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Table S1. Parameters used for OpenGrowth in the present study.

Parameter Value
SCORING_FUNCTION SMOG2016

BINDING_SITE_X 7.535
BINDING_SITE_Y -111.72
BINDING_SITE_Z -25.923
BINDINGBOX_SIZE 0.50

MODE DENOVO
GROWTH_MODE FOG

VDW_SCALE_INTER 0.70

VDW_SCALE_INTRA 0.70

ROTATION_PRECISION 24

OPTIMIZATION_MODE 22

OPTIMIZATION_NUMBER 20

OPTIMIZATION_ITERATION

S
10

MAX_FRAGMENTS 20

MAX_ATOMS 60

MAX_MW 550

MAX_ITERATIONS 10

AVERAGE_TYPE ARITHMETIC



Table S2. Molecular descriptors selected by the Boruta algorithm.

Descriptor Description
nAromBond aromatic bonds count
ATS8se Moreau-Broto autocorrelation of lag 8

AATS1d
averagedMoreau-Broto autocorrelation
of lag 1 weighted by sigma electrons

ATSC7i
centeredMoreau-Broto autocorrelation
of lag 7 weighted by ionization potential

SdssC
Sum of electrotopological state indexes

(dssC)
SdO Sum of dO

ATS6d
Moreau-Broto autocorrelation of lag 6

weighted by sigma electrons

Table S3. Loading values from principal component analyses for the Boruta defined space
and RO5 space.

PC# Boruta space RO5 space
1 26.67 46.65
2 16.57 25.44
3 14,72 14.82
4 14.24 8.32
5 13.5 3.17
6 8,90 1.6
7 5.4 ---

Table S4. Hyperparameter values determined by grid search for the trained classifiers only
with physicochemical descriptors.

Classifier Hyperparameters Values
Logistic Regression penalty, solver, C, class_weight l2, lbfgs, 10000, balanced

Support vector classifier kernel, C, gamma rbf, 1, 0.1

Random Forest classifier
criterion, max_features, min_samples_leaf,

min_samples_split, n_estimators
gini, auto, 4, 2, 1000

XGboost classifier n_estimators, booster 50, gblinear

Table S5. Hyperparameter values determined by grid search for the trained classifiers with
physicochemical and structural descriptors.

Classifier Hyperparameters Values
Logistic Regression penalty, solver, C, class_weight l2, newton-cg,10000, balanced

Support vector classifier kernel, C linear, 1

Random Forest classifier
criterion, max_features, min_samples_leaf,

min_samples_split, n_estimators
entropy, sqrt, 1, 10, 800

XGboost classifier n_estimators, booster 200, dart



Figure S1. Chemical space of the generated compounds; using descriptors from the Rule of Five.
Projection comes from principal component analysis (left) and t-SNE (right).



Figure S2. Performance assessment of logistic regression classifier trained with physicochemical
descriptors. In order of appereance figure shows model’s validation curve, learning curve, k-fold
cross validation ROC curve andMatthews correlation coefficient.



Figure S3. Performance assessment of logistic regression classifier trained with physicochemical
and structural descriptors. In order of appereance figure shows model’s validation curve,
learning curve, k-fold cross validation ROC curve andMatthews correlation coefficient.



Figure S4. Performance assessment of supporting vectors classifier trained with
physicochemical descriptors. In order of appereance figure shows model’s validation curve,
learning curve, k-fold cross validation ROC curve andMatthews correlation coefficient.



Figure S5. Performance assessment of supporting vectors classifier trained with
physicochemical descriptors. In order of appereance figure shows model’s validation curve,
learning curve, k-fold cross validation ROC curve andMatthews correlation coefficient.



Figure S6. Performance assessment of random forest classifier trained with physicochemical
descriptors. In order of appereance figure shows model’s validation curve, learning curve, k-fold
cross validation ROC curve andMatthews correlation coefficient.



Figure S7. Performance assessment of random forest classifier trained with physicochemical
descriptors. In order of appereance figure shows model’s validation curve, learning curve, k-fold
cross validation ROC curve andMatthews correlation coefficient.



Figure S8. Performance assessment of extreme gradient boost classifier trained with
physicochemical descriptors. In order of appereance figure shows model’s validation curve,
learning curve, k-fold cross validation ROC curve andMatthews correlation coefficient.



Figure S9. Performance assessment of extreme gradient boost classifier trained with
physicochemical and structural descriptors. In order of appereance figure shows model’s
validation curve, learning curve, k-fold cross validation ROC curve and Matthews correlation
coefficient.



