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Abstract: This study aims to present a comparative analysis of the Bayesian regularization backprop-
agation and Levenberg–Marquardt training algorithms in neural networks for the metrics prediction
of damaged archaeological artifacts, of which the state of conservation is often fragmented due to
different reasons, such as ritual, use wear, or post-depositional processes. The archaeological artifacts,
specifically laminar blanks (so-called blades), come from different sites located in the Southern Levant
that belong to the Pre-Pottery B Neolithic (PPNB) (10,100/9500–400 cal B.P.). This paper shows the
entire procedure of the analysis, from its normalization of the dataset to its comparative analysis and
overfitting problem resolution.

Keywords: Bayesian regularization; Levenberg–Marquardt; neural network; training algorithms;
archaeological data; metrics prediction

1. Introduction

Artificial intelligence (AI), specifically both machine learning (ML) and deep learning
(DL), has lately been applied to archaeology in several ways, such as for the identification
of sites’ locations, their extensions, archaeological artifacts’ dispersion in sites [1–6], as well
as for taxonomic/typological artifact identification [7–9].

The application of these methodologies has great potential due to the nature of the
archaeological artifacts and their typological and technological variety, which influence
the potential parameters and variables to be considered depending on the study case, to
which we need to add the several possibilities that AI provides us in terms of the variety of
algorithms depending on the analysis.

In this study, we proposed a deep-learning comparative analysis based on a feed-
forward neural network based upon the Bayesian and Levenberg–Marquardt training
regularization algorithms for the metrics prediction of damaged regular artifacts, or rather
of laminar blanks (so-called blades), collected from the PPNB sites of Nahal Ruel, Yiftahel
and Motza.

This research aimed to define a standard procedure for an archaeological applica-
tion of neural networks in metrics prediction, highlighting the advantages and disad-
vantages by using the Bayesian regularization backpropagation [10,11] or the Levenberg–
Marquardt [12,13] training algorithms on a small database, showing its normalization
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process, solutions for underfitting and overfitting issues, and differences concerning the
training process, error span, and results.

2. Material and Methods

The materials selected for this analysis were debitage artifacts, specifically blades
and bladelets. The selection was made using a random-stratified methodology, which
allowed the selection of any technological subcategories in which these laminar blanks are
divided [14,15]. These artifacts are known in archaeology to be the most regular artifacts in
terms of the dimensional proportion and technology. The realization of these elements is
indeed obtainable through a pre-determined reduction process of the raw material (in this
case, flint), mostly based on bidirectional and secondarily unidirectional technology [16,17].
These artifacts belong to the technological category of laminar blanks, which can be further
divided into two sub-categories: blades and bladelets. Both represent elongated artifacts
with a length of at least twice their width. Bladelets are artifacts with a length smaller than
50 mm and a width narrower or equal to 12 mm, while blades are artifacts with a length
longer than 50 mm and a width larger than 12 mm.

The measuring method used for obtaining dimensional information on each artifact
was based on measuring the maximum technological length, width, and thickness, and if it
was possible due to the state of conservation, the thickness and width were measured in
specific positions according to the technological characteristics of any lithic artifacts, which
are represented by the localization of the proximal and distal ends. The width and thickness
were indeed also measured on the line that separates the proximal end and mesial part, and
on the line that separates the mesial part and the distal end (Figure 1). This methodology
allowed us to obtain all the possible information, not only on undamaged artifacts but also
on fragmented ones (Figure 2).
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Due to the state of conservation of the artifacts and the most suitable amount for
a proper neural network, we decided to focus the comparative analysis on the metrics
prediction of artifacts of which the distal end has not been preserved, either due to use
wear, re-shaping, or ritual processes. For this study, a total of 291 artifacts were used. Out
of these, 181 laminar artifacts that were undamaged were used as input. These 181 artifacts
were further sub-divided into 149 blades and 32 bladelets. The remaining 110 laminar
artifacts that had a missing distal end were used as output. These 110 artifacts were further
sub-divided into 85 blades and 35 bladelets.

Concerning the application of AI to the materials, an ML method was chosen as
the most relevant method available for this analysis. Both the Bayesian regularization
backpropagation (BRBP) and Levenberg–Marquardt training algorithms were chosen to
obtain the most performant results on a small set of data [18,19].

In Bayesian regularization backpropagation learning algorithms, the objective function
is the mean square error. The mean square error (MSE) measures the average squared
difference between the predictions and the actual targets:

MSE =
1
n∑n

i=1(Yi − yi)
2=

1
n∑n

i=1 e2
i

where:
n is the number of elements in the dataset.
y is the neural network output.
Y is the target output corresponding to y.
In the BRBP algorithm, the objective function is as follows:

F(ω) = αEω + βED

where:
α and β represent two regularization coefficients.
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ω represents the neural network weights.
Eω=∑i ω2

i represents the sum of the squared network weight and ED is the data
error term.

Including Eω in the objective function alongside the data error term ED allows the
algorithm to find a balance between fitting the training data well (minimizing ED) and
keeping the model’s complexity in check (minimizing Eω).

The objective function used in the BRBP algorithm is responsible for guiding the
training of the neural network. This function is comprised of two main components. The
first component minimizes the sum of the squares of the network weights, while the second
component (e) represents the error between the model’s predictions and the actual data
or targets. The objective of this function is to ensure that the model is making accurate
predictions on the training data, thus resulting in a well-trained neural network.

