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Abstract: Lenses have been a cornerstone of optical systems for centuries; however, they are inherently
limited by the laws of physics, particularly in terms of size and weight. Because of their characteristic
light weight, small size, and subwavelength modulation, metalenses have the potential to miniaturize
and integrate imaging systems. However, metalenses still face the problem that chromatic aberration
affects the clarity and accuracy of images. A high-quality image system based on the end-to-end
joint optimization of a neural network and an achromatic metalens is demonstrated in this paper.
In the multi-scale encoder–decoder network, both the phase characteristics of the metalens and the
hyperparameters of the neural network are optimized to obtain high-resolution images. The average
peak-signal-to-noise ratio (PSNR) and average structure similarity (SSIM) of the recovered images
reach 28.53 and 0.83. This method enables full-color and high-performance imaging in the visible
band. Our approach holds promise for a wide range of applications, including medical imaging,
remote sensing, and consumer electronics.

Keywords: metalens; end-to-end joint neural network; high-quality image system

1. Introduction

Today, imaging systems are widely used in medical instruments, wearable devices,
smartphones, and so on. However, modern imaging systems usually consist of multiple
optical elements to overcome geometric aberrations. The introduction of additional com-
ponents, such as lenses, mirrors, or prisms, increases the overall weight and volume of
the system, which may limit the application of imaging systems [1,2]. How to build a
miniaturized imaging system and maintain high performance has become a hot topic in
the industry and academia.

Nowadays, by manipulating the geometrical parameters of the subwavelength ele-
ments, such as the size, shape, and orientation, metasurfaces can modulate the polariza-
tion [3], amplitude [4,5], and phase [6] of incident light to achieve the desired functionality.
As one planar optical device derived from metasurfaces, metalenses hold tremendous
potential in the field of optical imaging. Different from traditional lenses [7], metalenses do
not rely on changes in the thickness of the constituent structures to accumulate phase, but
directly modulate the phase of the incident light. The emergence of metalenses addresses
the issue of bulky volume associated with conventional optical lenses, aligning with the
trends in integration and miniaturization [8–10] and offering various functionalities. How-
ever, the phase discontinuity of metalens can also lead to image distortion and blur. The
design of achromatic metalens is still limited by large aperture and low Fnumber [11,12].

In recent years, various inverse designs have been proposed for nanomaterials and
metelenses [13–15]. Sensong An [16] established a forward spectral prediction tensor neu-
ral network to predict the transmission spectra of meta-atoms with different structures.
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Zhaocheng Liu [17] demonstrated the feasibility of using an unsupervised learning sys-
tem [18] to reverse-design nanophotonics. But these methods belong to the forward design
metalens element structure. Meanwhile, existing end-to-end optimization frameworks in
meta-optics [19–21] cannot optimize the final full-color image quality. They typically rely
on intermediate metrics such as spot intensity.

Computational imaging opens up new directions for improving imaging quality [22–28].
The integration of metasurface optics and deep learning methods has significantly advanced
high-quality images [29–34]. In 2019, Vincent Sitzmann et al. [23] designed an end-to-end opti-
mization system for dispersion-compensated wide field depth and super-resolution imaging,
integrating optical and image processing components. The system is a fully differentiable
model that jointly optimizes the effective refractive index of diffractive optical elements (DOEs)
and image processing parameters, but the modulation of DOEs is limited by phase. In 2022,
Zeqing Yu et al. [35] utilized a U-Net pre-processing model and incorporated both metalens
and computationally generated holography into one imaging system. In 2022, Qiangbo Zhang
et al. [36] proposed a snapshot hyperspectral imaging system based on metalens, achieving
joint optimization of the metalens and image processing. However, both methods are designed
for polarization-sensitive metalenses.

In this paper, a high-quality imaging system is proposed by jointly optimizing a
neural network and a polarization-insensitive achromatic metalens. The imaging system,
outlined in Figure 1, employs both forward and backward propagation networks for
image reconstruction. During forward propagation, the ground truth is convolved with
the point spread function (PSF) of the metalens, and noises are added to generate the
sensor image. Subsequently, the neural network reconstructs the sensor image. The loss
function is computed by comparing the reconstructed images with the ground truth. In
the process of backward propagation, the neural network and metalens parameters are
optimized to minimize the loss function. Our method provides a new method for full-color
imaging using a polarization-insensitive metalens. The polynomial phase factor makes the
design more flexible to help achieve an achromatic metalens, and the multi-scale neural
network makes the image feature extraction more comprehensive and conducive to image
reconstruction. This approach enhances high-quality image recovery by co-optimizing the
front-end optics and back-end recovery network.
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Figure 1. The imaging reconstruction system.

