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Abstract: In South Korea, the rapid proliferation of smartphones has led to an uptick in messenger
phishing attacks associated with electronic communication financial scams. In response to this,
various phishing detection algorithms have been proposed. However, collecting messenger phishing
data poses challenges due to concerns about its potential use in criminal activities. Consequently, a
Korean phishing dataset can be composed of imbalanced data, where the number of general messages
might outnumber the phishing ones. This class imbalance problem and data scarcity can lead to
overfitting issues, making it difficult to achieve high performance. To solve this problem, this paper
proposes a phishing messages classification method using Biased Discriminant Analysis without
resorting to data augmentation techniques. In this paper, by optimizing the parameters for BDA, we
achieved exceptionally high performances in the phishing messages classification experiment, with
95.45% for Recall and 96.85% for the BA metric. Moreover, when compared with other algorithms, the
proposed method demonstrated robustness against overfitting due to the class imbalance problem
and exhibited minimal performance disparity between training and testing datasets.

Keywords: machine learning; messenger phishing attack; biased discriminant analysis; phishing
messages classification; class imbalanced problem

1. Introduction

Financial fraud criminals access their victims through mobile devices, such as smart-
phones, which are widely used by many people [1,2]. Specifically, scams that deceive
victims and exploit them for personal gain through messages or messenger conversations
are commonly referred to as messenger phishing or messenger phishing attacks [3]. Recent
observations indicate a substantial rise in global messenger usage, from 2.56 billion users
in 2019 to 2.91 billion users in 2020, with a projected increase to approximately 3.3 billion
users by 2023 [4]. Consequently, the prevalence of phishing attacks through Social Network
Services (SNS) has exponentially escalated. In the context of South Korea, which boasts
the highest smartphone penetration rate, damages caused by messenger phishing reached
57.64 billion KRW (12,402 cases) in 2020, reflecting an increase of approximately 201.6%
compared to the previous year. As the global adoption rate of smartphones, which serve as
a medium for messenger phishing crimes, continues to increase, the incidence and impact
of phishing attacks are expected to grow persistently [5,6].

Messenger phishing criminals utilize phishing messages to target their victims. Phish-
ing messages can be defined as web links, promotional messages, or unrelated text messages
that are regularly sent to a large number of recipients for advertising purposes [7]. Phishing
messages can be sent indiscriminately to a broad audience based on predefined templates,
requiring minimal effort in comparison to voice phishing crimes, thus making them ac-
tively exploited in criminal activities [1]. Proactive classification of phishing messages
by telecommunications providers can serve as an effective preventive measure against
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phishing attempts. However, this approach may raise concerns regarding privacy invasion
and the potential for creating a ’Big Brother’ problem. Therefore, a practical alternative lies
in post-delivery phishing messages classification methods implemented at the recipient’s
end, such as on mobile devices, as a means of filtering phishing content.

The detection of phishing messages has been attempted with various algorithms
by classifying phishing and non-phishing messages in text datasets. Traditional detection
algorithms include Naive Bayes (NB), Support Vector Machine (SVM), and Logistic Regression
(LR) [8–11]. Moreover, tree-based methods are represented by Decision Tree (DT) and
Random Forest (RF), while boosting methods include Adaptive Boosting (AdaBoost),
Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Model (LGBM) [12–17].
Additionally, detection techniques using neural networks involve Stochastic Gradient
Descent (SGD), Artificial Neural Network (ANN), Convolutional Neural Network (CNN),
and Long Short-Term Memory (LSTM), with the inclusion of Bidirectional Long Short-Term
Memory (BiLSTM) to learn bidirectional long-term dependencies by adding backward
LSTM [18–21]. Meanwhile, deep learning neural networks have been combined to design
new architectures to enhance detection performance. Deep learning methods can learn
practical features representing data for better classification through temporal and spatial
data correlations across all domains [22]. Consequently, typical forms include combinations
of spatial correlation-utilizing CNNs and temporal correlation-utilizing neural networks,
such as Convolutional Neural Network + Long Short-Term Memory (CNN+LSTM) and
Convolutional Neural Network + Gated Recurrent Unit (CNN+GRU) [23,24].

While these methods demonstrate relatively high classification performance, there are
still several limitations that remain. First, there are morphological challenges in language
processing. Agglutinative languages such as Korean, Japanese, Chinese, German, Russian,
and Spanish exhibit diverse ways of expressing messages, and similar words can collide
with each other, resulting in lower performance in morphological analysis [25–27]. Particu-
larly, Korean, as an agglutinative language, combines nouns and verbs with particles and
suffixes, leading to a significant increase in the number of derived word units, which in
turn drastically increases the number of features [28]. Therefore, alternative approaches
are required when dealing with agglutinative languages. Secondly, in the training process
for phishing messages classification, non-phishing messages are generally much more
abundant than phishing messages. Unless it involves legal authorities, collecting phishing
messages is highly restricted. Consequently, there is a imbalanced data problem where the
non-target class (non-phishing) that is not the focus of classification has a large number of
samples, while the target class (phishing) has a significantly smaller number of collected
samples [29,30]. The imbalanced data problem becomes more severe when the class of
interest is relatively rare and has a small number of samples compared to the non-target
class [31]. In machine learning modeling, when the size of the non-target class greatly
outweighs the target class, biased learning outcomes towards the non-target class can occur,
ultimately leading to an inability to effectively address various target classes that exist in
real-world scenarios [30,32]. Moreover, the cost of misclassifying the target class is much
higher than the cost of misclassifying the non-target class.

