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Abstract: This study introduces a novel approach for fault classification in bearing components utiliz-
ing raw accelerometer data. By employing various neural network models, including deep learning
architectures, we bypass the traditional preprocessing and feature-extraction stages, streamlining
the classification process. Utilizing the Case Western Reserve University (CWRU) bearing dataset,
our methodology demonstrates remarkable accuracy, particularly in deep learning networks such
as the three variant convolutional neural networks (CNNs), achieving above 98% accuracy across
various loading levels, establishing a new benchmark in fault-detection efficiency. Notably, data
exploration through principal component analysis (PCA) and t-distributed stochastic neighbor em-
bedding (t-SNE) provided valuable insights into feature relationships and patterns, aiding in effective
fault detection. This research not only proves the efficacy of neural network classifiers in handling raw
data but also opens avenues for more straightforward yet effective diagnostic methods in machinery
health monitoring. These findings suggest significant potential for real-world applications, offering a
faster yet reliable alternative to conventional fault-classification techniques.

Keywords: fault diagnosis; machine learning; neural networks; dimensionality reduction; fault
classification; deep learning

1. Introduction

Rotating machines (RMs) represent a versatile class of mechanical equipment that finds
extensive use across a wide range of industrial applications. These machines have earned a
reputation for their robustness, low cost, and remarkable reliability, making them a vital
component of numerous industrial processes [1]. RMs have the ability to convert electrical
energy to mechanical energy and vice versa, thereby enabling a wide range of applications
such as power generation, transportation, and manufacturing. Due to their versatility and
importance, RMs have been the subject of significant research and development efforts to
improve their performance, efficiency, and reliability [2].

As these machines are crucial for daily operations in various industries, there has
been extensive research and development focused on understanding the types of faults
that can occur, including their causes, early detection, and the condition monitoring of
key components such as stators, rotors, shafts, and bearings. In fact, fault diagnosis and
condition monitoring have been highly researched for almost two decades. Additionally,
the Electric Power Research Institute (EPRI) conducted a survey in 2018 to determine the
frequency of faults in the major components of induction motors (IMs), which are a primary
type of RMs [1,3]. The survey findings revealed that a significant portion, specifically
41–42%, of IM failures are attributed to bearing defects, whereas 36% are related to stator
defects. Given the paramount importance of bearings as the component most susceptible
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to faults in IMs/RMs, the central objective of this research paper is to offer a robust
algorithm-based approach for accurately categorizing diverse bearing faults under varying
load conditions. The objective is to provide valuable insights for major industries across
the globe, including those in Pacific developing countries, with the aim of minimizing
unscheduled downtime and reducing the associated expenses of repair and replacement.

The bearing comes in two sets, which are placed at both ends of the RM to support the
rotating shaft and limit friction for free rotation. The inner and outer rings in the bearing are
termed races, and in between the races are rolling elements called balls. However, the heavy
reliance on rolling bearings in various operations, including harsh working environments
and alternating loads, makes them the most susceptible component to faults [4,5]. Any form
of physical damage on the inner or outer race or the ball’s surface is classified as a bearing
fault, as illustrated in Figure 1 below. Additionally, it is worth noting that bearing faults can
cause a range of issues, including increased vibrations, noise, and reduced efficiency, which
can eventually lead to catastrophic failures if not addressed promptly. Therefore, it is crucial
to regularly monitor bearings for the early detection of faults and timely maintenance to
prevent any significant damage to the RM system.
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Machine Learning Algorithms for Fault Identification and Diagnosis

The ultimate goal of fault diagnosis (FD) is to recognize the status of a targeted
component, and then decisions are made based on whether maintenance is needed. The
model-based approach and the data-driven approach are two existing methods of FD; the
work of [7] states that the model-based approach requires abundant prior knowledge and
poses difficulty in accurately establishing diagnosis models of composite components under
complex conditions. On the other hand, data-driven models have been more attractive in
developing various intelligent approaches. This method can effectively process machinery
signals and accurately diagnose results with low requirements for prior expertise.