2. Theoretical Analyses

The optimization process is mainly divided into the following steps. First, the metalens
is constructed by selecting nanopillars according to the phase profile. The corresponding
phases of nanopillars with different diameters are obtained by the finite difference time
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domain method. The phase profile of the metalens consists of hyperbolic and polynomial
phases. Polynomial factors are optimized to design the achromatic metalens. Second, the
PSF of the metalens is calculated, the ground truth is convolved with the PSF, and noises
are added to create the sensor image. Third, the neural network is built and the phase
factor of the metalens is optimized along with the network hyperparameters. Fourth, the
loss function is minimized by comparing the loss between the reconstructed image and the
ground truth.

2.1. Metalens Design

The phase control of a metalens can be divided into the geometric phase and propa-
gation phase. However, since the geometric phase is sensitive to polarization, this paper
focuses on the polarization-insensitive propagation phase. The propagation phase method
provides phase discontinuities by altering size such as the height and diameters of symmet-
ric unit cells. A nanopillar has structural symmetry and can be modulated by changing
the duty cycle [37,38]. Silicon nitride is easy to integrate and has high transmittance in
the visible spectrum. Therefore, a silicon nitride nanopillar with the propagation phase is
discussed here.

An important aspect of designing a metalens is optimizing the geometric parameters
of its unit structures, which include the period, diameter, and height, to achieve phase
coverage from −π to π. According to the Nyquist sampling theorem, the period P of the
unit structure should satisfy P < λ/2NA [39], where NA is the numerical aperture of the
metalens. To suppress higher-order diffraction, the period of the unit structure should
be smaller than the wavelength of the incident wave [40,41]. However, for achromatic
metalenses operating within a certain wavelength range, the period of the unit structure
should be larger than the wavelength of the incident light to excite resonance of different
dispersive modes [40,41]. As the height of the unit structure increases, the achievable range
of phase modulation also increases. However, a higher aspect ratio of the unit structure
makes fabrication more challenging. Figure 2a shows the design of the unit cell. The
selected nanopillar period is 350 nm, and the height is 0.8 µm.
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In this paper, the finite difference time domain method is used for simulation. The
diameter was swept from 50 to 350 nm. Figure 2c,d show the phase and transmittance
of three wavelengths, respectively. Multiple −π to π periods are achieved by changing
the diameter of unit cells, which means that more than one nanopillar can be selected at a
certain location for the target phase. A phase library corresponding to the diameters of the
nanopillars was constructed. As shown in Figure 2c,d, the transmittance remains at a high
level except for the falling peaks.

The metalens phase profile in this paper is designed in the form of

φlens(x, y, z, λ) = −2π

λ
(
√

x2 + y2 + f 2 − f ) +
8

∑
i=0

ai(
x2 + y2

R2 )

i

(1)

where the first term in the formula is the hyperbolic phase and the second term is the
polynomial phase. (x, y) is the position from the center of the metalens, f is the focal length, λ
is the target wavelength, and ai is the polynomial phase factor as the optimizable parameter.
According to Equation (1), the phase of the metalens at each position is obtained, and the
corresponding nanopillar is selected from the phase library. Traditional metalenses use
the hyperboloidal phase to generate a perfect spherical wavefront [37], but its coefficients
are fixed and cannot be optimized. Here, three wavelengths of 462 nm, 511 nm, and
606 nm were selected for the achromatic metalens design in the visible band. The phase
factors of the three wavelengths were optimized and initialized by the particle swarm
optimization (PSO) algorithm [42]. Then, the phase factors were fine-tuned by using
end-to-end network imaging.

2.2. PSF Calculation

The imaging system is modeled as a convolution of the ground truth with the PSF. The
PSF is a function used to describe the imaging performance of an optical system for a point
source of light. When a point source of light is imaged through an optical system, the PSF
characterizes how the light is spread out on the imaging plane because of the limitations
and characteristics of the optical system.