In this paper, we propose a method for classifying phishing messages among messages
written in Korean. In the data collection phase, we assume an extreme class imbalance
problem and collect data in such a way that the dataset size of the non-phishing class
is more than 70 times larger than the phishing class. From the text-based phishing data,
we use KoNLPy’s MeCab, a Korean morphological analyzer, to extract lemma keywords
targeting verbs and nouns through lemmatization, which are then used as features. Based
on the extracted features, we define the data structure by creating a Bag of Words (BoW)
for the entire dataset, including phishing and non-phishing. To address the class imbalance
problem, we employ Biased Discriminant Analysis (BDA) [33]. The primary focus of biased
learning is to distinguish a specific class of interest (e.g., phishing) from other classes
(e.g., non-phishing). BDA is designed to resolve the asymmetry between these target and
non-target classes, and it is utilized to enhance the robustness, especially when dealing
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with small training samples [33]. Additionally, in this process, the optimal parameters are
selected to resolve the asymmetry between classes. Experimental results show high classifi-
cation performance in the class imbalance problem, with Recall and Balanced Accuracy
(BA) reaching 95.45% and 96.85%, respectively.

This paper is structured as follows. In Section 3, we construct a BDA feature space
for classification and propose a data classification method. In Section 4, we analyze the
proposed method by selecting optimal parameters to address the class imbalance problem
and evaluating performance through comparison experiments with various models. In
Section 5, we conclude the paper.

2. Previous Work

A range of machine learning algorithms have been applied to spam
detection [8–16,16–18,18–21,23,24,34]. These include traditional methods such as SGD,
SVM, and NB, alongside deep learning-based techniques like ANN, CNN, LSTM, BiLSTM,
and GRU. In addition, gradient boosting methods, including AdaBoost, XGBoost, and
LGBM, have also been used. Moreover, non-parametric supervised learning algorithms
such as DT and RF and the clustering method k-means have been utilized. The target
languages for spam detection research include English [8–10,12–15,17,19–21,23,34], Indone-
sian [18], Bengali [16], Arabic [24], and Turkish [11]. These studies converted text data
into embedding vectors using techniques such as TF-IDF, BoW, Bidirectional Encoder Rep-
resentations from Transformers (BERT), and Continuous Bag of Words (CBoW), making
them suitable for training. Subsequently, methods that incorporate Word2Vec into existing
approaches have also emerged. Among the diverse performance evaluation metrics used
in these studies, Recall was used as the benchmark for comparison.

2.1. Spam Detection in Balanced Dataset

Ref. [20] experimented with balanced and imbalanced class datasets. They compared
traditional machine learning techniques with deep learning methods for phishing messages
detection. Traditional machine learning techniques included SVM, NB, DT, LR, RF, and
AdaBoost, while deep learning methods employed ANN and CNN. The performance ex-
periments compared results in imbalanced (4827 phishing and 747 non-phishing messages)
and balanced datasets (1000 spam and 1000 non-spam messages). The experimental results
showed that CNN performed best in both datasets, with results of 96.4% and 97.5%, respec-
tively. The detection results in imbalanced datasets appeared relatively lower than those
in balanced datasets. Consequently, spam detection performance in imbalanced datasets
proved to be relatively lower than in balanced datasets.

Ref. [18] generated embedding vectors using the TF-IDF method and detected phish-
ing classes through SGD. The dataset consisted of 1143 entries, with 574 phishing and
569 non-phishing instances. The phishing detection performance using SGD was indicated
to be 97.2%. Ref. [16] enhanced the performance of a spam messages detection model by
employing XGBoost. The total dataset consisted of 550 entries, using data collected directly,
with the spam and non-spam datasets comprising 300 and 250 instances, respectively. In
their experiments, XGBoost showed the highest result at 82.6%.

However, phishing messages detection often involves class imbalance issues, making
the application of these studies to real-world settings challenging.

2.2. Spam Detection in Imbalanced Dataset

In the majority of the previous studies, various machine learning algorithms were
employed to improve the performance of phishing messages detection in imbalanced
datasets [8–10,12–15,17,21,23,34].

2.2.1. Traditional Methods

In [10], methods such as NB, SVM, and Maximum Entropy classifier were employed
to perform smishing classification. The dataset consisted of 4827 non-spam messages and



Information 2024, 15, 265 4 of 19

747 spam messages. The experimental results showed classification accuracies of 90.9%,
96.4%, and 85.9%, respectively. Similarly, ref. [9] conducted a comparative analysis of
various machine learning algorithms to find a suitable spam classification model for biased
datasets. Five machine learning classifiers, namely kNN, Linear Support Vector Machine,
RBF Support Vector Machine, RF, and DT, were applied to classify spam SMS messages.
The dataset comprised 4827 non-spam messages and 747 spam messages. The experimental
results indicated that Linear Support Vector Machine achieved the highest accuracy of
92.3% on the imbalanced dataset based on Hashing.

In [34], machine learning classifiers such as NB, SVM, LR, k-Nearest neighbor (kNN),
DT, and AdaBoost, as well as hybrid models like k-means+NB, k-means+SVM, and k-
means+LR, were used to classify spam messages. This study combined the unsupervised
learning-based k-means algorithm for clustering with classification models to enhance
performance. The dataset comprised 4825 non-spam messages and 747 spam messages.
The experimental results showed that k-means+SVM achieved the highest classification
accuracy of 92%. Ref. [8] proposed an SMS spam detection and classification model using
the NB machine learning method. The dataset contains 747 spam messages and 4778 non-
spam messages. The NB classification methodology achieved a performance of 97.3% on
this dataset.

2.2.2. Deep Learning-Based Methods

In [21], the BiLSTM model was employed for phishing detection. The training dataset
consisted of 6792 non-spam messages and 3200 spam messages. Using Word to Vector
(Word2Vec) as the embedding model, the proposed method achieved a phishing detection
performance of 91.7%. Furthermore, ref. [23] introduced a phishing-detection approach
based on a hybrid model that combines CNN and GRU within a hybrid framework. The
dataset consists of 5572 text messages, including 747 phishing messages and 4825 non-
phishing messages. When compared to CNN, Gated Recurrent Unit (GRU), Multi-Layer
Perceptron (MLP), SVM, and XGBoost, the proposed hybrid model exhibited the highest
performance at 96.5%.

