emphasizing that the
core genome is relative, as the concatenated core would become smaller if more genomes
were added to the comparison [40]. On the other hand, it is notable that the smaller size of
core genomes will result in more expansive accessory genomes and isolate-specific cloud
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genes [41]. Of course, these non-essential accessory and cloud genes are prone to rapid
evolution, and their knockout does not impact the isolate phenotype [42]. In addition, the
tree provides deeper insight into the concatenated core gene alignment, which indicates that
various E. coli STs have been of great significance in the evolution of IncK-blaCMY-2 E. coli
isolates, as previously described [43].

IncK-blaCMY-2-positive ST429 E. coli isolates with 0–54 SNP differences were originally
isolated from various stages of poultry production and from humans, implying that clonal
transmission happens between different hosts. ST429 isolates from Finland and Germany
included in this study were previously demonstrated to show few SNP differences in
each case/country [14,22]. In addition, ST1286 isolates with 13–90 SNP differences were
originally collected from slaughterhouses [20], also suggesting clonal transmission. A recent
study from China reported no SNP differences among ST1286 E. coli isolates from laying
hens [44]. While ST1286 IncK-blaCMY-2-positive E. coli isolates were found in poultry, this
ST was not among our IncK-blaCMY-2-positive ESC-resistant E. coli isolates from humans,
indicating lower virulence potential, in agreement with previous studies [45,46].

The cgMLST analysis of ST429 E. coli isolates from Denmark [20] and Enterobase
(n = 81) showed that the isolates differed in a limited number of alleles, highlighting the
existence of a conserved pool of ST429 carrying blaCMY-2 and supporting the transmission of
blaCMY-2 along the poultry production chain and across sectors. Moreover, the cgMLST anal-
ysis of ST429 E. coli isolates carrying other bla-family genes such as blaCTX-M also identified
the clonal relationship between isolates from different countries [47]. In addition, a recent
pan-European study reported ESC-resistant E. coli isolates carrying blaCMY-2 on different
Inc plasmid types (e.g., IncI1, IncK2, IncA/C) in diverse STs, reflecting the dissemination of
cephalosporin-resistance genes via successful plasmid lineages [48].

IncK plasmids of different sizes and genetic contents were demonstrated by short-read
and long-read sequencing to contain a conserved carrier/location of the blaCMY-2 gene and
to occur in genetically diverse STs. IncK plasmids can be divided into two separate lineages,
namely, IncK1, which is often associated with blaCTX-M-14, and IncK2, which predominately
carries blaCMY-2 [49,50]. Previous studies have described, using hybrid assembly, trans-
ferable IncK-blaCMY-2 plasmids in ESC-resistant E. coli isolates in other countries [51,52].
Here, we found that one ST429 Danish E. coli harbored a smaller (~109 kb) IncK-blaCMY-2
plasmid, while the remaining eight ST429 isolates from Denmark harbored a longer version
(119–120 kb). Thus, our results suggest that at least two variants of IncK-blaCMY-2 plasmids
are circulating among ST429 ESC-resistant E. coli isolates in the poultry production chain in
Denmark. To note, the most common Danish IncK-blaCMY-2 plasmids were highly similar
to plasmids originating from broiler production in other countries, IncK-blaCMY-2 plasmids
circulating in Germany (117–120 kb) in 2012, in Finland (~122 kb) in 2017 [14,43], and in
Norway (~110 kb) [53], indicating the successful spread of IncK-blaCMY-2 plasmids in broiler
production. Also, highly similar IncK-blaCMY-2 plasmids linked to three different E. coli STs
from two slaughterhouses were observed, indicating a potential horizontal dissemination
among E. coli STs in broiler production, as suggested by others [54].

Among the five IncK-blaCMY-2-positive E. coli clinical isolates linked to different STs,
one clinical isolate of E. coli ST429 harbored a IncK-blaCMY-2 plasmid (pHBI01), which shared
high sequence homology with those from E. coli ST429 from poultry (Figure 5), providing
evidence of the vertical clonal spread of E. coli harboring IncK-blaCMY-2 plasmids between
poultry and humans. While E. coli ST429 isolates represent a common avian pathogenic
lineage specific to poultry, it was previously believed to hold little pathogenic potential
for humans [55]. However, extraction of E. coli ST429 isolates from Enterobase revealed
the presence of eight isolates harboring IncK-blaCMY-2 plasmids, which were derived from
human clinical cases during 2016–2021 (Supplementary Table S4). Taken together, this may
imply a stronger pathogenicity potential for this ST than previously thought.