In the context of fault identification (FI), the research presented in [8] involves conduct-
ing a comparative investigation by utilizing two shallow machine learning (ML) models,
namely support vector regression (SVR) and a relevance vector machine (RVM). The per-
formance of these models in terms of probabilistic findings using random kernel functions
for FI highlighted RVM performance as superior to that of the SVR algorithm. Liang-Yu [9]
highlighted in this paper that treating feature selection and parameter optimization sepa-
rately poses a restraint for SVRs and affects their prediction accuracy. Further, the author
later referred to the above study and presented two bearing-fault schemes for FI and FD
based on an RVM of vibration signals, i.e., two relevance models viewed as an observer
and classifier. Another monitoring procedure highlighted in [10] involves using the stator
current using motor current signature analysis (MCSA) and employing frequency spectral
subtraction using various wavelet transforms to suppress dominant components. Discrete
wavelet transform (DWT), wavelet packet decomposition (WPD), and stationary wavelet
transform (SWT) are procedures for spectral subtraction [11,12].

While previous studies have utilized techniques such as preprocessing, dimensionality
reduction, and feature selection to accurately classify bearing faults, limited research
has been conducted on developing models to use raw data for this task. Therefore, the
proposed research aims to address this gap by developing and using predeveloped models
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that can utilize raw accelerometer data to accurately predict the variance of faults in the
motor’s bearing under changing loading levels. By avoiding intensive preprocessing and
feature-extraction steps, the proposed model has the potential to reduce computational
complexity and improve the accuracy of fault detection and identification. Furthermore,
incorporating advanced machine learning techniques such as deep learning can further
enhance the model’s performance. Overall, the proposed research aims to contribute to
developing more accurate and efficient methods for fault detection and identification in
rotating machinery.

The organization of the paper is as follows: Section 2 highlights the paper’s contribu-
tions; Section 3 provides an elaborate description of the CWRU bearing dataset; Section 4
provides insight into the proposed methodology; Section 5 graphically explores the raw
data through scatter tools and appropriate dimensionality reduction techniques; Section 6
provides detailed information on all the classifier models to be used for the proposed
methodology, along with the model hyperparameters; and Section 7 evaluates the results
and provides justifications accordingly. The conclusion is presented in Section 8.

2. Paper Contribution

This paper presents a methodology for the fault classification of ball, inner-race, and
outer-race faults at various loading levels using raw accelerometer signals. The vibration
signals used in the study were obtained from the CWRU database. In the preprocessing step,
the accelerometer signals were segmented into 500 window sizes with strides of 200 using
the windowing method. Data exploration was conducted using PCA and t-SNE to visualize
if the data were distinguishable. The paper evaluates the efficiency of neural network (NN)-
based classifiers in classifying bearing-related faults without the assistance of any feature-
extraction step. The proposed methodology combines NN-based classifiers, specifically
multi-layer perceptron (MLPs), long short-term memory (LSTM), and convolutional neural
networks (CNNs). The performance of the classifiers is evaluated based on four different
metrics: specificity, precision, recall, and F1-score. The experimental results show that
the proposed CNN variant classifiers achieve high accuracy rates in classifying the three
bearing-related faults. Specifically, one-dimensional CNN, multiple kernel CNN, and
two-dimensional CNN portray the best performance varying from approximately a 95% to
a 99% accuracy rate, respectively, over the three loading levels.

The proposed methodology demonstrates a rational approach for accurate and efficient
fault classification, contributing to advancing bearing-fault diagnosis. By accurately identi-
fying the types of bearing faults, maintenance teams can schedule repairs or replacements
before equipment failure occurs, reducing downtime and costs. This has practical impli-
cations for predictive maintenance in various industries, such as aerospace, automotive,
and manufacturing. The study also contributes to the field of machine learning by demon-
strating the effectiveness of using raw accelerometer signals for fault classification without
the need for feature extraction. This approach can save time and computational resources,
making it a promising direction for future research in other areas of fault diagnosis.

3. Data Description

The dataset from the CWRU [13,14] was used to evaluate the proposed methodology.
Figure 2 shows the CWRU’s experimental rig for studying ball-bearing defects. Vibration
measurements were acquired with three accelerometers placed in the 12 o’clock position
on the housing of the drive end (DE) and fan end (FE). SKF deep-groove ball bearings of
types 6205-2RS JEM and 6203-2RS JEM were employed for the DE end FE, respectively.