2.2.3. Gradient Boosting Methods

In [17], four rank correlation algorithms, namely Pearson, Spearman’s, Kendall rank,
and Point biserial, were used to determine the most suitable feature set for phishing SMS
detection. The dataset consisted of 4831 non-phishing messages and 747 phishing messages.
For performance evaluation, classifiers including RF, DT classifier, AdaBoost classifier, and
SVM were compared, and AdaBoost Classifier achieved the highest accuracy of 98.7%.
The phishing SMS detection performance results using Pearson, Spearman’s, Kendall rank,
and Point biserial were 90.2%, 91.0%, 91.4%, and 90.2%, respectively. Consequently, the
Kendall rank correlation algorithm showed the highest accuracy at 91.4%. In [15], spam
SMS messages were detected using XGBoost, LGBM, and Bernoulli Naive Bayes. The
dataset consisted of 5574 text messages, including 747 spam messages and 4827 non-spam
messages. To address the class imbalance issue, down sampling was employed to equalize
the number of spam and non-spam messages. LGBM exhibited a classification delay of
1.703 s and achieved high performance with an accuracy of 95.6%.

2.2.4. Non-Parametric Supervised Learning Methods

In [12], the performance of phishing detection was compared using machine learning
algorithms kNN, and DT. The dataset consisted of 747 phishing data and 4827 non-phishing
data. Among the three algorithms, DT-based phishing detection showed the highest perfor-
mance at 93.1%. Ref. [13] analyzed better vectorization methods for feature extraction to
detect phishing via SMS. They applied vectorization methods such as Bag of Words (BoW),
Term Frequency-Inverse Document Frequency (TF-IDF), and Word2Vec to preprocessed
data. The dataset contained 638 phishing messages and 5333 non-phishing messages. Per-
formance evaluation was conducted using RF, LR, and Gaussian Naïve Bayes classifiers.
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The experimental results showed that the combination of TF-IDF vectorization and RF
Classifier achieved the highest classification performance at 85.0%. Ref. [14] compared
and analyzed machine learning classification algorithms for detecting spam SMS. The
dataset contained 429 spam messages and 2179 non-spam messages. The algorithms used
for analysis were NB, LR, DT, and RF, with RF showing the highest performance at 96.5%.

Most languages, excluding English, commonly used for phishing detection, present
challenges in direct phishing messages dataset collection. Difficulty in data collection can
lead to the formation of extremely imbalanced datasets, potentially resulting in algorithmic
overfitting issues.

2.3. Spam Detection in Extremely Imbalanced Datasets

Several studies have performed spam detection experiments in environments with
extreme imbalance problems [11,19,24]. In this paper, an extremely imbalanced dataset is
defined as one where non-phishing messages outnumber phishing messages by a ratio of
more than 10 to 1.

In [11], phishing messages written in Turkish were converted into embedding vectors
from BoW and TF-IDF, and phishing detection was conducted using machine learning
algorithms RF, LR, AdaBoost, and SVM. The dataset consisted of 119 phishing messages
and 3526 non-phishing messages. In the TF-IDF-based dataset, RF and LR had the highest
performance with 92.5%. Meanwhile, in the frequency-based dataset, RF, LR, and SVM
delivered a performance of 90.0%. In [19], an efficient smishing detection system was devel-
oped using an Artificial Neural Network (ANN). The dataset comprised 5858 text messages,
including 538 phishing and 5320 non-phishing messages. The detection performance of
smishing using ANN was reported as 92.4%. In [24], a hybrid model combining CNN and
LSTM was employed for classifying phishing messages in Arabic. This model achieved a
notable classification accuracy of 87.9% on a dataset that included 7579 non-phishing and
785 phishing messages (Table 1).

Table 1. Overview of previous studies on the classification performance of phishing messages.

Data Balance Algorithm Embedding Year Language
Dataset

Recall
# Pos # Neg

Balanced

CNN [20] TF-IDF 2018 English 1000 1000 97.5%

SGD [18] TF-IDF 2021 Indonesian 574 569 97.2%

XGBoost [16] TF-IDF 2023 Bengali 300 250 82.6%

Imbalanced

RF [14] BoW 2017 English 429 2179 96.5%

CNN [20] TF-IDF 2018 English 747 4827 96.4%

SVM [10] BoW 2018 English 747 4827 96.4%

AdaBoost+Kendall [17] BoW 2020 English 747 4831 91.4%

k-means+SVM [34] TF-IDF 2020 English 747 4825 92.0%

LGBM [15] BoW, TF-IDF 2020 English 747 4827 96.5%

CNN+GRU [23] BERT 2021 English 747 4825 96.5%

NB [8] BoW 2021 English 747 4778 97.3%

BiLSTM [21] CBoW+Word2Vec 2022 English 3200 6792 91.7%

SVM [9] TF-IDF 2022 English 747 4827 92.3%

DT [12] Word Embedding 2023 English 747 4827 93.1%

RF [13] TF-IDF+Word2Vec 2023 English 638 5333 85.0%
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Table 1. Cont.

Data Balance Algorithm Embedding Year Language
Dataset

Recall
# Pos # Neg

Extremely Imbalanced

CNN+LSTM [24] Word Embedding 2020 Arabic 785 7579 87.9%

RF, LR [11] TF-IDF, BoW 2021 Turkish 119 3526 92.5%

ANN [19] TF-IDF 2022 English 538 5320 92.4%

3. Proposed Method

In this paper, we propose a method for classifying phishing messages in a Korean
dataset with a class imbalance problem. The proposed method consists of three stages:
data conversion, feature engineering, and decision. In the data conversion stage, phishing
messages (Ms) and non-phishing messages (Mns) were assigned as the target class and
the non-target class, respectively. Additionally, we extracted keywords of verbs and nouns
from the collected phishing messages using a morphological analyzer. Then, we created a
numerical BoW composed of the frequency of each keyword. In the parameter estimation
stage, we generated the BDA feature space (WBDA) from the training dataset, setting the
optimal parameters. These included the regularization parameter, the number of BDA
feature vectors, and the threshold needed to construct the space. Finally, in the decision
stage, we measured the distance between the projected test data and the mean vector of
the training data that belongs to the phishing class within the BDA feature space. Based
on this distance and a specified threshold, we classified the messages as either phishing or
non-phishing. The overall procedure of the proposed method is shown in Figure 1.

data conversion

data acquisition

phishing message
( )

non-phishing message
( )

keywords
by using KoNLPy

(noun, verb)

lemmatization by
using KoNLPy

(lemma)

document term matrix
generation

( ])

feature engineering and decision making

BDA feature space
construction

( )

Finding the optimal
threshold

( )

phishing
classification

Figure 1. Overall procedure of the proposed method.