The coefficients α and β control the influence of each term on the overall objective.
The process of finding the optimum values for α and β in the context of Bayesian

regularization can indeed be challenging. These parameters play a crucial role in balancing
the trade-off between fitting the training data well and controlling the complexity of
the model.

The statement suggests that the relative values of α and β influence the training error
differently. Specifically:

If α ≪ β, smaller values of α compared to β lead to smaller errors related to the
regularization term on the sum of the squared network weights Eω. This means that the
algorithm may prioritize fitting the training data more closely, potentially risking overfitting
if not properly controlled.

If α ≫ β, larger values of α compared to β emphasize the importance of reducing the
size of the network weights. This encourages the algorithm to prefer simpler models with
smaller weights, even if it comes at the cost of slightly higher errors in the training data.

To determine the optimal values for α and β, we used a Bayesian regularization method.
Bayesian methods usually involve introducing prior distributions of the parameters (in this
case, ω), updating these distributions with observed data, and then making probabilistic
inferences. In the regularization system, this approach allows for a principled way of
incorporating uncertainty and making informed decisions about the balance between
fitting the data and controlling the model complexity. The Bayesian regularization method
is based on Bayes’ theorem in the following way:

P( A|B) = P(B|A) · P(A)

P(B)

where:
P( A|B) is the posterior probability of event A, given B.
P(B|A) is the prior probability of event B, given A.
P(A) is the prior probability of event A.
P(B) is the non-zero prior probability of event B, serving as a normalizing constant.
Bayes’ theorem provides a mathematical framework for updating our prior beliefs in

light of new evidence. It enables us to refine our initial assumptions by incorporating ob-
served data, resulting in a more accurate and reliable estimate of the underlying probability
distribution. By applying Bayes’ theorem, we can determine the posterior probability of a
hypothesis, given our prior belief and the likelihood of observing the available evidence.

In order to find the optimal weight space in the Bayesian framework, the objective
function F(ω) needs to be minimized to make it equivalent to maximizing the posterior
probability function as follows:

P(ω |D, α, β, M) =
P(D| ω, β, M)P(ω |α, M)

P(D|α, β, M)

where:
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D stands for the dataset.
M is the specific neural network model being used.
ω is the vector of the network weights.
P(ω|α,M) is the prior density. It encapsulates our prior knowledge about the weights

ω before we have observed any data.
This is a fundamental concept in Bayesian statistics, where our prior beliefs are up-

dated as far as new data are added. In a neural network model M, the prior knowledge
could be either based on previous studies, expert knowledge, or other relevant information.

P(D| ω, β, M) is the likelihood function. It represents the observation probability of
data D, given the weights ω, under the specific model M. It quantifies how well the selected
model is, while the specific set of weights explains the observed data. In other words, if
you were to use the model M with weights ω to generate data, the likelihood function tells
you the probability that the model would generate the observed data D. It is a fundamental
concept in machine learning and statistics that helps us understand how well our model
represents the data we have.

P(D|α,β,M) represents a normalization factor in this context. In Bayesian inference,
the posterior distribution of the parameters is often a priority, because it is proportional to
the likelihood and the prior product. However, to ensure that the posterior distribution
is a valid probability distribution, it is necessary to ensure that it integrates (or sums) to
1 over all the possible values of the parameters. This is the exact step where the function
P(D|α,β,M) comes in. It essentially represents the integral (or sum) of the product of the
likelihood and the prior overall possible values of the parameters. By using this system,
the posterior distribution is guaranteed to be a valid probability distribution that adds up
to 1. This term is often difficult to calculate directly, especially for complex models and
large datasets, but various computational techniques, such as Markov chain Monte Carlo
(MCMC), are often used to handle this.

Bayesian regularization in backpropagation algorithms typically involves incorporat-
ing prior distributions over the model parameters and updating them using techniques such
as variational inference or Markov Chain Monte Carlo (MCMC) methods. The steps in a
Bayesian regularization backpropagation algorithm would generally involve the following:

Initialization: Initialization of the weights and biases of the neural network.
Forward Pass: Performance of a forward pass through the network to compute the

predicted output for a given input.
Compute Loss: Calculation of the loss function, which is typically a combination

of a data term (e.g., mean squared error) and a regularization term based on the prior
distribution over the model parameters.

Backward Pass (Backpropagation): A backpropagation approach to compute the
gradients of the loss function in relation to the model parameters.

Update Parameters: Update the model parameters using both the gradients achieved
in the previous step and an optimization algorithm such as the stochastic gradient descent
(SGD) or its variants.

Incorporate Bayesian regularization as follows:
Prior Specification: Definition of prior distributions over the model parameters, which

may include Gaussian priors, Laplace priors, etc.
Variational Inference or MCMC Sampling: Performance of variational inference or

MCMC sampling to approximate the posterior distribution over the model parameters,
given the observed data and the prior distributions.

Update Parameters with Regularization: Update the model parameters using the gra-
dients achieved from the posterior distribution, incorporating the Bayesian regularization
term into the update rule.

Repetition: Repetition of steps 2–6 for a specified number of iterations or until the
convergence criteria are met.

