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Abstract: This study introduces an innovative numerical approach for polylinear approximation
(polylinearization) of non-self-intersecting compact sensor characteristics (transfer functions) spec-
ified either pointwise or analytically. The goal is to partition the sensor characteristic optimally,
i.e., to select the vertices of the approximating polyline (approximant) along with their positions,
on the sensor characteristics so that the distance (i.e., the separation) between the approximant and
the characteristic is rendered below a certain problem-specific tolerance. To achieve this goal, two
alternative nonlinear optimization problems are solved, which differ in the adopted quantitative
measure of the separation between the transfer function and the approximant. In the first problem,
which relates to absolutely integrable sensor characteristics (their energy is not necessarily finite, but
they can be represented in terms of convergent Fourier series), the polylinearization is constructed
by the numerical minimization of the L1-metric (a distance-based separation measure), concern-
ing the number of polyline vertices and their locations. In the second problem, which covers the
quadratically integrable sensor characteristics (whose energy is finite, but they do not necessarily
admit a representation in terms of convergent Fourier series), the polylinearization is constructed by
numerically minimizing the L2-metric (area- or energy-based separation measure) for the same set of
optimization variables—the locations and the number of polyline vertices.

Keywords: approximation; IoT; linearization techniques; piecewise approximation; polylinearization;
recourse-constrained devices; smart sensors

1. Introduction and Motivation

Linearization is a fundamental step in the initial processing of sensor input data. The
presence of nonlinearities in the sensors can be mitigated by using electronic linearization
schemes or algorithms [1,2]. These linearization methods can be categorized into three
main classes, based on the type of their realization in the sensor devices:

1. Hardware-based linearization methods;
2. Software-based linearization methods;
3. Hybrid (hardware- and software-based) methods [3].

Hardware-based linearization methods, predominantly intended for analog sensor
devices are usually implemented by including an analog circuit between the sensor and the
analog-to-digital converter (ADC) [4,5]. Software-based linearization techniques require
the use of (micro)computers or digital signal processors (DSPs) equipped with significant
processing capabilities [6,7]. Applying these techniques in cost-effective controllers with
limited computational resources poses significant challenges. Various software linearization
methods have been considered in the literature, with one of the most common being look-
up table (LUT)-based linearization, which can be conveniently implemented on virtually
any microcontroller [3,8].

The identification of the inverse sensor transfer function is often complex, mostly
because of the challenge of choosing the appropriate analytical form of the function and the
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constraints on its parameterization. Such challenges can lead to the inaccurate linearization
of sensor characteristics. Typically, a sensor’s inverse sensor transfer function is modeled
using nonlinear regression techniques (e.g., polynomial, exponential, etc.), which are
determined by minimizing the least squares error using statistically representative data
sets [9,10].

Linearization approaches can also be viewed as dimensionality reduction methods
while preserving shape [11]. In such methods, the inverse characteristic of the sensor
is transformed into a polygonal form using techniques such as distance minimization
or, when applicable, factorization of nonnegative matrices based on range and accuracy
requirements as proposed in [12].

A common approach for mitigating the uncertainty inherent to the nonlinear regression
identification of sensor feedback is to segment its transfer function. This essentially involves
approximating x = x(y) using a polygonal approximation with a controlled approximation
error. The algorithmic control proposed here plays a key role in supporting adaptive
resource allocation.

This study is based on the methodology outlined in [13,14], which is used to adaptively
linearize sensor transfer functions. This approach simplifies the design and improves the
measurement accuracy of sensors and Internet of Things (IoT) devices, especially those
with limited resources [15,16].

Piecewise linear approximation (PLA) for sensor data is a typical software approach
used in data compression. Although there exist various data compression methods, such
as discrete wavelet transform [17], discrete Fourier transform [18], Chebyshev polynomi-
als [19], piecewise aggregate approximation [20,21], and others, PLA remains one of the
most widely used data compression methods, as confirmed in [22,23].

Although the origin of this approach dates back to the mid-20th century, it has become
relevant again in recent years due to the widespread adoption of smart sensors and IoT
devices. PLA is increasingly used in scenarios where data acquisition devices have limited
local buffer space and communication bandwidth [24].

Due to the inherent resource limitations of data acquisition devices such as memory
and communication capabilities, the need for data compression arises. The main criteria for
assessing the quality of compression include the approximation error rate and the number
of line segments [25].