To note, the IncK-blaCMY-2 plasmids pHBI02 and pHBI03, linked to E. coli ST69 and
ST131 isolates from humans, exhibit a high similarity with IncK-blaCMY-2 plasmids related to
E. coli ST350 and ST57 from slaughterhouse meat (Figure 5), indicating a horizontal transfer
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of plasmids from poultry to clinical E. coli lineages in Denmark. E. coli ST131 is responsible
for 50% of ESBL blood infections with no recognized animal reservoir [56], although a link
to broilers was implied in a 2019 study [19]. E. coli ST69 is a globally distributed E. coli
responsible for hospital-acquired antimicrobial-resistant human infections [57] and known
to be able to colonize the animal intestine [58]. E. coli ST1286 (n = 6 strains), according to
DANMAP [59], is not a frequent ST associated with blaCMY-2 in broilers or broiler meat,
which agrees with our previous study [20], where ST1286 isolates carrying blaCMY-2 were
only isolated from poultry meat from one slaughterhouse in 2017–2018.

The detailed plasmid comparison performed in this study revealed a common IncK-
blaCMY-2 backbone sequence of 85 kb for all 28 plasmids. This plasmid backbone sequence
might be common in poultry, as described earlier [50,54]. Additionally, most of our IncK-
blaCMY-2 plasmids contain toxin–antitoxin systems (e.g., pndC/ydfB or relE/ParE) and
regions involved in plasmid transfer (such as tra, pil operons) that ensure stable maintenance
of the plasmid to the daughter cells after cell division and the spread to other strains,
respectively, which increases the potential for transmission to opportunistic pathogens in
the poultry and human gut microbiota or in environmental reservoirs [60]. Interestingly, a
mercury-resistance operon (mer, [61]) was observed in IncK-blaCMY-2 plasmids from E. coli
ST429 originally isolated from poultry and clinical samples in Germany, Finland, and
Denmark [14,20,43], whereas mer genes were not detected in IncK-blaCMY-2-positive E. coli
from other STs (poultry isolates, ST1286, ST162, ST350, and ST57; and clinical isolates, ST69,
ST131, ST95, and ST12). It is possible that contamination of poultry or other animal feed in
the farms promoted the carriage of mercury genes in IncK-blaCMY-2 plasmids. Along these
lines, mercury was detected in mineral feed used in poultry rearing in Germany in 2013 [62].

In this study, we created a phylogenetic tree of IncK-blaCMY-2 plasmids composed of
sequences from this study (n = 28) and publicly available sequences at GenBank, NCBI
(n = 53, from seven other countries). To our knowledge, this is the first attempt to compare
all IncK-blaCMY-2 plasmids published so far (n = 81). Results highlight that IncK plasmids
represent a major vehicle for blaCMY-2 and other antimicrobial-resistance genes worldwide
and over time, overall, across the poultry production chain but also in humans. E. coli
was the dominant host with only one IncK-blaCMY-2 plasmid carried by Salmonella enter-
ica [63]. Recent studies have reported that blaCMY-2 is also harbored by IncI1 plasmids
present in Salmonella enterica isolates from chicken meat in Spain and South Korea [64,65].
Since 39 (48.1%) IncK-blaCMY-2 plasmids were confirmed to carry genes encoding resis-
tance to sulfonamides (n = 35) and tetracyclines (n = 25) all over the world, the spread of
such plasmids might be prompted by the use of these antimicrobial agents worldwide.
A total of 79 (97.5%) IncK-blaCMY-2 plasmids harbored the traT gene and 40 (49.4%) con-
tained the cib genes which indicates the horizontal transfer of the IncK-blaCMY-2 plasmid
and co-location of blaCMY-2 with virulence factor colicin Ib, respectively [66]. A previous
study showed that the mutation of the traY gene of IncK plasmids effectively prevents
conjugation [67].