Scalar diffraction theory is used for imaging analysis of nano-optical elements. The
metalens diffraction imaging schematic is demonstrated in Figure 3. Assuming that the
amplitude of the incident light is A and the phase is φd, when the light passes through the
metalens surface, the complex amplitude after metalens modulation is written as [43]

U(x0, y0) = Aexp(iφd(x0, y0))exp(iφlens(x0, y0)) (2)
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The light intensity received on the sensor is

U(x, y) =
1

iλz
exp(ikz)

x
U(x0, y0)exp(

ik
2z

[(x − x0)
2 + (y − y0)

2])dx0dy0 (3)
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The PSF is the intensity distribution of the point light source in the image plane after
passing through the optical system. To obtain the PSF of the metalens, we assume that the
incident light is a plane wave, and its complex amplitude is unit, then

PSF = U(x, y) =
1

iλz
exp(ikz)

x
exp(iφlens(x0, y0))exp(

ik
2z

[(x − x0)
2 + (y − y0)

2])dx0dy0 (4)

PSF ∝
∣∣∣F{exp[i(φlens(x0, y0) +

π

λz
(x2

0 + y2
0))]}

∣∣∣2 (5)

Only single-wavelength point source imaging is considered above, but the model can
be extended to color imaging. The image formed on the sensor is a displacement invariant
convolution of the ground truth and the PSF,

Isensor =
∫

(Iλ ∗ Pλ)dλ + ng + np (6)

where Isensor is the sensor image, Iλ is the ground truth, Pλ is the PSF at a certain wavelength,
np is Poisson noise, and ng is Gaussian noise.

2.3. Network Architecture

In this section, a multi-scale encoder–decoder [44] based on a convolutional neural
network is proposed, as illustrated in Figure 4. Here, both the multi-scale feature extraction
encoder and the multi-scale decoder are fully convolutional networks.
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In the encoder, a series of convolutional neural networks are employed to transform
the three-channel RGB image into feature tensors. The input layer achieves resolution
reduction through convolution to capture the rich feature information from the ground
truth. Three different convolution kernels are 1 × 1, 3 × 3, and 5 × 5, with 15, 30, and
60 channels and correspondence to the original resolution [29], 2× downsampled reso-
lution, and 4× downsampled resolution. At different resolutions, feature extraction is
performed using residual blocks and full convolutions. The low-resolution feature maps
are concatenated with the up-scale features by up-sampling. Performing feature extraction
at lower resolutions may allow the network to show features at a global level, while the
images extracted at the original resolution focus more on local details. Residual struc-
tures and concatenation layers are utilized to fuse different resolution features to obtain
comprehensive image information.

To deal with different image resolutions, we preprocess the PSF by resizing it to
1×, 2×, and 4× downsampled resolutions. After the encoder, the image tensors are
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then fed into the multi-feature decoder. In the decoder, we first extract features from the
original resolution using residual blocks. These features are then concatenated with the
2× downsampled resolution features. Similarly, the 2× downsampled resolution feature
maps are concatenated with the 4× downsampled feature maps. After residual blocks,
the 4× downsampled features are concatenated with upper-scale features using transpose
convolution until the feature map returns to the original resolution. Eventually, all the
feature tensors are generated a single three-channel RGB output image. This process helps
the image model learn more realistic features and reconstruct high-resolution images.

2.4. Loss Definition

The loss function is defined as the combination of mean squared loss and perceptual
losses to evaluate the deviation of the recovered image and the ground truth

L = λ1L1 + λpercLperc (7)

where the weight coefficients of λ1 and λperc are set as 0.01 here. L1 represents the mean
square error loss function. Lperc is a VGG-based perceptual loss function [45].

Although the traditional mean square error loss function can obtain a high peak
signal-to-noise ratio, the reconstructed image edge is too smooth. Perceptual loss learns the
original graphic structure and background information by observing the combination of
high and low level features extracted. Therefore, both the mean square error function and
the perceived loss function are added in this paper. The perceptual loss function extracts
and compares features from the output RGB image Iout and the real RGB image Igt using
the pre-trained VGG-19 network [45]:

Lperc(Iout, Igt) = ∑
b=2,3

L1(φb,2(Iout), φb,2(Igt)) (8)

where φb,2 is the feature map extracted by the VGG-19 network at the blockb_conv2 layer,
Igt is the ground truth, and Iout is the output image.