PLA optimization typically involves two commonly used methods:

1. The introduction of an upper error bound (∆x) and the subsequent minimization of
the number of line segments.

2. The determination of the number of line segments (k) required to construct a PLA
with no more than k segments while minimizing the error (∆x).

The purpose of this paper is to explain how non-self-intersecting planar curves of
finite length can be optimally polylinearized by connecting certain points on them through
straight line segments (Figure 1).

It will be shown below that this problem can be solved as a series of distance/area
minimization problems in which the same problem is solved repeatedly, namely, for a fixed
pair of points (vertices) ci and ci+2 on the curve (Figure 2a), to determine the vertices ci+1,
so that the polyline (in red) connecting ci, ci+1, and ci+2 is controllably far from the curve.

Of crucial importance here is the choice of the measure of controllable remoteness
between a polyline and a curve. The remoteness between two such objects can be estimated
in different ways: for example, it can be calculated for each line segment separately, and
then, the polyline can be considered to be as far away from the curve as its furthest line
segment (Figure 2b). Alternatively, remoteness can be measured in terms of the areas
(energies) under the polyline and the curve. The smaller the area values, the closer the
curve to the polyline (Figure 2c).
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Figure 2. (a) a polyline through ci, ci+1, and ci+2; (b) distance-based remoteness—sensor transfer
characteristics and a polyline are as far away from each other as the largest projected distance,
d = max{di, di+1}; (c) and area-based remoteness—polyline is as far away from the sensor curve as
the area ■ is close to the area ■ (overlapped by ■ and not fully visible).

2. Materials and Methods

The approximation of given sensor transfer functions using polylines that is called
in this study as polylinearization rests upon three central concepts: the curve segment,
the (poly)line segment, and the measure of the remoteness between them. While the
curve segment is a differential geometric concept, the polyline segment arises from a
much more mundane issue: the need to approximate “in the best possible way” the curve
segment by a compact straight line. Conceptually, the process of polylinearization of a
given sensor characteristic consists of three algebraic stages. The first (not a subject of the
present study) is the representation of the sensor transfer function, i.e., the derivation of its
algebraic equations from the physical principles. The second stage is the quantification of
the remoteness between the curve and each of its approximating polyline segments. Finally,
the third, and in many ways the most important one, is how to construct the polyline best
fitting the entire curve, based on the measurement of the remoteness between the curve
and the line segments building that polyline.

In this context, this section is an introduction to the instrumentation which will be
later used with the following key notions and procedures covered:

• Rectifiable simple curve; curve segment and its approximating (poly)line segment.
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• Measuring the remoteness between a curve segment and the corresponding
line segment.

• Measuring the remoteness between the curve and the entire polyline.
• Fitting a polyline to a curve by solving a proximity-controlled area-minimization

problem for the vertices of the polyline.

Adhering to the above, we organize the text of this section as follows:

• First, we introduce the concepts of a simple rectifiable curve and a curve segment
between any two distinct points (also called nodes) on it.

• Second, we characterize in the parametric form the polyline segment between the
same two points and introduce the measure of its remoteness from the curve.

• Third, an open chain of connected line segments (polyline, broken-line graph) is
constructed, whose proximity to the curve is further evaluated using appropriate
distance and area measures. These are nothing but measures of remoteness that
non-smoothly tend to become zero as the polyline approaches the curve.

• Finally, we formulate the area-minimization problem with a constraint expressed in
terms of a particular remoteness measure; its solution, within the margin of the user-
specified tolerance, provides us with the controllable polylinearization of the curve.

At the end of this section, the details of a concrete application of the above general
scheme to the practical problem of polylinearization of plane curves are discussed. Here,
instead of solving analytically the constrained minimization problem—which was an
active topic of research in the 1980s—its (stable and consistent) discrete approximation is
solved [26].

2.1. Linearization and Polylinearization Costs

The position (point) in space is indicated by bold lowercase italic letters, such as
c, b, y, etc.

Let us start with the concepts of curve and curve segment: also, given the subset
S ⊂ R and the natural number, n ≥ 2. For s ∈ S , we call the vector-valued map,

ĉ : S → Rn,

a parametrized curve immersed in Rn and write c = ĉ(s) for the points c on the curve.
A curve, c = ĉ(s), is called simple if it does not intersect itself, and rectifiable if it has a
finite length. Furthermore, if ĉ(s) is rectifiable, then it is at least of class C1(S) and hence
regular. In the following equations, we deal with simple, rectifiable curves. Let us next
set S =

[
Tlw, Tup

]
and focus on a particular segment S (i) = [si, si+1] ⊆ S with i ∈ P.