4. Materials and Methods
4.1. IncK-blaCMY-2-Positive ESC-Resistant E. coli Isolates Included in This Study

A total of 46 ESC-resistant E. coli isolates from different STs were selected from four
unrelated collections [20,22] based on their carriage of IncK-blaCMY-2 plasmids and associa-
tion with poultry production or human clinical cases. The selection consisted of 31 (linked
to ST429, ST1286, ST162, ST350, or ST57) isolates obtained from the poultry production
system and slaughterhouses in Denmark, collected over the period 2015–2018 [20], seven
ST429 E. coli isolates obtained from Finnish poultry production in 2017 [22], three E. coli
ST429 isolates originating from German chicken meat in 2012 [14], and five isolates (linked
to ST429, ST69, ST131, ST95, ST12) originating from Danish clinical bloodstream infec-
tions during 2017–2021. More detailed information for all isolates is shown in Table 2.The
isolates were routinely cultivated on MacConkey agar (Oxoid, Basingstoke, UK) sup-
plemented with 1 mg/L cefotaxime (Sigma-Aldrich, St. Louis, MO, USA) followed by
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transfer of colony mass into 1 mL of LB broth with 18% glycerol for long-term storage
at −80 ◦C. Genomes from all the isolates were previously sequenced using different Illu-
mina platforms ([14,20,22], and H. Hasman personal communication [68]). The raw data
were quality trimmed (Q20) using Trimmomatic (v.0.36) [69] and assembled using SPAdes
software (v.3.11.1) [70].

4.2. Antimicrobial Susceptibility Testing

The antimicrobial susceptibility profiles of the 46 E. coli isolates were evaluated by
determining the Minimum Inhibitory Concentration (MICs) using Sensititre® EUVSEC3®

plates (Thermofisher Scientific, Paisley, UK) following the manufacturer’s recommended
protocol. The EUVSEC3® plate contains 15 antibiotic agents of significance to public
health, including the tested range of amikacin (4–128 µg/mL), ampicillin (1–32 µg/mL),
azithromycin (2–64 µg/mL), cefotaxime (0.25–4 µg/mL), ceftazidime (0.25–8 µg/mL),
chloramphenicol (8–64 µg/mL), ciprofloxacin (0.015–8 µg/mL), colistin (1–16 µg/mL),
gentamicin (0.5–16 µg/mL), meropenem (0.03–16 µg/mL), nalidixic acid (4–64 µg/mL),
sulfamethoxazole (8–512 µg/mL), tetracycline (2–32 µg/mL), tigecycline (0.25–8 µg/mL),
trimethoprim (0.25–16 µg/mL). Results were interpreted based on the Epidemiological
Cut-Off value (ECOFF) issued by the European Committee on Antimicrobial Susceptibility
Testing (EUCAST), except for sulfamethoxazole, for which the sensibility or resistance
values were reported according to the EU surveillance ECOFF [71,72]. The MICs for
E. coli ATCC® 25922 were also tested for quality control. Three technical replicates were
performed for each isolate.

4.3. Plasmid Conjugation

Transfer of the plasmids was confirmed in a filter conjugation mating assay with some
modifications [73]. All blaCMY-2 carrying ESC-resistant E. coli isolates were used as donors,
and E. coli MG1655 resistant to rifampicin and nalidixic acid served as a recipient strain.
Donor and recipient strains were cultured overnight in Luria-Bertani broth (LB, Sigma-
Aldrich, St. Louis, MO, USA) at 37 ◦C and washed twice with phosphate-buffed saline (PBS,
Invitrogen, Maryland, MD, USA). After adjusting the OD600 to 0.5, donor and recipient
isolates were mixed at a ratio of 1:1, and 100 µL were immediately applied to a 0.2 µm
nitrocellulose filter membrane, placed on LB agar, followed by overnight culture at 37 ◦C
for 20 h. Subsequently, serial decimal dilutions of the cultures embedded in the filters were
prepared in sterile saline solution, and transconjugants were selected by cultivation on LB
agar containing appropriate antibiotics: cefotaxime (2 µg/mL); or rifampicin (100 µg/mL)
and nalidixic acid (100 µg/mL) (Sigma-Aldrich, St. Louis, MO, USA). Donor and recipient
strains were spread on LB agar supplement with cefotaxime, or with rifampicin and
nalidixic acid, respectively, used as controls. All presumed transconjugants were confirmed
to contain blaCMY-2 by PCR using previously described primers and conditions [74]. Each
experiment consisted of three biological replicates and three technical replicates.