To obtain high quality iterative images, in each iteration, the metalens phase factor
and neural network system parameters should be continuously optimized to minimize the
loss. Then the expression can be written as{

M∗
lens,M

∗
CNN} = argmin

N

∑
i=1

L
(

Iout, Igt
)

(9)

where N is the number of training samples, Mlens is the metalens parameter, MCNN is the
network parameter, Igt is the ground truth, and Iout is the reconstructed output image. After
completing the training, Mlens is used to design our metalens.

3. Results and Discussion
3.1. Experimental Details

For the metalens design, the focal length was set to 15 mm and the diameter was
1 mm. The distance between the metalens and sensor was set to the focal length. A deep
learning platform based on TensorFlow 2.1.6 was used, and the GPU was NVIDIA P100
(Santa Clara, CA, USA) with 16 GB memory in the training and testing experiment.

The DIV2K dataset [46] was used as the training set. The DIV2K dataset consists of
over 800 high-resolution images. These images are sourced from various origins and cover
diverse scenes and subjects. The dataset encompasses a variety of image types, including
natural landscapes, portraits, architecture, etc., to ensure robust performance evaluation of
algorithms across different scenarios. Typically, the DIV2K dataset is divided into training
and testing sets. The training set is utilized for model training, while the testing set is
used to evaluate model performance. The DIV2K dataset is widely used to evaluate the
performance of image super-resolution algorithms, both qualitatively and quantitatively. It
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serves as a benchmark for training and testing various super-resolution models, including
deep learning-based approaches. The dataset is enhanced by flipping the training image
horizontally, vertically, and both horizontally and vertically triple the number of images.
The image is cut to 720 × 720 size.

The parameter optimization algorithm uses Adam optimizers (β1 = β2 = 0.9). In each
optimization process, the method of alternating optimization is used to optimize the phase
factor and network parameters, respectively. In each iteration, the phase is optimized
5 times with a learning rate of 0.004, and the convolutional neural network parameters are
optimized 10 times with a learning rate of 0.00095. The batch size is set as two. The training
was conducted for 3000 iterations, which took 9 h. Our sensor camera is the Prosilica
GT2000 (Burnaby, BC, Canada) with 5.5 µm pixels and the reconstructed image resolution is
720 px × 720 px, which matches the training image size. The sensor is modeled as Gaussian
noise and Poisson noise, where ηg(x, σg)~N(x, σg2) is the Gaussian noise component and
ηp(x, ap)~P(x/ap) is the Poisson noise component. Where σg = 1 × 10−5, ap = 4 × 10−5.

3.2. Results

The normalized simulated PSF is shown in Figure 5. It can be seen that the focusing
effect is good at the three wavelengths of 462 nm, 511 nm, and 606 nm, and the defocusing
will reduce the image quality. With the help of neural networks, the defocusing effect can
be partially offset.
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The image quality is quantitatively analyzed by using the peak-signal-to-noise ratio
(PSNR) and structure similarity (SSIM). The PSNR and SSIM kept increasing and tended to
stabilize after a certain number of iterations. The algorithm model in this section achieved
good results in convergence, as shown in Figure 6. PSNR training improves after starting
training. Between 0 and 500 iterations, the PSNR of the model fluctuatez greatly. On the
whole, the PSNR kept rising and remained stable after 500 iterations, indicating that rapid
convergence can gradually decrease.
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At the same time, we also compared the metalens based on the cubic phase and
hyperboloid phase. The cubic phase formulation can be written as

φ(x, y) =
2π

λ
(
√

x2 + y2 + f 2 − f ) +
a

R3 (x3 + y3), (10)

where (x, y) is the position of the metalens, f is the focal length, λ is the wavelength, and R
is the metalens radius. A is the design parameter of the cubic term and is set to 86π.

The hyperboloid phase formulation can be written as

φ(x, y) =
2π

λ
(
√

x2 + y2 + f 2 − f ) (11)

where λ0 = 462 nm is the nominal wavelength and f 0 = 15 mm is the nominal focal length.
We set f = f0·λ/λ0.

Table 1 shows the PSNR and SSIM of images recovered by three methods [6,21]. The
recovery data of our model is better than the other two methods. Our method achieves an
average PSNR of 28.53, which is about 6 dB better than the cubic phase method and about
11 dB better than the hyperboloid phase method. The average SSIM of the output image
reaches 0.83, which is about 0.2 higher than the cubic phase method and about 0.3 higher
than the hyperboloid method.

Table 1. Average values of the PSNR and SSIM for the images.