Figure S10. Comparison of IAA root mean square fluctuations (RMSF) from different solvation
conditions (left); with preserved crystal waters around ligand (blue/orange) and without
(green/red). RMSF values are presented with respect to TIR1 and ligand.

Figure S11. Comparison of NAA root mean square fluctuations (RMSF) from different solvation
conditions (left); with preserved crystal waters around ligand (blue/orange) and without
(green/red). RMSF values are presented with respect to TIR1 and ligand.



Figure S12. Comparison of 2,4-D root mean square fluctuations (RMSF) from different solvation
conditions (left); with preserved crystal waters around ligand (blue/orange) and without
(green/red). RMSF values are presented with respect to TIR1 and ligand.

Figure S13. Comparison of TRP root mean square fluctuations (RMSF) from different solvation
conditions (left); with preserved crystal waters around ligand (blue/orange) and without
(green/red). RMSF values are presented with respect to TIR1 and ligand.



Figure S14. Consensus analysis of MD simulation of indol acetic acid (IAA); a) Protein-ligand
interaction fraction; b) Concurrence of contacts; c) Transition network for protein-ligand
interactions; d) Ligand-protein interaction.

Figure S15. Consensus analysis of MD simulation of tryptophan (TRP); a) Protein-ligand
interaction fraction; b) Concurrence of contacts; c) Transition network for protein-ligand
interactions; d) Ligand-protein interaction.



Figure S16. Consensus analysis of MD simulation of 1-naphtyl acetic acid (NAA); a) Protein-
ligand interaction fraction; b) Concurrence of contacts; c) Transition network for protein-ligand
interactions; d) Ligand-protein interaction.

Figure S17. Consensus analysis of MD simulation of 2-naphtyl acetic acid (2-NAA); a) Protein-
ligand interaction fraction; b) Concurrence of contacts; c) Transition network for protein-ligand
interactions; d) Ligand-protein interaction.



Figure S18. Consensus analysis of MD simulation of fluroxypyr (FXY); a) Protein-ligand
interaction fraction; b) Concurrence of contacts; c) Transition network for protein-ligand
interactions; d) Ligand-protein interaction.

Figure S19. Consensus analysis of MD simulation of rinskor (RSK); a) Protein-ligand interaction
fraction; b) Concurrence of contacts; c) Transition network for protein-ligand interactions; d)
Ligand-protein interaction.



Figure S20. Free energy surfaces computed from well-tempered metadynamics for the NAA-
TIR1 complexes. With ligand positioned within the binding site (top) and positioned within the
engagement niche (bottom).



Figure 21. Representative NAA conformations found at basins from metadynamics runs. With
ligand positioned within the binding site (a & b) and positioned within the engagement niche (c &
d).



Figure 22. Free energy surfaces computed from well-tempered metadynamics for the 2-NAA-
TIR1 complexes. With ligand positioned within the binding site (top) and positioned within the
engagement niche (bottom).



Figure 23. Representative 2-NAA conformations found at basins from metadynamics runs. With
ligand positioned within the binding site (a & b) and positioned within the engagement niche (c).



Figure 24. Free energy surfaces computed from well-tempered metadynamics for the FXY-TIR1
complexes. With ligand positioned within the binding site (top) and positioned within the
engagement niche (bottom).



Figure 25. Representative FXY conformations found at basins from metadynamics runs. With
ligand positioned within the binding site (a) and positioned within the engagement niche (b).



Figure 26. Free energy surfaces computed from well-tempered metadynamics for the IAA-
TIR1 complexes. With ligand positioned within the binding site (top) and positioned within
the engagement niche (bottom).



Figure 27. Representative IAA conformations found at basins from metadynamics runs.
With ligand positioned within the binding site (a & b) and positioned within the
engagement niche (c).



Figure 28. Free energy surfaces computed from well-tempered metadynamics for the
RSK-TIR1 complexes. With ligand positioned within the binding site (top) and positioned
within the engagement niche (bottom).



Figure 29. Representative RSK conformations found at basins from metadynamics runs.
With ligand positioned within the binding site (a) and positioned within the engagement
niche (b).



Figure 30. Free energy surfaces computed from well-tempered metadynamics for the
TRP-TIR1 complexes. With ligand positioned within the binding site (top) and positioned
within the engagement niche (bottom).



Figure 31. Representative TRP conformations found at basins from metadynamics runs.
With ligand positioned within the binding site (a) and positioned within the engagement
niche (b).