Prediction: After training, the trained model must be used for making predictions on
new data by performing a forward pass through the network.
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Evaluation: Evaluation of the performance of the trained model on a separate
validation or test dataset using appropriate metrics. The specifics of the implemen-
tation of this algorithm may vary depending on the choice of prior distributions and
inference techniques.

The Levenberg–Marquardt training algorithm is instead aimed at minimizing a cost
function, defined as the residual sum of squares (RSS). This cost function is used in nonlinear
regression problems and the optimization of models. Furthermore, the model parameters
are iteratively updated using a combination of descending gradient methods and Newton
methods, exemplified by the following formula:

wk+1 = wk − (Jk
TJk + µ I)−1Jk ek

where:
wk+1 = wk − αgkrepresents the EPB algorithm
wk+1 = wk − Hk

−1gk is the Newton algorithm
wk+1 = wk− (Jk

TJk)−1Jkek is the Newton–Gauss algorithm
The EPB algorithm, the Newton–Gauss algorithm, and the Newton algorithm are

methods used to optimize the parameters in different types of problems.
The EPB algorithm is commonly used in machine learning to optimize the parameters

in learning classifiers or regressors. It works by iteratively minimizing an objective function
(or loss) with a gradient descent-based approach. The learning rate may vary during
optimization, and an exponential term may be included to boost or penalize the objective
function based on its current value.

The Newton–Gauss algorithm, also known as Gauss–Newton, is used in nonlin-
ear regression problems to optimize the parameters. It updates the parameters using
an approximate version of the Hessian matrix, which is the matrix of second deriva-
tives of the objective function with respect to the parameters. The Newton–Gauss algo-
rithm is particularly useful when the objective function is approximately quadratic near
the minimum.

The Newton algorithm is an optimization method commonly used to solve nonlinear
optimization problems. It uses the second derivative of the objective function to guide
the parameter updates and can converge more quickly than other optimization methods,
especially when the objective function is convex and well-behaved. However, it may
require computationally expensive calculations of the Hessian matrix and may not be stable
in all situations.

During each iteration, the algorithm balances between Newton’s steps and the gradient
steps, using an “amortization” parameter to control the step size, which helps to avoid
divergence or slowness issues. The algorithm iteratively continues to update the parameters
until convergence is reached or until a stop criterion is fulfilled.

During the training process of the neural network, several parameters were custom-
made and set in MATLAB. Each parameter has a specific role in the neural network training
process. Here is an explanation of each parameter:

1. net.trainParam.epochs: This parameter specifies the number of epochs, which is the
number of times the entire training set is presented to the neural network for training.
A complete era is when the network has seen and learned from all the training data
once.

2. net.trainParam.lr: This parameter represents the learning rate (LR). It indicates how
many times the neural network should update the weights based on the error during
each iteration of the optimization algorithm. A higher learning rate may accelerate
the training, but it may also cause oscillations or converging difficulties.

3. net.trainParam.max_fail: This parameter represents the maximum number of consec-
utive failures allowed during training. If the network error stops decreasing for
several epochs specified by this parameter, the training may stop before reaching the
maximum number of epochs to avoid overfitting problems.



Information 2024, 15, 270 7 of 26

4. net.trainParam.min_grad: This parameter specifies the minimum gradient threshold.
During training, if the weight gradient of the neural network becomes lower than
this value, the optimization algorithm may consider that the network has reached a
convergence condition.

5. net.trainParam.goal: This parameter is the training performance goal. It represents
the average error that you want to achieve during training. Once the average neural
network error reaches or approaches this value, the training ends.

The parameters chosen are heavily dependent on the specific problem confronted, the
complexity of the dataset, and the structure of the neural network. However, there are
some suggested best practices to be considered, such as the following:

• The learning rate (LR) should be initially set to small values and then adjusted as the
training proceeds to avoid oscillations and divergence.

• The number of epochs (epochs) should be sufficient to allow the network to learn from
the data, but not too large to avoid overfitting.

• max_fail can be adjusted according to the training stability and overfitting measurement.
• min_grad and goal are often set according to the desired accuracy and tolerance

for convergence.

In both cases, the neural network was built on two hidden layers: 1 composed of
80 perceptrons and 1 composed of 40 perceptrons. This specific architecture was chosen after
several tests set on different amounts of perceptrons in order, first, to avoid underfitting
problems due to the low number of artifacts (small dataset), and secondly, to achieve the
best results and to avoid overfitting problems.

The input layer therefore consisted of four perceptrons, as many as the known variables
for every single artifact, such as the length, mesial width, and mesial thickness; two hidden
layers; and one output layer represented by three perceptrons, as many as the number
of unknown variables, comprising the missing metric information to be predicted by the
neural network (Figure 3).
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where:
xk

j represents the output of the j-th node located on the K-layer;

xk−1
i is the output of the i-th node on the K-1-layer;

ωk
i,j is the connection weight between nodes i and j.

The node activation function (perceptron) is as follows (Figure 4):

R(s) =
1

1 + e−s (1)
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Taking Equation (1) as the node activation function (perceptron), it can be formulated
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i=0 ω

(k)
i,j x(k−1)

i + b(k)i ) (2)

Concerning the activation function of the perceptrons, two different functions were
selected. One activation function corresponded to the sigmoid not-tangent hyperbolic and
was meant to be used for the hidden layers, and the other activation function corresponded
to a linear function and was meant to be used for the last output layer. The choice of
activation functions for the neural network layers is crucial because it affects the network’s
ability to learn and represent complex data relationships. We ultimately settled on this
specific activation function, which produced the desired outcomes. The hidden layer
activation function was the sigmoid not-tangent hyperbolic function (Figure 5), which
is commonly used in neural network studies to introduce non-linearities and represents
the best solution for the purpose of this study. A linear function was instead used for the
output layer.