The image,
c(i) : ĉ(s)→ Rn, s ∈ S (i) (1)

is called the curve segment, starting at ci = ĉ(si) and ending at ci+1 = ĉ(si+1). Let us next
clarify what we mean by a line segment attached to a curve segment c(i). For this purpose,
we introduce the affine map,

λ = λ̂(s) =
s− si

si+1 − si
, (2)

with domain s ∈ S (i) and image λ ∈ [0, 1]. Clearly at s = si, λ = 0, and at s = si+1, we
have λ = 1.

The line segment, l(i), attached to c(i) at ci and ci+1 is defined by,

l(i) : l̂(s)→ Rn, s ∈ S (i) , (3)

where
l̂(s) = (1− λ̂(s))ci + λ̂(s)ci+1 . (4)
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How close are l̂(s) and ĉ(s) to each other on [si, si+1]? To estimate their proximity, we
introduce the measure,

E(i) = Ê
(
S (i)

)
=

∥∥ĉ(s)− l̂(s)
∥∥

L2(S (i)) , (5)

and refer to it as the linearization cost on S (i). In this expression, the L2-norm, of the
difference, ∆̂(s) = ĉ(s)− l̂(s), is,

E(i) =
∥∥∆̂(s)

∥∥
L2(S (i)) =

(∫
S (i)

∣∣ĉ(s)− l̂(s)
∣∣2ds

)1/2
=

(∫ si+1

si

∣∣ĉ(s)− l̂(s)
∣∣2ds

)1/2
, (6)

with
∣∣x∣∣= √x · x , for x ∈ Rn.
The notion of linearization cost—essentially localized in S (i)—allows easy extension to

the entire domain S . Accordingly, let P = {si}nP
i=1 be an ascendant partition of S , furnished

by the nodes {si}nP
i=1, such that si < si+1 for i = 1, 2, 3, . . . , nP − 1. We call mesh,

S =
nS⋃
i=1

S (i) = S , S (i) = [si, si+1], nS = nP − 1, (7)

the union of subdomains, S (i), i.e., the union of bounded, closed sets, with a nonempty
interior. Extending the concept of linearization cost from a single line to a polyline, we
introduce the L2-norm,

E =

(
∑nS

i=1

∫
S (i)

∣∣ĉ(s)− l̂(s)
∣∣2ds

)1/2
=

∥∥ĉ(s)− l̂(s)
∥∥

L2(S), (8)

on S , which shall be referred to in the following sections as the polylinearization cost. Here,

l̂
(
S (1)

)⋂
l̂(SnS ) = ∅, l̂

(
S (i)

)⋂
l̂
(
S (i+1)

)
= l̂(si), i = 1, 2, 3, . . . , nS − 1. (9)

In other words, l̂(s) is the polyline on S , consisting of an open chain of line segments,
l(i), with the end of each previous segment serving as the beginning of the next.

Considering further the question of the existence of optimal polylinearization, let us
first focus on the case of fixed nP (and hence nS ). To answer that question, we begin with
the observation,

E =
(
∑nS

i=1

∥∥∆̂(s)
∥∥2

L2(S (i))

)1/2
=

∥∥∆̂(s)
∥∥

L2(S) , (10)

and notice that, ∥∥∆̂(s)
∥∥

L1(S (i)) ≤
√

hS
∥∥∆̂(s)

∥∥
L2(S (i)) ≤ hS

∥∥∆̂(s)
∥∥2

L2(S (i)) , (11)

with hS = maxi{
∣∣∣S (i)∣∣∣} called the characteristic size of the mesh. On the other hand,

the inequality, ∥∥∆̂(s)
∥∥

L2(S (i)) ≤
∥∥∆̂(s)

∥∥
L1(S (i)), (12)

implies the estimate,

∥∥∆̂(s)
∥∥

L2(S) ≤
∥∥∆̂(s)

∥∥
L1(S) , with

∥∥∆̂(s)
∥∥

L1(S) =
nS

∑
i=1

∥∥∆̂(s)
∥∥

L1(S (i)) (13)

Hence, the area error
∥∥∆̂(s)

∥∥
L1(S) is constrained to lie between the following

two bounds:
E ≤

∥∥∆̂(s)
∥∥

L1(S) ≤ nShSE2,
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expressed in terms of the polylinearization cost E, the fixed number of line segments
nS , and the characteristic mesh size hS . Since the curve is simple and rectifiable, this
inequality mathematically expresses the two conditions for the existence of an
optimal polylinearization:

(a) For a fixed domain S , there exists nS , such that E and the total area error attain
their minima.