4.4. Genome Annotation and Pangenome Analysis

All de novo assemblies of the isolates’ genomes were carried out using the SPAdes
(v.3.11.1), and the annotation was performed using the BAKTA annotation pipeline v1.7.0
with the default setting [75]. Core and accessory genome comparison analyses of the ESC-
resistant E. coli isolates were performed using the Roary pangenome pipeline v3.13.0 [76].
Roary produces a core gene alignment result from gff3 files created by BAKTA annotation.
The “core” genes were identified in the isolates using a 99% identity cut-off. A concate-
nated core gene alignment of all isolates’ core genes was generated and attached as a
supplementary file (Table S2). The combined core gene alignment was used to construct an
approximately maximum-likelihood phylogenetic tree using SNP sites [77] and the tree
with FastTree v2.1 [78]. The gene presence/absence file obtained by the Roary pangenome
annotation pipeline and the core gene phylogenetic tree were visualized using a web-based
interactive visualization of the genome tool Phandango [79].
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4.5. In Silico Analysis for Sequence Type and Resistance Genes

Sequencing data from the isolates, except for the isolates reported in the previous
study [20], were analyzed using the web-based Center for Genomic Epidemiology (CGE)
tools (https://cge.cbs.dtu.dk/services/, accessed on 15 May 2023). STs and resistance genes
or chromosomal point mutations yielding resistance to specific antibiotics were confirmed
using MLST 2.0 [80] and ResFinder 4.1 [81], respectively.

4.6. Isolate Phylogenetic Analysis

To detect/compare SNP (single nucleotide polymorphism) differences among ST429
and ST1286 isolates, CSIPhylogeny (https://cge.dtu.dk/services/CSIPhylogeny/, accessed
on 10 June 2023) was used on the CGE server with default settings and ignoring heterozy-
gous SNPs. ST429 and ST1286 input sequences were mapped to the earliest ESC-resistant
E. coli genomes, i.e., PS15001 and SB17103 for ST429 and ST1286, respectively, as the
reference strains to call SNPs and searched for the previously described nucleotide varia-
tions [82]. The following criteria for high-quality SNP calling and filtering were chosen: (i)
select a minimum depth of 10× at SNP positions; (ii) select the minimum relative depth of
10% at SNP positions; (iii) select a minimum distance of 10 bp between SNPs; (iv) select
minimum SNP quality of 30; (v) select minimum read mapping quality of 25; and (vi) select
a minimum Z-score of 1.96. Site validation for each SNP position was performed. For
bootstrap, 1000 replicates were generated to construct the tree. Two SNP matrices were
created in MS Excel for each pair of strains, and their phylogeny trees were visualized
using iTOL (http://itol.embl.de/, accessed on 15 June 2023) [83].

To further compare the relationship among ST429 isolates worldwide, a search for
E. coli ST429 by the Achtman 7-gene MLST in EnteroBase [84] provided 371 results up
to 15 June 2023 (http://enterobase.warwick.ac.uk, accessed on 15 March 2023). Of these,
80 came with relevant metadata to be considered for further analysis and are provided in
a supplementary file (Table S4). The metadata of interest were the source, sample name,
year of isolation, and country of origin. To compare this study’s 22 ST429 Danish poultry
isolates and the 80 Enterobase ST429 isolates, a phylogenetic analysis using an ad hoc core
genome multilocus sequence typing (cgMLST) scheme with 2513 genes [20] was performed
using Ridom Seqshere+ (v5.0.1, Ridom GmbH, Munster, Germany) [85] and visualized
with a minimum spanning tree.

4.7. Plasmid Sequencing

To obtain high-quality IncK-blaCMY-2 plasmid sequences, 28 out of the 46 ESC-resistant
E. coli isolates were selected to represent different STs, sources, and countries, and subjected
to long-read sequencing (Table 2). All isolates were grown on MacConkey agar (Oxoid,
Basingstoke, UK) with 1 mg/L cefotaxime (Sigma-Aldrich, St. Louis, MO, USA) overnight
at 37 ◦C and DNA was then extracted using Genomic-Tip G/500 kit (Qiagen, Hilden,
Germany) following the manufacturer’s protocol. Libraries were constructed with the 1 D
Ligation Barcoding Kit (catalog no. SQK-RBK114.96, ONT, Oxford, UK) according to the
manufacturer’s protocol and were sequenced on a R10.4.1 flowcell (FLO-MIN114) used
with a MinION Mk1B sequencing device and sequenced with MinKNOW software v4.5.5
for 20–24 h. Long reads in the fast5 format were base called, demultiplexed, and converted
into fastq format using Guppy v6.4.4 (ONT). The adaptor sequences were removed using
Porechop v0.2.2 [86]. Hybrid assembly of long and short reads using Unicycler v0.4.0 [87]
resulted in circular contigs of the plasmid. We mapped the short Illumina reads to the
plasmid contigs and performed error correction using CLC Genomic Workbench v.11.0.1
(QIAGEN, Aarhus, Denmark) by calling variants based on the mapping. Manual correction
of errors was needed since homopolymer areas in sequences were especially problematic
for the MinION technology.