To classify phishing messages written in Korean, the following considerations need to
be taken into account.

• Data Conversion: Typically, messages are in the form of text, and they need to be
converted into a format that can be understood by machines.

• Curse of Dimensionality: Like all languages, using all morphemes can lead to exces-
sively high dimensionality in the data.
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• Morphology: Korean, an agglutinative language, combines nouns and verbs with
particles, suffixes, and endings, resulting in a large number of derived word units and
a significant increase in the number of features.

• Intention of Writing: Since phishing messages are written with similar intentions, the
text often includes a multitude of similar keywords.

• Class Imbalance Problem: The number of phishing messages is extremely small
compared to non-phishing messages. Similar to previous studies [10,11,24,34], we
assume the class imbalance problem.

3.1. Data Conversion

A message, which includes letters and symbols in text format, needs to be converted
into a numerical format so that it can be understood by machines. Generally, text data
is converted and used in the form of a BoW or through TF-IDF conversion [10,11,24,34].
To generate the BoW (X ∈ Rd×N), we define the d extracted keywords from messages
written in Korean through morphological analysis as features and set the frequency of each
keyword as an attribute.

Generally, texts are composed of various parts of speech, so if all the morphemes
included in the collected data are used, the number of features (d) could become excessively
large. Moreover, when analyzing messages written in Korean, an agglutinative language,
consideration of the language’s morphological elements is necessary. Since nouns and
verbs in Korean often combine with particles and endings, the number of derived word
units increases significantly, thereby also drastically increasing the number of features [28].
To address this issue, only verbs and nouns were targeted for morpheme extraction dur-
ing the feature creation phase, and all words were converted to their lemmas through
lemmatization. Ultimately, this approach leads to a reduction in data dimensionality.

In the feature selection stage, when non-phishing messages are defined as “everyday
conversations” the freedom of text data increases, resulting in a larger number of features.
Fortunately, phishing messages exhibit a characteristic of being written with similar content
and randomly sent to others, regardless of the author. Therefore, when focusing solely on
phishing messages, the frequency of specific words can appear high. Figure 2 presents
the extraction of major keywords with high proportions in phishing messages and the
frequency of major keywords appearing in Mns. Figure 2a visualizes the distribution
of major keywords (verbs or nouns) that appear in both Ms and Mns using a word
cloud. Overall, keywords such as “application”, “goods”, “consulting”, and “repayment”
dominate a significant portion. Figure 2b shows a histogram of the top 20 keywords with the
highest frequency in Ms. For the same keywords, the frequency in Mns differs significantly
from that in Ms. Specifically, despite the approximately 70-fold volume difference between
the non-phishing and phishing classes, there is a distinct difference in the frequency of
specific keywords between the two. Therefore, we construct the features of the BoW using
only the features extracted from Ms.
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3.2. Feature Engineering and Decision Making

In phishing messages classification, there is a significant class imbalance problem
where the target class, which consists of Ms, has a considerably lower number of instances
compared to the non-target class of Mns. Fisher’s Discriminant Analysis (FDA) [35] is
one of the widely used methods in classification problems. FDA aims to create a feature
space that maximizes the separability between classes. However, when a specific class has
a significantly larger number of instances, it becomes challenging to reflect the distribution
of data from the target class. As a result, FDA generally exhibits poor performance in class
imbalance problems [36].

In this paper, BDA, a generalization of FDA, is employed to address the class imbalance
problem. BDA can effectively handle data from both the non-target class and the target class,
which exhibit asymmetric nonlinear densities [33]. In other words, it focuses on enhancing
the robustness of the distribution represented by the narrow target class data, avoiding
bias towards the non-target class that contains a larger amount of data. Additionally, BDA
aims to find a linear transformation that minimizes the distribution of phishing data while
maximizing the separation between non-phishing data and phishing data.

The data matrix X = [Xs, Xns] ∈ Rd×(Ns+Nns) is composed of phishing datasets Xs =[
x0

s , · · · , xNs
s

]
and non-phishing datasets Xns =

[
x0

ns, · · · , xNns
ns

]
. Accordingly, the BDA

objective function WBDA is defined as follows .

WBDA = arg max
W

|WTCnsW|
|WTCsW| (1)

In Equation (1), the matrices Cs and Cns represent the scatter matrices of the phishing
data and non-phishing data, respectively, and can be defined as follows.

Cs =
Ns

∑
i=1

(xi
s − ms)(xi

s − ms)
T

Cns =
Nns

∑
i=1

(xi
ns − ms)(xi

ns − ms)
T

(2)

where ms

(
= ∑Ns

i=1 xi
s

)
is the mean of all the samples belonging to the phishing class, WBDA

aims to find the optimal transformation that maximizes the variance of WTCnsW and
minimizes the variance of WTCsW, resulting in the maximum ratio. As a result, BDA
extracts features that densely represent Ms close to ms and at the same time, separates
Mns far from ms, according to the objective function. Additionally, the effective dimensions
of the BDA feature space, denoted as γ, provide a higher information density capacity than
FDA, which has only one effective dimension, with γ = min (Ns, Nns) [33]. In the context
of phishing messages classification, where Nns ≫ Ns, the effective dimensions correspond
to Cs. The column vectors of W =

[
w1, .., w′

Ns

]
are the generalized eigenvectors associated

with the generalized eigenvalues, satisfying

Cnswt = λCswt (3)

where t = 1, · · · , Ns − 1. They can be obtained by the simultaneous diagonalization of
Cns and Cs if Cs is nonsingular. However, Ns is significantly lower than d in phishing
messages classification models, Cs becomes singular, leading to the Small Sample Size
Problem (SSSP) [37]. To address this problem, Principal Component Analysis (PCA) [38] can
be employed. PCA generates Ns + Nns − 1 feature dimensions that maximize the variance
of the data based on the covariance of X. By selecting only N′

s or fewer eigenvectors with
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the largest eigenvalues, the SSSP problem can be resolved. Consequently, Equation (1) is
redefined as follows.