(b) For a fixed domain S , there exists hS , such that E and the total area error attain
their minima.

Regarding (a), an increase in nS decreases hS and E, which in turn, due to the above
inequality, implies a decrease in the total area error

∥∥∆̂(s)
∥∥

L1(S). Analogously, for (b), a
decrease in hS increases nS and decreases E, which in turn implies a decrease in the total
area error

∥∥∆̂(s)
∥∥

L1(S).

Therefore, among all admissible nodal locations, P = {si}nP
i=1, and their associated

meshes, S , there exists at least one node, designated by P *
P , which minimizes the polylin-

earization cost E and consequently reduces the total area error. Let us next designate the
mesh associated with this partitioning by S*

P , and note that if S*
P minimizes Ê(S), it will

be also the minimizer of the squared polylinearization cost,

P = P̂(S) = 1
2
(
Ê(S)

)2
=

1
2

Ê2(S), (14)

which constitutes a quadratic objective function in the nonlinear problem for the optimal
polylinearization of rectifiable, planar curves, formulated in the next section. Furthermore,
for the range of the total area error, we now have the estimate,∥∥∆̂(s)

∥∥
L1(S*

P )
∈
[√

2P *, 2nS*
P

hS*
P
P *

]
, P * = P̂(S*

P ). (15)

Alternatively, let P *
A and S*

A be the partition and the associated mesh minimizing the
total squared area error,

A(S) = 1
2

∥∥∆̂(s)
∥∥2

L1(S) . (16)

In general, P *
A ̸= P *

P , and hence, S*
A ̸= S*

P . Furthermore, for the range of the
associated polylinearization cost, we analogously have the estimate,

E
(
S*
A

)
∈
[

1
2nS*

A
hS*
A

√
A*, A*

]
, A* = Â(S*

A). (17)

In other words, whichever error we choose to minimize, the other one will be mini-
mized too.

2.2. Remoteness Measures

If nP is fixed, we will not get controllably close to the polyline by node reallocation
alone, as we also need a mechanism to introduce (“inject”) more nodes where it is most
necessary. For that to happen, we need one more concept, or more precisely, an nP -
dependent, generalized measure of distance, which we call remoteness measure. Why
introduce yet another measure? The reason is primarily epistemological. The optimal
polylinearization of a curve consists of two sub-problems: the first is related to “injecting”
nodes where they are needed, and the second is related to reallocating these nodes to the
positions where they are needed. The latter of these problems has already been addressed.
Below, we discuss the former.

Intuitively, an object is as close to another object as its farthest parts are. When the
objects are a curve and a polyline, it is natural to ask whether there is a way to estimate how
close the farthest segments of the curve and polyline are to each other. The answer to this
question is affirmative, and below, we present (with its purpose and merits) a quantitative
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measure of the distance between a curve and a polyline based on the largest distance
between their building components. As it will also become clear, the remoteness is an
upper bound on Ê(S), and depends on the number of nodes, nP . The latter is crucial as
it provides us with the tool to directly influence Ê(S) by modifying its upper bound, or
equivalently, by modifying nP . Furthermore, since the remoteness operates on the line
segments furthest from the curve, it will also serve as an identifier of these S (i) in which it
is feasible to “inject” more nodes.

Using the remoteness measure of order p, associated with the mesh S , we will under-
stand the limit,

R(p)(S) = sup
S
{Ê(p)(S)}, (18)

and shall be interested in calculating it for two particular choices of p, corresponding to
the following:

- The surface remoteness, determined for p = 1, as the least upper bound,

R(1)(S) = sup
S
{Ê(1)(S)} = max

S (i)⊆S

{∥∥∆̂(s)
∥∥

L1(S (i))

}
= max

i=1,2,3,...,nS

{
E(i)

1

}
, (19)

with geometric interpretation assisted by Figure 3a, and E(i)
1 =

∥∥∆̂(s)
∥∥

L1(S (i)).