https://cge.cbs.dtu.dk/services/
https://cge.dtu.dk/services/CSIPhylogeny/
http://itol.embl.de/
http://enterobase.warwick.ac.uk
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4.8. Plasmid Comparison

The 28 assembled IncK-blaCMY-2 plasmid sequences were annotated using BAKTA
annotation v1.7.0 [75]. Three additional published IncK-blaCMY-2 plasmids (2016-40-16449,
p2016-40-16852, and p2) found in ESC-resistant E. coli isolated in Norwegian and American
poultry production [53,88] were included in the comparison. Resistance and virulence genes
and plasmid types were determined using ResFinder 4.1 [81], VirulenceFinder 2.0 [89],
and PlasmidFinder 2.1 [90], respectively. Alignment of plasmid sequences with similar
structures was generated by BLAST Ring Image Generator (BRIG) v0.95 analysis [91] and
the clinker webserver (https://cagecat.bioinformatics.nl, accessed on 15 May 2023) [92].

4.9. Plasmid Phylogenetic Tree

Complete sequences of IncK-blaCMY-2 plasmids were recovered from the GenBank
databases using a keyword search for the words “IncK” and “blaCMY-2”. All 81 sequenced
IncK-blaCMY-2 plasmids from the current study (n = 28) and GenBank (n = 53) were anno-
tated by BAKTA [75]. Moreover, antimicrobial-resistance genes and plasmid types were
confirmed using the CGE tools as described above, and plasmids were analyzed for the
content of virulence genes (virulence factor databases (VFDB) [93] and VirulenceFinder. Sub-
sequently, SNP sites generate SNP alignments [77]. An approximate maximum-likelihood
phylogenetic tree of IncK-blaCMY-2 plasmids was constructed with FastTree v2.1 under the
general-time reversible model with a categorical model of the rate heterogeneity (GTR-
CAT), based on the Roary method of alignment [78]. The phylogenetic tree was visualized
using iTOL tool v4.3.3 (http://itol.embl.de/, accessed on 15 May 2023) [83].

5. Conclusions

In this study, we investigated the persistence and dynamics of 46 ESC-resistant E. coli
and their IncK-blaCMY-2 plasmids, previously isolated from poultry and humans. Our
results revealed that different E. coli STs carried highly similar IncK-blaCMY-2 plasmids, with
the most common ST429 being isolated both from poultry and a human blood infection. The
presence of highly similar plasmids in different E. coli STs could be due to the persistence
of IncK-blaCMY-2. Furthermore, ST429 E. coli blaCMY-2 isolates were found to occur globally
pointing toward a common ancestor that has spread between the various reservoirs. The
distribution of IncK-blaCMY-2 plasmids also provided evidence for the worldwide spread of
IncK-blaCMY-2 producing ESC-resistant E. coli isolates. Further surveillance of IncK-blaCMY-2
plasmids in different E. coli STs in poultry production chain and humans should be carried
out in order to increase our understanding of the dynamics of these ESC-resistant E. coli.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics13040349/s1, Table S1: Distribution of minimum in-
hibitory concentration (MIC) against antibiotics among ESC-resistant E. coli isolates in the study;
Table S2: Presence or absence of annotated genes in ESC-resistant E. coli isolates (n = 46) in the study;
Table S3: Single nucleotide polymorphisms (SNPs) matrices for ESC-resistant E. coli belonging to
(a) ST429 and (b) ST1286; Table S4: List of 80 E. coli ST429 with associated metadata retrieved from
the EnteroBase database, as well as supplemental minimum spanning trees (a–d) of the 80 Enterobase
isolates and 22 ST429 isolates from this study; Table S5: Annotations for two IncK-blaCMY-2 plasmids
from our study (pSB17040 in ST429 and pSB18004 in ST1286); Table S6: List of IncK plasmids carrying
blaCMY-2 in E. coli strains representing 53 plasmids from GenBank (NCBI) and 28 plasmids from the
present study; Figure S1: Comparison of Danish IncK-blaCMY-2 plasmids from our study using BRIG;
Figure S2: Comparison of Danish and international IncK-blaCMY-2 plasmids using BRIG. Figure S3a–c.
Minimum spanning trees of the E. coli ST429 with information regarding (a) isolate numbers, (b) year
of isolation, and (c) source.
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