WBDA = arg max
W

|WTWT
PCACnsWPCAW|

|WTWT
PCACsWPCAW| = arg max

W

|WTC̃nsW|
|WTC̃sW| (4)

Cs becomes a full-rank nonsingular matrix, and as a result, diagonalization can be
performed. We applied whitening to ensure that WTC̃sW in Equation (4) becomes the
identity matrix (= I). Consequently, we select γ eigenvectors of C̃ns that maximize WTC̃nsW
when WTC̃sW = I.

Nevertheless, the class imbalance problem still remains unresolved. Unfortunately,
reflecting the distribution of phishing data in the phishing messages classification model
is challenging due to the very limited number of collectible Ms. Regularization is one
method that can augment the distribution of a class with constrained data. In this paper,
we addressed the class imbalance problem by balancing the asymmetrical scales between
classes, achieved by increasing the variance of Cs through the addition of a small value µ.

Cr
s = (1 − µ)Cs +

µ

N′
s
trace[Cs]I (5)

In Equation (5), µ is the parameter controlling the variance of Cs. µ serves to solve the
asymmetry between the target class and non-target class. Generally, classification models
are biased towards the distribution of the non-target class, relative to the target class, which
holds a small amount of data. To address this problem, regularization simply extends the
scope of the target class by adding a small value to the diagonal elements (variance) of
the covariance matrix. When the value of µ is 0, there is no change in the distribution
of the target class. As the value of µ increases, the variance of the target class gradually
expands, ultimately leading to a more robust distribution of the target class. If µ = 1 to the
extreme, the target class loses the characteristics of the distribution it has in the BDA feature
space. Figure 3 shows the results comparing non-regularized BDA and regularized BDA.
In Figure 3a, the conventional BDA without regularization recognizes the distribution of
the phishing class (target class) as part of the non-phishing class (non-target class). On the
other hand, in Figure 3b, it can be seen that the asymmetrical structure of a small-scale
target class and a large-scale non-target class has been mitigated when µ = 0.6.
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Figure 3. Distribution difference of scatter matrix due to regularization.

The final phase of phishing messages classification is determining whether the query
data (xq), converted into a vector, is phishing or not. xq is projected onto the BDA feature
space, and then the Euclidean distance is measured between the projected data WT

BDAxq
and the mean vector of phishing data WT

BDAms from the training data. The phishing status
is determined based on the calculated distance.



Information 2024, 15, 265 10 of 19

dec =

{
phishing,

∥∥WT
BDA(xq − ms)

∥∥2
2 < θ

non-phishing, otherwise
(6)

In Equation (6), based on the distance threshold θ, if
∣∣WT

BDAxq − WT
BDAms

∣∣2
2 is smaller

than θ, the model classifies it as phishing; otherwise, it is classified as non-phishing
(Figure 4).

Figure 4. Distribution of ideal data in the proposed method (red circle: phishing; blue circle: non-
phishing).

4. Experimental Results

We configured the experimental environment with an NVIDIA GeForce RTX 4080
GPU, Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz, AMD Ryzen 9 5950X 16-Core CPU, and
32 GB DDR4 RAM. For data conversion, we utilized Python version 3.7.6 and Java version
1.8.0. Additionally, we employed KoNLPy version 0.5.2 for morphological analysis of the
Korean language. Specifically, we selected MeCab from various morphological analyzers
available in KoNLPy, such as HanNanum, Kkma, KOMORAN, and OKT, based on both
computational speed and performance.

In the experiment, we directly collected phishing messages from the web and gathered
non-phishing messages from open datasets featuring everyday conversation patterns. We
explored combinations of optimal parameters that exhibit high classification performance
in the BDA feature space. Finally, in order to objectively evaluate the performance of the
proposed method, we conducted comparative experiments with multiple machine learning-
based algorithms using Distribution-Optimally-Balanced Stratified Cross-Validation (DOB-
SCV) [39]. Regarding performance metrics for classification, Recall and BA were employed.

Recall =
TP

TP + FN

BA =
1
2

(
TP

TP + FN
+

TN
TN + FP

) (7)

In the class imbalance problem, there is a challenge where the cost of misclassifying
the target class becomes significantly higher compared to misclassifying the non-target
class [31]. As a result, even when focusing solely on the non-phishing class without con-
sidering the phishing class, the accuracy performance can approach nearly 100%. On the
other hand, Recall emphasizes how effectively phishing messages are correctly identified
as phishing. Therefore, as the classification performance improves, the Recall results also
increase accordingly. Additionally, BA, which represents the average accuracy obtained
from both classes [40], provides a comprehensive evaluation of correctly identifying actual
phishing data as phishing and actual non-phishing data as non-phishing. Consequently,
if an algorithm demonstrates high results in both metrics, it can be interpreted as having
good phishing message classification performance.
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4.1. Dataset

We collected 615 phishing messages and 42,594 non-phishing messages for phishing
messages classification. Phishing messages associated with actual messenger phishing
crimes, which involve personal information and social issues, are not disclosed due to
privacy and societal concerns. In this paper, we collected a total of 615 images directly
uploaded by messenger phishing victims from 2013 to 2021, converted them into text, and
used them as a phishing dataset. The collected phishing dataset includes various types
of crimes, such as cryptocurrency scams, advertising scams, loan scams, impersonation
of public institutions, and impersonation of acquaintances. Figure 5 presents examples of
the directly collected dataset. Figure 5a illustrates an example related to cryptocurrency
scams, where criminals masquerade as cryptocurrency exchanges and send scam messages
claiming that the victims’ assets are at risk. Figure 5b showcases an example of an advertis-
ing scam, where phishing attempts are made through advertisement-like messages, such
as job postings or delivery notifications. Furthermore, Figure 5c depicts a form of loan
scam where criminals impersonate loan providers and deceive victims in need of money.
Figure 5d demonstrates a type of fraud where criminals impersonate public institutions
and induce victims to click on specific URLs, often involving scams related to COVID-19
relief funds. Lastly, Figure 5e presents an example of impersonating an acquaintance, where
criminals pose as the victim’s acquaintances and exploit them for financial gain.