PSNR SSIM

Ours 28.53 0.83
Cubic [21] 22.15 0.61

Hyperboloid [6] 17.54 0.52

The final output image results are shown in Figure 7. The first column is the ground
truth. The second column is the output image reconstructed in this paper. In contrast, the
third and fourth columns are the reconstructed images based on the cubic and polynomial
phases, respectively. It can be seen that the quality of the second line of restored images is
significantly better than that of the second and third lines, both in terms of color and detail.
The artifacts, blur, and noise at the edge of the images have been effectively restored and
eliminated. Although it cannot be restored to the ground truth, it still demonstrates the
good recovery capability of our imaging system.

3.3. Discussion

Our method combines the optimization of metalens phase parameters and neural
network hyperparameters through an end-to-end network to generate high-quality recon-
structed images. Compared with the hyperbolic phase method and cubic phase method,
our method adds a polynomial phase factor to make metalens regulation more flexible.
The multi-scale encoder–decoder network helps to learn image features and reconstruct
high-quality images.

Our work provides a solid foundation for state-of-the-art imaging systems. It can
solve the problem that the imaging system is large and not easy to carry, and it is conducive
to the miniaturization and integration of the imaging system. This work can be used in
many fields such as smartphones, VR/AR glasses, and surgery. However, this paper still
has some limitations. There is a deviation between simulation and actual manufacture, and
the phase of the metalens obtained by simulation is different from that obtained by actual
manufacture. Phase error and psf error should be considered in future research work. At
the same time, the effect of the incident angle of the light on the image of the metalens is
not considered in this paper. In the future, we will study the phase of the metalens in the
case of oblique incidence and how to build a high-quality imaging system.
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4. Conclusions

In this study, a high-quality imaging system that jointly optimizes hardware and
recovery algorithms based on metalens phase factors and network parameters is proposed.
Our approach incorporates hyperbolic and polynomial phases within the metalens phase
profile, introducing optimization coefficients to enhance metalens performance. Further-
more, we employed an end-to-end neural network to jointly optimize the polynomial
factors of the metalens phase and the network parameters, achieving effective chromatic
aberration and high-resolution image reconstruction. Compared with the hyperbolic phase
and cubic phase methods separately, the method used in this paper yields superior image
quality, with the average PSNR reaching 28.53 and the average SSIM reaching 0.83. These
results underscore the effectiveness of our integrated hardware and algorithmic optimiza-
tion strategy. The simulation results demonstrate the exceptional imaging performance of
our system, underscoring its potential to advance the miniaturization and integration of
imaging systems. In the future, we will study both full-color and varifocal imaging systems.
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Our approach holds promise for a wide range of applications, including medical imaging,
remote sensing, and consumer electronics.
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19. Lin, Z.; Roques-Carmes, C.; Pestourie, R.; Soljačić, M.; Majumdar, A.; Johnson, S.G. End-to-end nanophotonic inverse design for
imaging and polarimetry. Nanophotonics 2021, 10, 1177–1187. [CrossRef]

20. Mansouree, M.; Kwon, H.; Arbabi, E.; McClung, A.; Faraon, A.; Arbabi, A. Multifunctional 2.5 D metastructures enabled by
adjoint optimization. Optica 2020, 7, 77–84. [CrossRef]

21. Chung, H.; Miller, O.D. High-NA achromatic metalenses by inverse design. Opt. Express 2020, 28, 6945–6965. [CrossRef] [PubMed]
22. Barbastathis, G.; Ozcan, A.; Situ, G. On the use of deep learning for computational imaging. Optica 2019, 6, 921–943. [CrossRef]