- The gap, determined for p = ∞, and calculated as the largest distance,

R(∞)(S) = sup
S
{Ê(∞)(S)} = max

S (i)⊆S

{∥∥∆̂(s)
∥∥

L∞(S (i))

}
= max

i=1,2,3,...,nS

{
E(i)

∞

}
,

E(i)
∞ = ess sups∈S (i)

∣∣∆̂(s)∣∣, (20)

with geometric interpretation assisted by Figure 3b, and E(i)
∞ =

∥∥∆̂(s)
∥∥

L∞(S (i)).

For the mesh path S = S (i)⋃ S (i+1) in Figure 3, the surface remoteness is

R(1)(S) = max
{∥∥∆̂(s)

∥∥
L1(S (i)),

∥∥∆̂(s)
∥∥

L1(S (i+1))

}
(21)

Alternatively, the gap satisfies

R(∞)(S) = max
{∥∥∆̂(s)

∥∥
L∞(S (i)),

∥∥∆̂(s)
∥∥

L∞(S (i+1))

}
(22)
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Figure 3. Illustrations of the concept of remoteness measure for mesh patch S = S (i) ∪ S (i+1):
(a) R(2)(S) equals the largest of the differences in the areas under the curve segments and their
approximating linear segments and (b)R(∞)(S) equals the largest of the distances between the curve
segments and their approximating linear segments.

However, whatever the choice of p, the behavior of eitherR(∞) orR(1) is always the
same, namely, the smaller the remoteness measure for a given mesh S , the closer l̂(s) is
to ĉ(s). Locally, Euclidean manifolds, to which our rectifiable simple curves belong, are
more polylinearizable using finer meshes. In the following considerations, we justify this
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intuitive understanding as deductively correct and show that the remoteness measures
(objects inversely proportional to the number of nodes nP ) provide upper bounds on
Ê(S) (an object dependent on node locations). Increasing nP will decrease the remoteness
between l̂(s) and ĉ(s). In turn, since the remoteness is an upper bound on Ê(S), by
increasing nP we will further reduce the cost of polylinearization. Let us show this for
R(1)(S). Analogous argumentation can be followed for R(∞)(S). From the previous
section, the following can be recalled,

E ≤
∥∥∆̂(s)

∥∥
L1(S) (23)

but ∥∥∆̂(s)
∥∥

L1(S) ≤
√

nS max
S (i)⊆S

{∥∥∆̂(s)
∥∥

L1(S (i))

}
=
√

nSR(1)(S), (24)

and hence,
E ≤
√

nSR(1)(S) . (25)

Since R(1)(S) tends to 0 at a rate proportional to 1/nP and nP = nS + 1, therefore,
it follows that E tends to 0 at a rate proportional to 1/

√
nS , and hence, increasing nS

decreases E as well, which was necessary to show.

2.3. Optimal Polylinearization of Curves

From all possible meshes S , we are interested in calculating the one, say S*, which
minimizes the squared polylinearization cost P(S) and decreasesR(p)(S), below certain
user-defined, tolerance, TOL. Such an objective is therefore twofold: on the one hand, it is
related to computing the optimal node locations (topology) P * in S*, and on the other hand,
it is related to determining the optimal number of nodes, n*

P in P *. A possible formulation
of the problem targeting this objective is as follows:

Given c = ĉ(s) on S =
[
Tlw, Tup

]
and the initial mesh S0 =

[
Tlw, Tup

]
, determine the

optimal mesh S* by solving the minimization problem,

S* ← ARGMIN
S∈A(p)

ĉ (S)
(P(S)) , (26)

subject to the remoteness control, S ∈ A(p)
ĉ (S), with

A(p)
ĉ (S) =

{
S
∣∣∣ R(p)(S) ≤ TOL

}
, R(p)(S) = sup

S

{
Ê(p)(S)

}
, (27)

for p = 1 or p = ∞.
Notes:

(a) This problem will be denoted as the optimal polylinearization.
(b) Control over the nodal locations is enforced by an essential minimization problem for

the polylinearization cost, while control over the number of nodes is achieved through
the corresponding remoteness measure.

(c) The minimization problem is quadratic, while the remoteness control is not, defined
by the corresponding Lp-norm, in which p is not equal to two. Although qualitatively
the remoteness measures behave in the same way—the larger the measure, the more
distant the polyline and the curve—quantitatively they differ. Thus, different choices
for p will result in different optimal solutions S*.