In neural networks, the error E is defined by the difference between the expected
vector and the real value.

E =
1
2∑MK

j=1 (x(k)j − dj
(k))

2
(3)

where:
dj defines the expected error;

x(k)j represents the real output value at node j;
MK defines the number of nodes in the K-th layer.
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The aim is to achieve an approach between the output values’ vector and the expected
values’ vector. Therefore, it is possible to minimize Equation (3) by adjusting the values
of weights ωi,j among the serval nodes, allowing us to consider the derivative of (3)
as follows:

∂E

∂ω(K)
i,j
=

(
x(k)j − dj

(k)
) ∂x(k)j

∂ω
(k)
i,j

(4)

∂x(k)j

∂ω
(k)
i,j

=
∂

∂ω
(k)
i,j

R(∑MK−1
i=0 ω

(k)
i,j x(k−1)

i + b(k)i ) (5)

By choosing R(s) as the function achieved in Equation (1), its derivative will be:

∂R(s)
∂s

= R(s)[1 − R(s)] (6)

Applying (6) to (5), the following function is obtained:

∂x(k)j

∂ω
(k)
i,j

= x(k)j

(
1 − x(k)j

)
.x(k−1)

i (7)

Substituting (7) into (4), the following function is achieved:

∂E
∂ω(K)

i,j
=

(
x(k)j − dj

(k)
)

x(k)j

(
1 − x(k)j

)
.x(k−1)

i (8)

The following equation shows that changing the weights ωi,j is sufficient to minimize
the error by starting from random values for the various weights at time t = 0, w_(i,j):

ω
(k)
i,j (t + 1) = ω

(k)
i,j (t)− η

∂E
∂ω(K)i,j

(9)

where:
η defines the learning rate that assumes a value range from 0.1 to 0.9. It represents the

value that adjusts the algorithm learning rate.
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Starting from the iteration at instant t = 0 in the next one t + 1, it is necessary to adjust
the weights until (9) converges.

Substituting (8) into (9), the following function is achieved:

ω
(k)
i,j (t + 1) = ω

(k)
i,j (t)− η

(
x(k)j − dj

)
x(k)j

(
1 − x(k)j

)
.x(k−1)

i (10)

Therefore:
δ
(k)
j =

(
x(k)j − dj

)
x(k)j

(
1 − x(k)j

)
(11)

In conclusion, rewriting the function (10):

ω
(k)
i,j (t + 1) = ω

(k)
i,j (t)− ηδ

(k)
j x(k−1)

i (12)

Based on these considerations, a feedforward backpropagation learning algorithm can
be implemented by applying the following operations:

Random initialization of weights ω
(k)
i,j ; the network input vector is set to “target”

samples with which a vector of the output values is necessary to classify the model correctly.
The function needs to be calculated for each layer from the input to the output

as follows:

x(k+1)
j = R(∑MK

i=0 ω
(k+1)
i,j x(k)i + b(k)i ) k = 0, . . . , (k − 1), j = 1, . . . , MK+1

For each node, calculate the following function starting from the output layer:

δ
(k)
j =

(
x(k)j − dj

)
x(k)j

(
1 − x(k)j

)
j = 1, . . . , MK

For hidden layers ranging from (k − 1) to 1, the calculation is as follows:

δ
(k)
j = x(k)j

(
1 − x(k)j

)MK+1

∑
j=1

δ
(k+1)
j ω

(k+1)
i,j

Update of weight values as follows:

ω
(k)
i,j (t + 1) = ω

(k)
i,j (t)− ηδ

(k)
j x(k−1)

i

Repetition of the previous steps is performed until the convergence is achieved.
If the mean square error increases as the weights increase ∂E

∂ω(K)
i,j

> 0, the algorithm

predicts a decrease in the weights ∆ω(K)
i,j < 0; otherwise, if the error decreases as the

weights increase, the backpropagation learning algorithm then has high convergence times
and may stop at a local minimum. It is possible, therefore, to analyze other algorithms that
provide solutions to these problems and that are part of the backpropagation group but
differ from the classical algorithm by the method used to update the weights.