https://doi.org/10.1117/1.OE.51.4.043001
https://doi.org/10.1016/j.infrared.2017.09.021
https://doi.org/10.1038/nnano.2015.186
https://www.ncbi.nlm.nih.gov/pubmed/26322944
https://doi.org/10.1038/s41598-017-05906-9
https://www.ncbi.nlm.nih.gov/pubmed/28710432
https://doi.org/10.1038/s41377-019-0201-7
https://www.ncbi.nlm.nih.gov/pubmed/31666948
https://doi.org/10.1002/adma.201606422
https://www.ncbi.nlm.nih.gov/pubmed/28234431
https://doi.org/10.1021/acs.nanolett.5b01727
https://www.ncbi.nlm.nih.gov/pubmed/26168329
https://doi.org/10.1038/ncomms14992
https://www.ncbi.nlm.nih.gov/pubmed/28378810
https://doi.org/10.1038/srep32803
https://www.ncbi.nlm.nih.gov/pubmed/27597568
https://doi.org/10.1038/s41377-018-0078-x
https://www.ncbi.nlm.nih.gov/pubmed/30416721
https://doi.org/10.1038/s41377-019-0178-2
https://www.ncbi.nlm.nih.gov/pubmed/31666943
https://doi.org/10.1016/j.jhazmat.2023.132773
https://www.ncbi.nlm.nih.gov/pubmed/37866140
https://doi.org/10.1039/D3TA00019B
https://doi.org/10.1016/j.seppur.2023.124891
https://doi.org/10.1021/acsphotonics.9b00966
https://doi.org/10.1021/acs.nanolett.8b03171
https://www.ncbi.nlm.nih.gov/pubmed/30207735
https://doi.org/10.1515/nanoph-2020-0579
https://doi.org/10.1364/OPTICA.374787
https://doi.org/10.1364/OE.385440
https://www.ncbi.nlm.nih.gov/pubmed/32225932
https://doi.org/10.1364/OPTICA.6.000921


Nanomaterials 2024, 14, 715 11 of 11

23. Sitzmann, V.; Diamond, S.; Peng, Y.F.; Dun, X.; Boyd, S.; Heidrich, W.; Heide, F.; Wetzstein, G. End-to-end Optimization of Optics
and Image Processing for Achromatic Extended Depth of Field and Super-resolution Imaging. ACM Trans. Graph. 2018, 37, 1–13.
[CrossRef]

24. Chang, J.; Wetzstein, G. Deep optics for monocular depth estimation and 3D object detection. In Proceedings of the IEEE/CVF
ICCV, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 10192–10201.

25. Wu, Y.C.; Boominathan, V.; Chen, H.J.; Sankaranarayanan, A.; Veeraraghavan, A. PhaseCam3D-Learning phase masks for passive
single view depth estimation. In Proceedings of the 2019 IEEE International Conference on Computational Photography (ICCP),
Tokyo, Japan, 15–17 May 2019.

26. Metzler, C.A.; Ikoma, H.; Peng, Y.F.; Wetzstein, G. Deep optics for single-shot high-dynamic-range imaging. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1372–1382.

27. Chang, J.; Sitzmann, V.; Dun, X.; Heidrich, W.; Wetzstein, G. Hybrid optical-electronic convolutional neural networks with
optimized diffractive optics for image classification. Sci. Rep. 2018, 8, 12324. [CrossRef] [PubMed]

28. Dun, X.; Ikoma, H.; Wetzstein, G.; Wang, Z.S.; Cheng, X.B.; Peng, Y.F. Learned rotationally symmetric diffractive achromat for
full-spectrum computational imaging. Optica 2020, 7, 913–922. [CrossRef]

29. Tseng, E.; Colburn, S.; Whitehead, J.; Huang, L.; Baek, S.-H.; Majumdar, A.; Heide, F. Neural nano-optics for high-quality thin lens
imaging. Nat. Commun. 2021, 12, 6493–6503. [CrossRef] [PubMed]

30. Colburn, S.; Zhan, A.; Majumdar, A. Metasurface optics for full-color computational imaging. Sci. Adv. 2018, 4, 2114. [CrossRef]
[PubMed]

31. Guo, Q.; Shi, Z.J.; Huang, Y.W.; Alexander, E.; Qiu, C.W.; Capasso, F.; Zickler, T. Compact single-shot metalens depth sensors
inspired by eyes of jumping spiders. Proc. Natl. Acad. Sci. USA 2019, 116, 22959–22965. [CrossRef] [PubMed]

32. Tan, S.Y.; Yang, F.; Boominathan, V.; Veeraraghavan, A.; Naik, G. 3D imaging using extreme dispersion in optical metasurfaces.
ACS Photonics 2021, 8, 1421–1429. [CrossRef]

33. Fan, Q.B.; Xu, W.Z.; Hu, X.M.; Zhu, W.Q.; Yue, T.; Zhang, C.; Yan, F.; Chen, L.; Lezec, H.J.; Lu, Y.Q.; et al. Trilobite-inspired neural
nanophotonic light-field camera with extreme depth-of-field. Nat. Commun. 2022, 13, 2130. [CrossRef] [PubMed]