(a) (b) (c)

(d) (e)

Figure 5. Examples of phishing message types collected directly. (a) Cryptocurrency scam. (b) Advertis-
ing scam. (c) Loan scam. (d) Impersonation of public institution. (e) Impersonation of an acquaintance.

Non-phishing messages include a Twitter conversation-based dataset [41] with ev-
eryday conversational patterns, a one-shot conversation dataset [42], and a chatbot con-
versation dataset (2021) [43]. The Twitter conversation-based dataset includes everyday
conversations between two or more speakers, with 2000 messages ranging from a mini-
mum of 1 to a maximum of 17 turns. The one-shot conversation dataset is comprised of
38,594 messages through web crawling of SNS posts and online comments. Lastly, the chat-
bot dataset is divided into three classes: general conversations, farewells, and love-related
conversations. From the 3040 conversation data in the ‘general conversation’ class, we
selected 2000 messages for the experiments, excluding duplicates.

To transform the collected messages into a machine-understandable format, we created
a BoW by tallying the frequencies of words extracted through morphological analysis. Since
BoW can exponentially increase data dimensionality by including all words as features,
we removed symbols, numbers, and words with fewer than two characters irrelevant to



Information 2024, 15, 265 12 of 19

messenger phishing crimes during the preprocessing stage. Additionally, we controlled
data dimensionality by employing lemmatization to use the base form of all morphemes,
extracting 1533 keywords from the dataset.

4.2. Parameters Estimation

By evaluating the performance in terms of Recall and BA for various combinations
of parameters on the training dataset, the optimal parameters µ, γ, and θ for phishing
messages classification can be estimated. First, selecting an appropriate µ addresses the issue
of overfitting in machine learning modeling while preserving the characteristics related to
the distribution of the phishing class. Increasing the value of µ leads to an increase in the
variance of the relatively small amount of phishing class, ultimately making the distribution
of the phishing class robust. Figure 6 illustrates the distribution of data in each BDA feature
space according to different µ values. In Figure 6a–c, we can observe the improvement
in the asymmetric structure between the phishing and non-phishing classes as µ increases.
Particularly in Figure 6d, when µ approaches its maximum value of 1.0, the distribution of the
phishing class expands beyond the non-phishing class, losing its distinctive characteristics.
In [44], optimal values of µ between 0.1 and 0.2 were chosen for datasets that did not exhibit
a relatively symmetric structure in class imbalance problem. However, in this paper, we are
dealing with an extreme class imbalance problem, so we set µ to be at least 0.3.

Secondly, it is necessary to consider the number of BDA feature vectors, denoted as
γ. Generally, eigenvalues close to 0 correspond to noise and should be excluded from
selection. On the other hand, selecting eigenvectors corresponding to higher eigenvalues
ensures higher classification performance. In this paper, to address the SSSP problem, we
set N′

s = 881 in the PCA step and choose the optimal γ among the maximum of 881 feature
vectors that exhibit the best performance. Lastly, given µ and γ, we determine the threshold
θ to classify phishing and non-phishing within the BDA feature space. θ is set to the value
in the BDA feature space that achieves the highest classification performance.
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Figure 6. Change in the distribution of the scatter matrix by µ.
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The optimal parameter combination (µ, γ, θ) for phishing messages classification was
set to (0.65, 2, 2.4130). Figure 7 represents the results of estimating the optimal parameters.
Figure 7a illustrates the difference in classification performance according to γ in the
BDA feature space. In extreme class imbalance problems, a relatively small number of
γ can exhibit higher performance by focusing on the structure of the non-target class.
Figure 7b depicts the distribution of data in the BDA feature space when applying the
optimal parameters. The distribution of the phishing dataset, which contains significantly
less data in the BDA feature space, maintains its distinctive characteristics without losing
them. The classification is well-executed based on θ, indicating the appropriate selection
of parameters.
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Figure 7. Evaluation of the BA metric based on parameter settings. (a) Mean of BA by γ in the training
phase. (b) Optimal BDA feature space projected with training data using BA (when, µ = 0.6; γ = 2;
θ = 2.4130).

4.3. Phishing Messages Classification Results

In this paper, we conducted a comprehensive evaluation by comparing the objective
performance of our proposed method with specific machine learning-based algorithms.
The algorithms used in this paper are as follows:

• Stochastic Gradient Descent (SGD) [45]
• Decision Tree (DT) [46]
• Random Forest (RF) [47]
• Naive Bayes (NB) [48]
• Logistic Regression (LR) [49]
• k-Nearest neighbor (kNN) [50]
• Support Vector Machine (SVM) [51]
• One-Class Support Vector Machine (OCSVM) [52,53]
• Adaptive Boosting (AdaBoost) [54]
• Random Under-Sampling Boosting (RUSBoost) [55]
• Extreme Gradient Boosting (XGBoost) [56]
• Light Gradient Boosting Model (LGBM) [57]
• Convolutional Neural Network (CNN) [24]
• Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) [23]
• Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) [24]
• Bidirectional Long Short-Term Memory (BiLSTM) [21]
• Synthetic Minority Over-sampling TEchnique (SMOTE) [58]