Taking into account the Newton’s algorithm, the weights are updated according to the
following law:

W(t + 1) = W(t)− H−1(t)g(t) (13)

where:
W is the matrix of the weights;
H is the Hessian matrix of the error;
g is the gradient of the error.
To improve the accuracy of a model, it is necessary to update the weights and biases of

the model through multiple iterations. However, this process involves the computation of
the Hessian matrix, which is the matrix of the second derivatives of the error with respect
to the weights. This computation can be quite onerous.
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Luckily, there is a class of algorithms called quasi-Newton algorithms that can make
this process much simpler. One such algorithm is the Levenberg–Marquardt algorithm. This
algorithm does not require the computation of the Hessian matrix. Instead, it approximates
the Hessian matrix and error gradient using equations that are much easier to compute, as
shown in (14) and (15):

H = JT J (14)

g = JTE (15)

where:
J is the Jacobian matrix whose elements are the prime derivatives of the error with

respect to the weights;
E is the error vector.
If functions (14) and (15) are merged into (13), then the update matrix of the weights

becomes as follows:
W(t + 1) = W(t)−

[
JT J

]−1
JTE (16)

The latter algorithm (16) was chosen to perform the neural network learning ability.
The generalization of the network is the ability to recognize data that are slightly different
from the data it was trained with. Too much data in the learning phase might affect the
network on the training set, causing overfitting problems, and thus it might limit the ability
to generalize. A few data may instead not be enough to reduce the overall error; therefore,
it is indispensable to understand when it is necessary to stop training the network in order
not to incur learning data overfitting. A method to optimize the generalization ability is
the “early stopping” method.

The training data were randomly divided into two subsets. The larger subset was
used for the training, where the network’s weights must be necessarily adjusted, while the
smaller subset was reserved for testing. The validation test was performed by selecting
from the training dataset a subset called “validation set”. During the training algorithm,
the error trend was periodically tested with the validation set. When it started increasing,
the training was stopped. Subsequently, it was fundamental to verify the final accuracy in
terms of correct answers (expressed in percentages) compared to the test set data. It might
be plausible to think, observing the error trend, that it could decrease proportionally to
the increase in the weights’ update. It is essential to avoid continuing the training process
beyond the point where the validation error is as low as possible, as this can cause the
network to only learn the “noise” present in the training set. A good network is considered
to generate an error of less than 20% of the input/output pairs on the final test.

Finally, for neural network learning, a database of exclusively complete and undam-
aged artifacts was used. A total of 70% of the undamaged artifacts in each prediction were
used for the training process, and the remaining 30% were used for the error calculation.
Furthermore, both the algorithms divided the 70% into three sets: one for the proper
training process, one for the data validation, and one for the final test. In both the training
and validation processes, the selection was random, with no experimenter decisions or
interference that might have affected the results (Supplementary Material S1).

The neural networks were tested with different LRs for both the Bayesian (LRBa)
and Levenberg–Marquardt (LRLM) regularization training algorithms, respectively, set as
LRBa_1 = 0.1; LRBa_2 = 0.3; LRBa_3 = 0.4; LRLM_! = 0.1; LRLM_2 = 0.3; LRLM_3 = 0.4.

Therefore, a comparative analysis was conducted for each test at the same rate.

3. Results

The neural network procedure usually requires setting an initially low learning rate.
As the training progresses, adjustments are made to prevent oscillations and divergence.
For this reason, the results are shown gradually.
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3.1. Bayesian vs. Levenberg–Marquardt Based on LR = 0.1

The LR = 0.1 test showed a low capability for the metrics prediction, with a higher error
that even led to negative values, which should be impossible for the artefacts’ dimensions
due to the inexistence per se of negative metrics. The Bayesian training regularization
algorithm and the Levenberg–Marquardt algorithm produced similar results.

The Bayesian regularization algorithm using an LR set on 0.1 achieved the best val-
idation performance of 7688.4087 at epoch 3 and stopped at epoch 13. The Levenberg–
Marquardt algorithm, also using the same LR as the previous algorithm, achieved the best
validation performance of 13,770.7407 at epoch 12 and stopped at epoch 22 (Figure 6).
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Figure 6. Best validation performance based on LR = 0.1. Bayesian regularization algorithm (top).
Levenberg–Marquardt regularization algorithm (bottom). The regression curve was carried out on
training data.

The errors were calculated according to the following procedure. First of all, the data
were automatically subdivided by the algorithm into two groups. The first group was
randomly composed of 70% of the data designated for the general training process, which
was further subdivided between a sub-group composed of 70% of them, designated for
the proper training process, and a group composed of 30% of them, designated for the
validation process and test. The second group was instead automatically amassed by 30%
of the data and it was established to be used separately as an error test.

The errors were indeed calculated before the first group represented 70% of the whole
database and later on the second group composed the remaining 30% of the data.



Information 2024, 15, 270 13 of 26

The first error that was calculated on 70% of the data, which refers exclusively to the
training process, is highlighted in both applications based on LR = 0.1 by a histogram curve.
As is visible, the error histogram curve calculated on the results obtained by the application
of a Bayesian regularization training algorithm is not as low as the error calculated on the
results obtained using the Levenberg–Marquardt algorithm (Figure 2). Using a Bayesian
regularization algorithm, the error achieved during the training process was 20.9% on the
length, 19.8% on the width, and 36.1 on the thickness, while using a Levenberg–Marquardt
algorithm, it was, respectively, 20.3%, 19.8%, and 33.7%.

Instead, the error achieved in the final test using the Bayesian algorithm was 24.4% on
the length, 18.8% on the width, and 42.4% on the thickness, while in the same test, using
the Levenberg–Marquardt algorithm, it was, respectively, 36.4%, 25%, and 42.2% (Figure 7).
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Figure 7. Error histogram during training validation and test processes based on LR = 0.1. Bayesian
regularization algorithm (top). Levenberg–Marquardt regularization algorithm (bottom).