(d) Therefore, we propose the polyline to be always calculated using the minimization
of polylinearization cost but to interpret particular solutions as optimal only in the
context of the imposed remoteness measure.

(e) The constrained minimization problem allows for vectorial interpretation, because P *

which corresponds to S* is a vector, whose cardinality nP = n*
P and nodal locations,

{s*
i}

n*
P

i=1, are its solutions as well.
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There are cases where solving the vector minimization problem from the previous
section can be effectively reduced to solving a sequence of scalar minimization problems.
In this subsection, we consider such a situation—the polylinearization of rectifiable planar
curves. At the onset, let us fix the origin 0 and introduce the canonical basis {ek}2

k=1 in
R2. Let

ĉ(s) = ĉ1(s)e1 + ĉ2(s)e2, |ek| = 1, ek · ek = 0, k, m = 1, 2; (28)

be the equation of the curve for s ∈ S = [0, T]. Let us next set, ĉ1(s) = s and
ĉ2(s) = y = ŷ(s), with ŷ(s) ∈ C1(S) known. For naturally parametrized planar curves
alike, the minimization problem from the previous section reads as follows.

Given y = ŷ(s) on S =
[
Tlw, Tup

]
and the initial mesh S0 =

[
Tlw, Tup

]
, determine the

optimal mesh S* by solving the optimization problem of planar polylinearization,

S* ← ARGMIN
S∈A(p)

ŷ (S)

(
1
2
P̂(S)

)
, P̂(S) =

[
Ê(S)

]2, (29)

with constraint

A(p)
ĉ (S) =

{
S
∣∣∣ R(p)(S) ≤ TOL

}
, R(p)(S) = sup

S
{Ê(p)(S)}. (30)

In what follows, we will be interested in calculating S* for p = 1.
The separate contributions to this minimization problem are as follows:

- Typical, planar line segment, l̂(s), on S (i) = [si, si+1], has the representation:

l(i) = l̂(s) =
si+1 − s
si+1 − si

yi −
s− si

si+1 − si
yi+1,

{
yi = ŷ(si),
yi+1 = ŷ(si+1).

, s ∈ S (i) = [si, si+1]. (31)

- The linearization cost of l(i), denoted by E(i), is

E(i) = Ê
(
S (i)

)
=

∥∥∆̂(s)
∥∥

L2(S (i)) =

(∫ si+1

si

(
∆̂(s)

)2ds
)1/2

, ∆̂(s) = ŷ(s)− l̂(s) . (32)

- The polylinearization cost, Ê(S), is Ê(S) =
(

∑nS
i=1

[
E(i)

]2
) 1

2
,

and the surface remoteness isR(1)(S) = maxS (i)⊆S
{∥∥∆̂(s)

∥∥
L1(S (i))

}
.

Instead of using the Lagrangian multiplier to enforce the proximity control on P(S),
we will approach the solution in a slightly different way. Let us first initialize the optimal
partition P * and the optimal mesh S* using the following setting: P * ← {∅} , S* ← [∅] .

The initial partition, P0 =
{

s(0)i

}2

i=1
= {Tlw, Tup}, with s(0)1 ← Tlw and s(0)2 ← Tup is

known and fixed. Let us next consider a nodal patch,
∼
P = {si}3

i=1, obtained from P0 by

adding a node, s2, of a yet unknown location, but between s(0)1 and s(0)2 , so that s1 ← s(0)1 ,

s3 ← s(0)2 , and s1 ≤ s2 ≤ s3. With the mesh patch,
∼
S , instilled by

∼
P , the vector minimization

problem with the objective function, P̂(
∼
S), transforms into a scalar minimization problem

for s2 with objective function, P̂(s2), and constraints, s1 ≤ s2 ≤ s3.
Let us designate the solution of this minimization problem by s*

2 and the correspond-

ing optimal nodal patch by
∼
P

*
= {s1, s*

2, s3}. The optimal partition, P *, is next updated

with this patch so that, P * ←
∼
P

*
. The split node, s*

2, now divides S into two subdomains,
i.e., S (1) =

[
s1, s*

2
]

and S (2) =
[
s*

2, s3
]
, so that the current mesh instilled by P * is analo-

gously calculated through the update S* ←
∼
S

*
, and consists of S* = S (1) ∪ S (2). Further-
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more, once determined, the mesh S* allows us to compute Ê(S*) and compare it with TOL.
If Ê(S*) < TOL, our task is complete; otherwise, if Ê(S*) > TOL, we need to add more
nodes between Tlw and Tup, and compute their location by constrained minimization.