This paper applied a range of machine learning algorithms to address class imbalance
problems and assess their phishing message classification performance. We evaluated the
phishing message classification performance at the algorithm level by utilizing a 5-fold
DOB-SCV approach suitable for class-imbalanced datasets. Table 2 presents the results
comparing the classification performance of the proposed method with the methods uti-
lized in previous studies using the same BoW generated from the dataset. Regarding the
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performance metric Recall in the training phase, the classification performance ranked as
follows: 2NN > SMOTE > DT = RF > SVM > LGBM > CNN+LSTM > Proposed Method
> BiLSTM > SGD > XGBoost > LR = RUSBoost > CNN+GRU > NB > AdaBoost > CNN
> OCSVM = 3NN. Additionally, for the BA performance metric, the classification perfor-
mance ranked as follows: DT = RF > 2NN > SVM > LGBM > SMOTE > CNN+LSTM >
Proposed Method > SGD > BiLSTM > XGBoost > LR > RUSBoost > CNN+GRU > NB
> AdaBoost > 3NN > CNN > OCSVM.

In the testing phase, using the optimal parameters, the data that did not overlap with
the training dataset was classified to determine whether it was phishing. When considering
the Recall metric, the classification performance for the test dataset ranked as follows:
Proposed Method > BiLSTM > SMOTE > CNN+GRU > CNN+LSTM > LGBM > SVM >
SGD > RUSBoost > XGBoost > 2NN > OCSVM > CNN > LR > AdaBoost > DT > RF
> 3NN > NB. Similarly, when considering the BA metric, the classification performance
ranked as follows: Proposed Method > SMOTE > BiLSTM > LGBM > SVM > CNN+LSTM
> SGD > CNN+GRU > XGBoost > 2NN > RUSBoost > LR > AdaBoost > DT > RF
> CNN > 3NN > OCSVM > NB. The proposed method exhibited high classification
performance in the dataset with a class imbalance problem, achieving 95.45% in Recall and
96.85% in BA metrics.

The detailed analysis of these results is as follows. It was found that traditional
methods, including the probability-based NB and regression-based LR, generally lacked
robustness against class imbalance issues. In the kNN approach, the parameter choice
greatly influenced classification performance, establishing the number of neighbors as a
critical determinant of classification efficacy. Both DT and RF demonstrated high classifi-
cation performance during the training phase. However, there was a significant decrease
in classification performance during the testing phase, indicating a potential overfitting
issue within non-parametric supervised learning methods. SVM was effective in binary
classification problems, exhibiting strong performance in the training and testing phases.
Nevertheless, OCSVM showed inferior performance compared to SVM in both the Recall
and BA metrics.

Among gradient boosting methods, LGBM displayed relatively high classification perfor-
mance, yet there was a noticeable gap between training and testing performance. Conversely,
AdaBoost, which combines several weak learners to create a strong learner, showed weak
classification performance with unknown data and in class imbalance problems. XGBoost, de-
signed to prevent overfitting, did not solve the class imbalance problem effectively. Regarding
deep learning-based methods, traditional SGD-utilized neural networks did not exhibit good
classification performance in class imbalance problems. RUSBoost, employing the Random
Under-Sampling Boosting technique to tackle class imbalance issues, still demonstrated low
classification performance throughout both the training and testing phases.

The CNN series generally showed low classification performance, but they had the
advantage of producing generalized results due to the small gap in classification perfor-
mance between training and testing. CNN combined with GRU showed low classification
performance in the training phase but outperformed other algorithms in the testing phase,
indicating its practical application potential. LSTM is employed in language recognition
tasks. However, it has been observed that, under conditions of extreme class imbalance,
the performance of models combining LSTM with CNN in classification tasks deteriorates
compared to that of BiLSTM models.

During the training phase, the oversampling technique SMOTE was employed to
adjust the spam to non-spam data ratio to 1:1. Using SVM as the classifier, this method
nearly achieved perfect classification performance for both metrics, approaching 100%.
However, in the testing phase, the model experienced a significant decrease in classification
performance due to overfitting.

Finally, the method proposed in this study demonstrated lower classification perfor-
mance during the training phase compared to other algorithms. However, it exhibited high
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classification performance in the testing phase and created a more generalized model due
to the small gap in outcomes between training and testing.

Table 2. Experimental results of phishing messages classification performance compared with existing
methods.

Algorithm
Training Test Gap

Recall BA Recall BA Recall BA

SGD 1 96.75% 98.37% 91.38% 95.67% 5.37% 2.70%
DT 2 99.84% 99.92% 88.46% 94.17% 11.38% 5.75%
RF 3 99.84% 99.92% 87.64% 93.82% 12.20% 6.10%
NB 4 93.01% 95.56% 73.66% 85.12% 19.35% 10.44%
LR 5 94.11% 97.05% 88.78% 94.38% 5.33% 2.67%
2NN 6 100.00% 99.89% 90.24% 94.99% 9.76% 4.90%
3NN 6 89.51% 94.75% 82.76% 91.37% 6.75% 3.38%
SVM 7 99.51% 99.76% 91.87% 95.89% 7.64% 3.87%
OCSVM 8 89.51% 90.33% 90.08% 89.40% −0.57% 0.93%
AdaBoost 9 91.14% 95.55% 88.62% 94.27% 2.52% 1.28%
RUSBoost 10 94.11% 96.32% 91.22% 94.93% 2.89% 1.39%
XGBoostSVM 11 94.43% 97.22% 90.41% 95.18% 4.02% 2.04%
LGBM 12 99.39% 99.70% 92.03% 96.00% 7.36% 3.70%
CNN 13 90.28% 93.56% 88.94% 92.58% 1.34% 0.98%
CNN+GRU 14 94.00% 96.09% 93.50% 95.37% 0.50% 0.72%
CNN+LSTM 15 98.62% 99.12% 92.36% 95.86% 6.26% 3.26%
BiLSTM 16 97.89% 98.17% 94.96% 96.38% 2.93% 1.79%
SMOTE 17 99.96% 99.67% 94.31% 96.66% 5.65% 3.01%
Proposed Method 18 98.58% 98.56% 95.45% 96.85% 3.13% 1.71%