The regression line was obtained by using 70% of the data for training, validation, and
testing. When applying the Bayesian regularization algorithm with LR = 0.1, it was found
to have better control over overfitting issues during the training process compared to the
Levenberg–Marquardt algorithm with the same rate (Figure 8). However, both algorithms
resulted in a range of negative values.



Information 2024, 15, 270 14 of 26

Information 2024, 15, x FOR PEER REVIEW 14 of 26 
 

 

 
Figure 7. Error histogram during training validation and test processes based on LR = 0.1. Bayesian 
regularization algorithm (top). Levenberg–Marquardt regularization algorithm (bottom). 

The regression line was obtained by using 70% of the data for training, validation, 
and testing. When applying the Bayesian regularization algorithm with LR = 0.1, it was 
found to have better control over overfitting issues during the training process compared 
to the Levenberg–Marquardt algorithm with the same rate (Figure 8). However, both al-
gorithms resulted in a range of negative values. 

 
 

0 20 40 60 80
Target

0

20

40

60

80

O
ut

pu
t ~

= 
0.

97
*T

ar
ge

t +
 0

.4
9

Training: R=0.93132
Data
Fit
Y = T

0 20 40 60 80
Target

0

20

40

60

80

O
ut

pu
t ~

= 
0.

83
*T

ar
ge

t +
 2

.1

Validation: R=0.85861

Data
Fit
Y = T

0 20 40 60 80
Target

0

20

40

60

80

O
ut

pu
t ~

= 
0.

8*
Ta

rg
et

 +
 2

.3

Test: R=0.8849

Data
Fit
Y = T

0 20 40 60 80
Target

0

20

40

60

80

O
ut

pu
t ~

= 
0.

92
*T

ar
ge

t +
 1

.1

All: R=0.9117

Data
Fit
Y = T

Information 2024, 15, x FOR PEER REVIEW 15 of 26 
 

 

 
Figure 8. Regression lines during training, validation, test, and merged processes based on LR = 0.1. 
Bayesian regularization algorithm (top). Levenberg–Marquardt regularization algorithm (bottom). 
The analysis was carried out on 70% of the total data. 

The regression line made of the remaining 30% of the data (final test prediction) does 
not differ excessively from the previous test (data training prediction or “all”). 

The application of a Bayesian algorithm produced results that were not affected by 
overfitting problems during the training prediction as they were instead using a Leven-
berg–Marquardt algorithm but, despite that, a range of negative values were obtained as 
well (Figure 9). 

0 20 40 60 80 100
Target

0

20

40

60

80

100

O
ut

pu
t ~

= 
1*

Ta
rg

et
 +

 0
.5

9

Training: R=0.98755

Data
Fit
Y = T

0 20 40 60 80 100
Target

0

20

40

60

80

100

O
ut

pu
t ~

= 
1.

1*
Ta

rg
et

 +
 0

.6
1

Validation: R=0.83998

Data
Fit
Y = T

0 20 40 60 80 100
Target

0

20

40

60

80

100

O
ut

pu
t ~

= 
0.

89
*T

ar
ge

t +
 4

.4

Test: R=0.74986

Data
Fit
Y = T

0 20 40 60 80 100
Target

0

20

40

60

80

100

O
ut

pu
t ~

= 
1*

Ta
rg

et
 +

 1
.2

All: R=0.92204

Data
Fit
Y = T

Figure 8. Regression lines during training, validation, test, and merged processes based on LR = 0.1.
Bayesian regularization algorithm (top). Levenberg–Marquardt regularization algorithm (bottom).
The analysis was carried out on 70% of the total data.
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The regression line made of the remaining 30% of the data (final test prediction) does
not differ excessively from the previous test (data training prediction or “all”).

The application of a Bayesian algorithm produced results that were not affected by
overfitting problems during the training prediction as they were instead using a Levenberg–
Marquardt algorithm but, despite that, a range of negative values were obtained as well
(Figure 9).
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Figure 9. Regression lines during training prediction (a) and final test (c), both using a Bayesian
regularization training algorithm based on LR = 0.1. Regression line during training prediction
(b) and final test (d), both using a Levenberg–Marquardt regularization training algorithm based on
LR = 0.1.

The negative values, even though they represent a small amount, are not compatible
with the metrics prediction of real objects; they do not represent a theoretical model of
metrics values that belong to “imaginary numbers” but to “real numbers”. Additionally,
the errors obtained were not as minor as anticipated. Therefore, due to overfitting issues in
the second application, we decided to move forward with a higher LR.

3.2. Bayesian vs. Levenberg–Marquardt Based on LR = 0.3

The LR = 0.3 test showed better efficacy, without any negative values or overfitting
problems. The Bayesian regularization algorithm showed a better response than the
Levenberg–Marquardt one. A lower error rate indeed characterized the first algorithm.

The application of a Bayesian regularization algorithm based on LR = 0.3 reached its
best validation performance of 34.4016 at epoch 23, and stopped at epoch 43 with no better
results. The use of a Levenberg–Marquardt algorithm instead reached its best validation
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performance of 124.0292 at epoch 19 and stopped at epoch 39 with no better outcome
(Figure 10).
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Figure 10. Best validation performance based on LR = 0.3. Bayesian regularization algorithm (top).
Levenberg–Marquardt regularization algorithm (bottom). The regression curve was carried out on
training data.