The following question still exists, i.e., in which of the subdomains S (1) or S (2) should
new split node(s) be added? On the one hand, we do not want to add too many nodes, and
on the other hand, we do not want to add too few. The former requires more storage space,
while the latter requires more computational time. Let us agree to add no more than one
node per interval and focus on how to select the appropriate interval. The reliable selection
criterion is provided by the largest surface remoteness, determined over the current set
of subdomains in the mesh, i.e., the candidate subdomains for splitting are those whose
surface remoteness is the largest, or{

S (k)
}nsplit

k=1
= arg maxi=1,2,3,...,n*

S

{∥∥∆̂(s)
∥∥

L1(S (i))

}
. (33)

In our particular case, P * splits S into two subdomains with the following surface
remotenesses:

R(1)
1 =

∥∥∥ŷ(s)− l̂(s)
∥∥∥

L1(S (1))
, ∀s ∈ S (1) ,

R(1)
2 =

∥∥∥ŷ(s)− l̂(s)
∥∥∥

L1(S (2))
, ∀s ∈ S (2) .

(34)

Assume for the sake of clarity that the S (i) whose R(1)
i is the largest corresponds to

S (2), and P0 =
{

s(0)i

}2

i=1
is overwritten by s(0)1 ← s*

2 and s(0)2 ← s3 .

Analogous to what we did before, we constructed
∼
P from P0 by allocating a node,

s2 between s(0)1 and s(0)2 so that for
∼
P = {si}3

i=1, we again have s1 ← s(0)1 , s3 ← s(0)2 ,
and s1 ≤ s2 ≤ s3. Let us consider s2 as unknown and determine it by the constrained
minimization of P̂(s2), thus updating the optimal nodal patch,

∼
P

*
= {s1, s*

2, s3} (35)

, and the mesh patch,
∼
S

*
= [s1, s*

2] ∪ [s*
2, s3]. (36)

Further, with
∼
P

*
and

∼
S

*
already updated, we update the optimal partition and the

optimal mesh, P * ←
∼
P

*
, S* ←

∼
S

*
, so that

∼
P

*
= {s*

1, s*
2, s*

3, s*
4} = {s*

i}4
i=1 ,

∼
S

*
= ∪3

i=1[s
*
i , s*

i+1].
(37)

Once we have S*, we again compute Ê(S*) and compare it with TOL. If Ê
(
S*) < TOL,

we stop the computation; otherwise, we repeat again the surface-remoteness-based approach
for the selection of the next candidate subdomain for splitting. In the above procedure, it
is easy to notice the following: first, the sequence of points s* is generated as a solution to
the corresponding sequence of constrained minimization problems for the unknown s2,
and second, each minimization problem in this sequence is solved over a subdomain with
fixed ends.

The main steps of the developed algorithm are shown in Figure 4.
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3. Results

The polylinearization of typical nonlinear sensor transfer functions concerning L2 and
L∞ norm is discussed below:

- Second-degree polynomials that are often used in approximating the transfer functions
of resistive sensors (Figures 5 and 6);

- Third-degree polynomials with inflection points (Figures 7 and 8);
- The Callender–van Dusen equation (Figures 9 and 10);
- Higher degree polynomials, which are used in the approximation of thermocouples

(Figures 11 and 12).

Along with the polylinearization of sensor transfer functions, the polylinearization of
functions and distributions commonly used in scientific research is considered. Examples
given here are as follows:

- Dirac function (Figures 13 and 14);
- Weibull distribution (Figures 15 and 16).
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Figure 8. Polylinearization of y = a3s3 + a2s2 + a1s + a0 with respect to L∞ norm. (a) First partition
P1 and (b) final partition P *
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Figure 11. Polylinearization of y = a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0 with respect to L2 norm.
(a) First partition P1 and (b) final partition P *

11.

Computation 2024, 12, x FOR PEER REVIEW 15 of 19 
 

 

 
(a) (b) 

Figure 12. Polylinearization of 𝑦 = 𝑎5𝑠5 + 𝑎4𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0 with respect to 𝐿∞ norm. 

(a) First partition 𝒫1 and (b) final partition 𝒫5
∗. 

 
(a) (b) 

Figure 13. Polylinearization of 𝑦 =
𝑎1

𝜋(𝑠2+𝑎1
2)

 with respect to 𝐿2 norm. (a) First partition 𝒫1 and (b) 

final partition 𝒫9
∗. 