Summary of parameters used during the training phase for each algorithm. 1 loss function = hinge, max
iterations = 1000, penalty = euclidean, regularization term = 0.0001, tolerance for stopping criteria = 0.001, width
of the insensitive region = 0.1. 2 cost-complexity pruning = 0, criterion = gini index, min impurity decrease
= 0, min sample leaf = 1, min sample split = 2, min weight fraction leaf = 0. 3 cost-complexity pruning =
0, criterion = gini index, min impurity decrease = 0, min sample leaf = 1, min sample split = 2, min weight
fraction leaf = 0, # of trees in the forest = 100. 4 variance smoothing = 0.000000001. 5 intercept scaling = 1,
inverse of regularization strength = 1, max iter = 100, penalty = euclidean, solver = L-BFGS, tolerance for stopping
criteria = 0.0001. 6 leaf size = 30, metric = euclidean, weights = uniform. 7 loss function = squared hinge, penalty =
euclidean. 8 kernel = radial basis function, gamma = scale, nu = 0.1. 9 learning rate = 0.7, # of estimators = 300.
10 learning rate = 1.0, # of estimators = 50, algorithm = samme real. 11 learning rate = 0.3, maximum tree depth = 6.
12 euclidean regularization term on weights = 0, learning rate = 0.1, Manhattan regularization term on weights = 0,
maximum tree leaves = 31, min child samples = 20, min child weight = 0.001, # of boosted trees = 100. 13 batch size
= 50, epochs = 30, loss function = binary crossentropy, metric = accuracy, optimizer = adam. 14 batch size = 32,
epochs = 30, loss function = binary crossentropy, metric = BA, optimizer = adam. 15 batch size = 100, epochs = 200,
loss function = binary crossentropy, metric = BA, optimizer = adam. 16 batch size = 32, epochs = 30, loss function =
binary crossentropy, metric = BA, optimizer = adam. 17 random state = 42, k neighbor = 5, loss function = squared
hinge, penalty = euclidean. 18 BDA regularization term = 0.5, metric = euclidean, # of PCA feature vectors = 510, #
of BDA feature vectors = 2.

5. Conclusions

Globally, there is a growing trend of messenger phishing crimes [5,6]. Particularly
in South Korea, with its notably high smartphone penetration rate, messenger phishing
is emerging as a significant societal issue [59]. These crimes efficiently exploit phishing
messages, allowing culprits to target a broad, unspecified group with minimal effort [1].
To reduce the potential damage from these phishing endeavors, proactive detection and
filtering of phishing messages are crucial.

In this paper, we conducted research on classifying phishing in messages received on
mobile devices in Korean. During the data conversion phase, morphological analysis (using
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MeCab) was carried out on all collected messages to extract features based on verbs and
nouns. By measuring the frequency of each feature across all messages, a BoW of numerical
data was generated. In the feature engineering phase, we employed the BDA technique,
a robust biased learning method, to effectively function under severe class imbalance
conditions. In this process, we estimated parameters of BDA such as the regularization
parameter (µ = 0.65) and the number of BDA feature vectors (γ = 2). Importantly, the
regularization parameter mitigates the asymmetrical structure between the target and
non-target classes and concurrently prevents overfitting, addressing the class imbalance
problem. Lastly, in the decision phase, we measure the Euclidean distance between an
arbitrary data point and the average vector of phishing data, classifying the message as
phishing or non-phishing based on the threshold. For the experiment, we constructed a
dataset comprising 615 phishing messages and 42,594 non-phishing messages.

In an experiment involving the classification of Korean phishing messages, character-
ized by a data scale difference of over tenfold (commonly referred to as the class imbalance
problem), our proposed method exhibited performance improvements of at least 0.49% in
Recall and 0.19% in BA metrics when compared to machine learning algorithms used in
prior studies, such as traditional methods, deep learning-based methods, gradient boost-
ing methods, and non-parametric supervised learning methods. The proposed method
effectively utilized the BDA algorithm to classify phishing by analyzing the linguistic
differences between phishing and non-phishing messages. In particular, we addressed
the class imbalance issue through a normalization strategy due to the significantly lower
occurrence of phishing messages than non-phishing messages. When utilized for crime
prevention, the proposed phishing message filtering method is expected to ideally lead to a
reduction in the damages caused by crime. Furthermore, we anticipate that this approach
could be applied to text-transcribed voice phishing-related messages, potentially enhancing
its effectiveness in combating voice phishing crimes.

However, the method proposed in this paper presents several limitations. Firstly,
finding an optimal combination of parameters for the objective function is challenging.
While the appropriate parameter settings can lead to enhanced performance, they also
increase the complexity of the algorithm, potentially hindering its practical application.
Secondly, the BoW utilized to convert text data into numeric data has its drawbacks.
Since the BoW employs every word in the training data as a dimension, it results in a
high-dimensional dataset. Moreover, the BoW forms the dataset based solely on word
frequencies, neglecting the relative importance of words. Lastly, although our approach
demonstrates robustness in the face of the class imbalance problem, it does not guarantee
the highest performance under general conditions. Consequently, when a sufficient amount
of data is secured, traditional algorithms might achieve superior performance.

In future works, we aim to explore classification algorithms that can be utilized in
extreme class imbalance situations without the need for manual parameter tuning. In
addition, in this paper, we chose the BoW approach to validate the phishing messages
classification performance at the algorithmic level. However, in the process of converting
textual data into numerical data, we plan to incorporate state-of-the-art NLP techniques
such as BERT [60] and self-attention [61] to not only measure word frequency but also
consider the context of sentences. Additionally, we anticipate achieving higher classification
performance by combining sampling strategies like the Synthetic Minority Over-sampling
TEchnique (SMOTE) [58] with classification algorithms. If possible, with the cooperation
of law enforcement agencies, we intend to collect data originating from actual crimes, as
opposed to using data directly gathered for phishing messages classification, to validate
our classification issues.
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