As with the previous test set on LR = 0.1, the error of the following one based on
LR = 0.3 was calculated both automatically on 70% of the data and separately on a previ-
ously established 30% of the data. The error calculated on the first group showed in both
cases a good response during the training, validation, and test processes, especially using
the Bayesian regularization algorithm. The Levenberg–Marquardt algorithm suffered from
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overfitting problems during the training process. For this reason, the histogram showed a
lower error than the Bayesian algorithm, while this represented a more realistic error curve
during the training, which was not affected by overfitting problems (Figure 11).
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The error calculated separately on the remaining 30% of the data differed substantially
from each of the selected algorithms. The error obtained by applying the Bayesian algorithm
showed incredibly low error rates during both the test and the training. The error on the
total length prediction of damaged artifacts was 19.6% during the test and 23.9% during
the training; the error achieved on the distal width prediction was, respectively, 12.5% and
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19.7%; and the error acquired on the distal thickness prediction was, respectively, 25.1%
and 34.4%.

The error achieved using the Levenberg–Marquardt algorithm instead showed higher
error rates during the test but not during the training. The error rate on the total length
prediction of fragmented artifacts was indeed 44.3% during the test and 15.2% during the
training; the error obtained on the distal width prediction of these artifacts was, respectively,
26.1/% and 13%. Finally, the error achieved on artifacts’ distal thickness prediction was,
respectively, 51% and 29.4%.

The regression lines of each application indeed showed how differently the two
algorithms worked and their diverse efficiency. The Bayesian regularization algorithm set
on LR = 0.3 was not affected by overfitting problems either during the training process
carried out automatically on the first group of artifacts subdivided in 70% of the data or
during the test carried out on the remaining 30% that belong to the same group. Instead, the
Levenberg–Marquardt algorithm showed in both cases a high inefficacy due to overfitting
problems that led to only an apparently lower error rate calculated on the first group of
data composed of 70% of them (Figure 12). The error calculated on the second group indeed
showed higher error rates due to the impossibility of this algorithm being able to process
these data properly.

Concerning the regression lines carried out on the second group of artifacts composed
of 30% of the data pulled out from the neural network automatic analysis, they showed
encouraging results that confirmed the previous regression line carried out on the first
group of artifacts.

During both the training process and the final test, the regression lines were carried out
using a Bayesian algorithm. The regression lines did not produce any negative values, as
expected, and did not suffer from overfitting problems. As a result, the achieved regression
lines accurately represented a real range of dimensional metrics for the laminar artifacts.

During both the training and validation processes, a Levenberg–Marquardt algorithm
was applied, but it was unsuccessful in preventing negative values and overfitting issues
(Figure 13).

The application of LR = 0.3 showed positive results and a high level of efficacy using
the Bayesian regularization algorithm; instead, the same rate based on the Levenberg–
Marquardt algorithm did not provide the expected results.

To verify the possibility of achieving better results based on the application of the
Bayesian regularization algorithm or to confirm the inefficiency of the Levenberg–Marquardt
algorithm for this purpose, we decided to move forward to another step, increasing the
learning rate for each application.

3.3. Bayesian vs. Levenberg–Marquardt Based on LR = 0.4

Both the Bayesian regularization and the Levenberg–Marquardt training
algorithms based on LR = 0.4 showed positive but limited results, proving the boundaries of
their application.

The best validation performance achieved with the application of a Bayesian regular-
ization algorithm was 1916.6449 at epoch 9, and it stopped after 19 epochs without any
amelioration. The best validation performance obtained with a Levenberg–Marquardt
algorithm was instead 1105.7728 at epoch 8, and it stopped after 18 epochs without any
better result (Figure 14).
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Figure 13. Regression lines during training prediction (a) and final test (c), both using a Bayesian
regularization training algorithm based on LR = 0.3. Regression lines during training prediction
(b) and final test (d), both using a Levenberg–Marquardt regularization training algorithm based on
LR = 0.3.

Following the same procedure shown above, the errors were calculated on both the
training set of data (70% of data) and the test set of data (30% of data). The error range
calculated on the first group shown as well as the application of both the algorithms set
on LR = 0.1 revealed the presence of negative values, and the existence of a misleading
low error concerning the Levenberg–Marquardt algorithm, which represents overfitting
problems (Figure 15).

The error calculated on the second group of data showed a high efficacy rate during
both the training and test of the metrics prediction based on the Bayesian algorithm set
on LR = 0.4. The predicted errors of the fragmented artifacts’ length, distal width, and
distal thickness prediction were indeed, respectively, 20.8%, 17%, and 43.5% during the
training, and 16.9%, 26.6%, and 34.8% during the test. Instead, the Levenberg–Marquardt
algorithm set on LR = 0.4 achieved a higher error range. The metrics prediction errors
obtained during the training process were, respectively, 20.9% on the length, 14.8% on the
distal width, and 31.7% on the distal thickness, while the errors achieved during the final
test were, respectively, 47.8% on the length, 48.7% on the distal width, and 74.3% on the
distal thickness prediction.
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Figure 14. Best validation performance based on LR = 0.4. Bayesian regularization algorithm (top).
Levenberg–Marquardt regularization algorithm (bottom). The regression line was carried out on
training data.