Electro-discharge machining generated different fault diameters ranging from 0.007 to
0.021 inches. Vibration signals were recorded at 48 kHz, under varying motor speeds from
1797 to 1720 rpm, and we used three motor-load operating conditions, denoted as no-load
condition (L0): 0% of the nominal load; half-loaded condition (L1): 50% of the nominal
load; and fully loaded condition (L2): 100% of the nominal load.
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The CWRU benchmark dataset is central to our study on fault diagnosis in rolling
element bearings, offering detailed insights into various bearing faults under different load
conditions. Table 1 categorizes the faults into ball, inner-race, and outer-race types, along-
side a normal condition for comparison. Faults are categorized based on their diameter
size, which can be 0.007′′, 0.014′′, or 0.021′′. Additionally, for outer-race faults, their specific
positions in relation to the load zone are also taken into consideration; these positions
include 6:00, 3:00, and 12:00. This level of detail allows for a comprehensive analysis of fault
characteristics and their ability to be detected under various operational loads, ranging
from 0 hp to 2 hp.

Table 1. CWRU Bearing Dataset Description [15].

Fault Type Load (hp)

Fault
Diameter

(Inch)

Fault Position
Relative to Load

Zone

Fault
Labels 0 1 2

Normal 0 - N 243,938 485,643 485,643

Ball
0.007 7_BA 243,538 486,804 488,545
0.014 - 14_BA 249,146 487,384 486,804
0.021 21_BA 243,938 487,384 491,446

Inner Race
0.007 7_IR 243,938 485,643 485,643
0.014 - 14_IR 63,788 487,964 485,063
0.021 21_IR 244,339 491,446 486,804

Outer Race

0.007
@ 6:00 7_OR1 244,739 486,804 487,964
@ 3:00 7_OR2 124,602 485,643 486,224
@ 12:00 7_OR3 129,969 483,323 484483

0.014 @ 6:00 14_OR1 245,140 486,804 488,545

0.021
@ 6:00 21_OR1 246,342 487,964 489,125
@ 3:00 21_OR2 128,663 487,384 484,483
@ 12:00 21_OR3 130,549 486,804 486,224

Total Data Points 2,782,629 6,816,994 6,816,996
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Table 1 also accommodates data-point counts for each fault type, size, and position
under three different load conditions. These counts demonstrate significant variations. For
instance, under a 0 hp load, the dataset records 243,938 data points for normal conditions,
while a ball fault with a diameter of 0.007′′ registers 243,538 data points. As the load
increases, the total data points also significantly increase, which demonstrates the dataset’s
depth and its potential for comprehensive model training and evaluation. The fault labels
are encoded in such a way that they reflect the fault type, size, and position, enabling
precise identification and analysis. Our research leverages this dataset to evaluate the
performance of various machine learning models, ranging from traditional algorithms
to neural networks, in precisely diagnosing bearing faults. By taking a comprehensive
approach, we aim to enhance fault-diagnosis methodologies and understand how load
variations and fault specifics affect diagnostic accuracy.

# In pursuit of this goal, this research analyzed bearing-state classification data by
separating it into three distinct load-level datasets.

# Targeted Monitoring: In real-world applications, bearings often experience consis-
tent loads. Training models on specific load datasets allows for deployment that
is tailored to those conditions. This leads to increased accuracy and reliability for
continuous monitoring.

# Detailed Analysis of Load Effects: Separating the data allows for a coarser analysis
of how load impacts bearing faults. This unveils subtle trends and relationships that
might be obscured when analyzing the combined data.

# Simplified Modeling: Assuming statistical independence between datasets based
on load can simplify the modeling process. This reduces the complexity of the
analysis and minimizes potential biases that might arise from combining data with
inherent differences.

# Preserving Unique Characteristics: By analyzing each load level separately, we avoid
masking unique load-specific features within the data. This ensures that the model
captures the nuances of fault signatures under different load conditions.

4. Methodology—Fault Diagnosis

Figure 3 illustrates the methodology used to address the research question of develop-
ing a fault-classification model for drive-end bearings using raw experimental data from
CWRU. To ensure the validity of the study, the data were normalized using the Standard
Scalar methodology. To prevent the “Similarity Bias Problem”, as explained in [15], the
entire dataset was divided into a training set of 70% and a testing set of 30%. A validation
dataset of 20% was grabbed from the training points themselves. This was conducted prior
to the window-segmentation methodology. The training and testing data were segmented
separately using a window size of 500 and a stride of 200. Feature relationships were visu-
alized using PCA and t-SNE during data exploration. To ensure robust model performance,
the data were divided into training, validation, and test sets. Classification models were
developed using Python, and pre-built models from MATLAB (version r2023b)’s Classifi-
cation Learner App were utilized for fault classification, allowing for model comparison
and selection.