34. Hua, X.; Wang, Y.J.; Wang, S.M.; Zou, X.J.; Zhou, Y.; Li, L.; Yan, F.; Cao, X.; Xiao, S.M.; Tsai, D.P.; et al. Ultra-compact snapshot
spectral light-field imaging. Nat. Commun. 2022, 13, 30439–30448. [CrossRef]

35. Yu, Z.Q.; Zhang, Q.B.; Tao, X.; Li, Y.; Tao, C.N.; Wu, F.; Wang, C.; Zheng, Z.R. High-performance full-color imaging system based
on end-to-end joint optimization of computer-generated holography and metalens. Opt. Express 2022, 30, 40871–40883. [CrossRef]
[PubMed]

36. Zhang, Q.B.; Yu, Z.Q.; Liu, X.Y.; Wang, C.; Zheng, Z.R. End-to-end joint optimization of metasurface and image processing for
compact snapshot hyperspectral imaging. Opt. Commun. 2023, 530, 129154. [CrossRef]

37. Li, H.M.; Xiao, X.J.; Fang, B.; Gao, S.L.; Wang, Z.Z.; Chen, C.; Zhao, Y.W.; Zhu, S.N.; Li, T. Bandpass-filter-integrated multiwave-
length achromatic metalens. Photonics Res. 2021, 9, 1384–1390. [CrossRef]

38. Khorasaninejad, M.; Shi, Z.; Zhu, A.Y.; Chen, W.T.; Sanjeev, V.; Zaidi, A.; Capasso, F. Achromatic metalens over 60 nm bandwidth
in the visible and metalens with reverse chromatic dispersion. Nano Lett. 2017, 17, 1819–1824. [CrossRef] [PubMed]

39. Khorasaninejad, M.; Capasso, F. Metalenses: Versatile multifunctional photonic components. Science 2017, 358, 358–366. [CrossRef]
[PubMed]

40. Fan, S.; Joannopoulos, J.D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 2002, 65, 235112. [CrossRef]
41. Wang, S.; Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 1993, 32, 2606–2613. [CrossRef]

[PubMed]
42. Shi, R.X.; Hu, S.L.; Sun, C.Q.; Wang, B.; Cai, Q.Z. Broadband achromatic metalens in the visible light spectrum based on fresnel

zone spatial multiplexing. Nanomaterials 2022, 12, 4298. [CrossRef] [PubMed]
43. Khare, K.; Butola, M.; Rajora, S. Fourier Optics and Computational Imaging; Springer: Berlin/Heidelberg, Germany, 2015.
44. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of

the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; pp. 234–241.

45. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
46. Agustsson, E.; Timofte, R. Ntire 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 126–135.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3197517.3201333
https://doi.org/10.1038/s41598-018-30619-y
https://www.ncbi.nlm.nih.gov/pubmed/30120316
https://doi.org/10.1364/OPTICA.394413
https://doi.org/10.1038/s41467-021-26443-0
https://www.ncbi.nlm.nih.gov/pubmed/34845201
https://doi.org/10.1126/sciadv.aar2114
https://www.ncbi.nlm.nih.gov/pubmed/29487913
https://doi.org/10.1073/pnas.1912154116
https://www.ncbi.nlm.nih.gov/pubmed/31659026
https://doi.org/10.1021/acsphotonics.1c00110
https://doi.org/10.1038/s41467-022-29568-y
https://www.ncbi.nlm.nih.gov/pubmed/35440101
https://doi.org/10.1038/s41467-022-30439-9
https://doi.org/10.1364/OE.470419
https://www.ncbi.nlm.nih.gov/pubmed/36299012
https://doi.org/10.1016/j.optcom.2022.129154
https://doi.org/10.1364/PRJ.422280
https://doi.org/10.1021/acs.nanolett.6b05137
https://www.ncbi.nlm.nih.gov/pubmed/28125234
https://doi.org/10.1126/science.aam8100
https://www.ncbi.nlm.nih.gov/pubmed/28982796
https://doi.org/10.1103/PhysRevB.65.235112
https://doi.org/10.1364/AO.32.002606
https://www.ncbi.nlm.nih.gov/pubmed/20820422
https://doi.org/10.3390/nano12234298
https://www.ncbi.nlm.nih.gov/pubmed/36500921

	Introduction 
	Theoretical Analyses 
	Metalens Design 
	PSF Calculation 
	Network Architecture 
	Loss Definition 

	Results and Discussion 
	Experimental Details 
	Results 
	Discussion 

	Conclusions 
	References