The regression lines have indeed shown good results concerning the application of a
Bayesian regularization algorithm based on LR = 0.4 during the training process and its
internal validation and test. Neither negative values were produced during the metrics
prediction nor overfitting problems affected the neural network. Finally, despite the use of
a Levenberg–Marquardt algorithm set on LR = 0.4 not producing any negative predicted
values, the overfitting problem affected the entire training process (Figure 16).



Information 2024, 15, 270 22 of 26

Information 2024, 15, x FOR PEER REVIEW 22 of 26 
 

 

LR = 0.4. The predicted errors of the fragmented artifacts’ length, distal width, and distal 
thickness prediction were indeed, respectively, 20.8%, 17%, and 43.5% during the training, 
and 16.9%, 26.6%, and 34.8% during the test. Instead, the Levenberg–Marquardt algorithm 
set on LR = 0.4 achieved a higher error range. The metrics prediction errors obtained dur-
ing the training process were, respectively, 20.9% on the length, 14.8% on the distal width, 
and 31.7% on the distal thickness, while the errors achieved during the final test were, 
respectively, 47.8% on the length, 48.7% on the distal width, and 74.3% on the distal thick-
ness prediction. 

 

 
Figure 15. Error histogram during training validation and test processes based on LR = 0.4. Bayesian 
regularization algorithm (top). Levenberg–Marquardt regularization algorithm (bottom). 

The regression lines have indeed shown good results concerning the application of a 
Bayesian regularization algorithm based on LR = 0.4 during the training process and its 
internal validation and test. Neither negative values were produced during the metrics 
prediction nor overfitting problems affected the neural network. Finally, despite the use 

Figure 15. Error histogram during training validation and test processes based on LR = 0.4. Bayesian
regularization algorithm (top). Levenberg–Marquardt regularization algorithm (bottom).

The regression lines carried out on the remaining 30% of the data that were not
previously selected for the training process showed a similar tendency to the previous
regression line analyzed on 70% of the data. The Bayesian regularization algorithm based
on LR = 0.4 did not produce negative values, and the results were positive, even though
they were not as positive as those achieved with LR = 0.3 during both the training and the
final test. Instead, the regression curves obtained using a Levenberg–Marquardt algorithm
were not only still affected by overfitting problems during the training process but also
showed negative values during the validation prediction (Figure 17).
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Figure 16. Regression lines during training, validation, test, and merged processes based on LR = 0.4.
Bayesian regularization algorithm (top). Levenberg–Marquardt regularization algorithm (bottom).
The analysis was carried out on 70% of the total data.
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4. Conclusions

The analysis of a neural network application for predicting regular artifact metrics,
such as Pre-Pottery Neolithic B laminar artifacts, showed positive results.

Our study compared the effectiveness of two algorithms, Levenberg–Marquardt and
Bayesian regularization, in reconstructing dimensional lithic tools. While both algorithms
performed well and did not show differences in terms of the computational cost (based on
the same parameters), our experiments consistently showed that Bayesian regularization
outperformed Levenberg–Marquardt across various performance metrics.

Specifically, the best results were achieved with the Bayesian regularization algorithm
based on LR = 0.3, reaching an impressive reconstruction accuracy of 80.4% for the length
prediction, 87.5% for the width prediction, and 74.9% for the thickness prediction. Instead,
the best results were achieved with the Levenberg–Marquardt algorithm set on LR = 0.1.
In particular, the level of accuracy was 63.6% for the length prediction, 75% for the width
prediction, and 57.8% for the thickness prediction. Additionally, Bayesian regularization
had a minor tendency to overfit, with a lower variance in the reconstruction errors than
Levenberg–Marquardt.
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Our study highlighted the importance of algorithm selection and parameter tuning in
achieving optimal reconstruction results. While Levenberg–Marquardt is a viable option,
Bayesian regularization is the preferred choice for more complex dimensional lithic tool
reconstruction tasks.

For future research, we recommend exploring additional regularization techniques
and advanced model architectures to enhance the reconstruction accuracy and scalability
in real-world applications. It would also be interesting to test the performance of Bayesian
regularization on small datasets.

Despite the challenge of limited data, we leveraged a complex neural network architec-
ture to fix the underfitting issues. However, this approach raised concerns about overfitting.
By implementing Bayesian regularization, we effectively regulated the model complexity
and achieved remarkable reconstruction accuracy even with our constrained dataset.

It is worth noting that the level of precision in the engineering sciences is typically
deemed ideal at around 80 to 90%. However, this particular case study centers on handmade
goods that were crafted 10 millennia ago, well prior to the advent of industrialization. As
such, the findings of this study hold tremendous significance from an archaeological
standpoint, as they provide mathematical confirmation of the notion of standardizing
chipping practices in order to achieve consistent laminar products.

The results of this study were indeed quite remarkable, revealing a high degree of
technological uniformity in the size and shape of laminar blanks. Notably, the users of
such blades might have tended to maintain a consistent width, which allowed for practical
handling, a reason that might explain the higher accuracy of this metric compared to
the others.

Furthermore, this study provided a fascinating insight into the cultural practices of the
time, showcasing a shared cultural foundation that prioritized a meticulously controlled
approach to laminar blank production. The study demonstrated a remarkable ability to
anticipate the size of fragmented laminar blanks, underscoring the predictive power of
the research and its potential for further discoveries. The accuracy of the predictions
highlights the efficacy of the methodology employed and the depth of understanding of
the underlying principles.
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