Figure 12. Polylinearization of y = a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0 with respect to L∞ norm.
(a) First partition P1 and (b) final partition P *

5.

Computation 2024, 12, 63 15 of 19 
 

 

 
(a) (b) 

Figure 12. Polylinearization of 𝑦 = 𝑎 𝑠 + 𝑎 𝑠 + 𝑎 𝑠 + 𝑎 𝑠 + 𝑎 𝑠 + 𝑎  with respect to 𝐿  norm. 
(a) First partition 𝒫  and (b) final partition 𝒫∗. 

 
(a) (b) 

Figure 13. Polylinearization of 𝑦 = ( ) with respect to 𝐿  norm. (a) First partition 𝒫  and (b) 
final partition 𝒫∗. 

-5 -4 -3 -2 -1 0 1 2 3 4
-10

-5

0

5

10

15

20

25

30

35

40

Planar Curve Polylinearization

-5 -4 -3 -2 -1 0 1 2 3 4
-10

-5

0

5

10

15

20

25

30

35

40

Planar Curve Polylinearization

Figure 13. Polylinearization of y = a1
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with respect to L2 norm. (a) First partition P1 and

(b) final partition P *
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The main results of the study can be summarized as follows:

1. A numerical polylinearization approach is proposed for both types of rectifiable sensor
characteristics: either concave or convex.

2. The approach is sufficiently general and allows applications to both two-dimensional
and three-dimensional characteristics.

3. The problem of optimal vertex allocation of the approximating polyline is discretized
using a second-order accurate integration rule and then solved numerically. Higher-
order integration rules are also allowed and will not change the algorithmic solution.

4. The applicability of the approach is illustrated by several well-known sensory
characteristics.
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4. Conclusions

Generally, the term “polylinearization” suggests a mathematical process used to model
and compensate for nonlinear behavior in sensors or devices. When sensors or IoT devices
produce nonlinear responses, it can be challenging to obtain accurate measurements and
data. Polylinearization techniques involve the application of mathematical functions to
transform the sensor’s output into a linear relationship with the input, thus significantly
improving the measurement accuracy.

This paper discusses the optimal polylinearization of non-self-intersecting planar
curves of finite length by connecting certain points on them through straight line segments.
The problem can be solved as a series of constrained distance/area minimization problems,
where the same issue is resolved repeatedly. The choice of the measure of controllable re-
moteness between a polyline and a curve is crucial, as it can be estimated in different ways.
The polylinearization process consists of three algebraic stages: representing the sensor
transfer function, quantifying the remoteness between the curve and its approximating
polyline segments, and constructing the polyline best fitting the entire curve based on the
measurement of the remoteness between the curve and the line segments building that poly-
line. The study introduces the concepts of a simple rectifiable curve and a curve segment
between any two distinct points, characterizes the polyline segment in parametric form,
builds a polyline, and estimates its proximity to the curve in terms of distance- and area-
related measures. The area-minimization problem is solved with a constraint expressed in
terms of a particular remoteness measure, providing the controllable polylinearization of
the curve.

This study discusses a new concept of linearization and polylinearization costs in the
context of curves and curve segments. It begins with the definition of a vector-valued map,
a parametrized curve, and its properties. Line segments attached to a curve segment are
defined by the affine map with domain and image. The linearization cost on a line segment
is used to estimate their proximity. The concept of linearization cost extends to the entire
domain, allowing easy extension to the union of subdomains. The polylinearization cost is
the linearization cost from a single line to a polyline, consisting of an open chain of line
segments. The text also discusses the existence of an optimal polylinearization, focusing
on fixed domains and the characteristic mesh size. Inequality expresses the conditions for
an optimal polylinearization, stating that for a fixed domain, the total area error attains
its minima.
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Nomenclature

N natural numbers
Z integers
R real numbers
Rn set of n-tuples of real numbers
E3 Euclidian 3-D point space
E2 the two-dimensional subspace of E3

c position vector (lower-case, boldface, italic symbols)
|c| length of a vector c, |c| =

√
c·c

f̂ (x, y) function rule
f = f̂ (x, y) value of a function
f,x, f,y partial derivatives of f = f̂ (x, y) in x, y
A set of elements
|A| number of elements (cardinality) in a set
S linear segment
|S| length of a linear segment
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