The validation and prediction accuracy results of all the trained models were tabulated,
and meaningful conclusions were drawn by evaluating the model’s best and most robust
key performance indicators (KPIs) to assess the classification model’s performance. Finally,
the methodology adhered to established standards and best practices in machine learning
and signal processing to ensure the results’ accuracy, reliability, and validity.
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Data Division Representation

In this study, three distinct loading datasets were analyzed, each initially comprising
total data points as follows: 2,782,629 for (0 hp), 6,816,994 for (1 hp), and 6,816,996 for (2 hp),
as outlined in Table 1. Analyzing each loading condition individually is crucial for accu-
rately determining distinct failure characteristics and improving fault-diagnosis precision,
as different loading conditions cause variations in mechanical stress and operational strain.
This strategy allows for the construction of more precise predictive models tailored to spe-
cific operational conditions, rather than a one-size-fits-all model that might overlook subtle
yet critical differences. Furthermore, the proposed approach ensures that the statistical
integrity of the analysis is maintained, as combining data from all conditions could violate
assumptions like homogeneity of variance, leading to potentially misleading conclusions.
Thus, by focusing on each loading condition independently, this study aims to provide
detailed insights into bearing behavior under varying operational stresses, offering valuable
information for predictive maintenance and fault prevention in industrial machinery.

In terms of data division, 70% was allocated to the training set and 30% was for the
test set. Post-segmentation, the data points were distributed as follows: for the (0 hp) load,
19,457,560 data points were assigned to training and 834,669 were assigned to testing; for
the (1 hp) load, 4,771,895 were assigned to training and 2,045,099 were assigned to testing;
and similarly, for the (2 hp) load, 4,771,897 were allocated to training and 2,045,099 were
assigned to testing.

Table 2 displays the results of the segmentation of the training and testing datasets—a
process meticulously carried out to improve the model’s ability to generalize from the data.
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By using a window size of 500 and a stride of 200, the datasets were transformed into
segments that offer a structured view of the time-series data, capturing essential temporal
features. This process greatly increased the granularity of the analysis, enabling more
detailed and accurate modeling of fault conditions across various loads. Once segmented,
the distribution of data points was recorded and is presented in the subsequent table.

Table 2. Segmented training, validation, and testing data points across labels for all three load-
ing datasets.

Fault Labels
Load 0 Load 1 Load 2

Training Validation Test Training Validation Test Training Validation Test

N 680 170 362 1359 338 724 1359 338 724
7_BA 681 167 364 1361 337 730 1367 337 732

14_BA 698 172 370 1362 339 730 1362 337 729
21_BA 680 169 365 1363 338 730 1378 342 731
7_IR 680 170 364 1356 339 726 1355 341 727
14_IR 177 43 370 1362 343 729 1358 337 725
21_IR 681 169 366 1376 344 732 1361 337 730
7_OR1 683 169 366 1363 338 727 1366 340 728
7_OR2 347 85 185 1356 339 728 1357 339 729
7_OR3 362 88 194 1353 335 722 1355 338 724

14_OR1 684 171 364 1360 337 731 1362 340 734
21_OR1 688 169 368 1363 338 732 1366 339 734
21_OR2 359 88 191 1365 338 728 1354 338 724
21_OR3 363 90 194 1360 339 729 1359 339 724

Total: 7763 1920 4423 19,059 4742 10,198 19,059 4742 10,195

Additionally, 20% of the training data was kept aside to generalize the model as a
validation set. This separation within the training data itself allows for the continuous
evaluation of the model’s performance and stability before testing, ensuring that the model
does not overfit the training data and can generalize well to new, unseen data. In summary,
Table 2 clearly illustrates that all 14 classes are consistently represented across the training,
validation, and test sets of each loading dataset.

5. Data Exploration

The following section of this study will examine the exploratory data analysis of the
bearing data, utilizing powerful tools such as PCA and t-SNE. Through these techniques,
we will uncover the underlying patterns and structure of the data and visualize them
intuitively and insightfully. This analysis will provide valuable insights into the relation-
ships and correlations between the different variables, paving the way for further analysis
and interpretation.

5.1. Raw Accelerometer Data Exploration

When it comes to visualizing raw data, particularly if it involves time series or mea-
surements across a sequence of data points, the choice of representation depends on the
nature of the data and the intended message. In this instance, the raw plots in Figure 4
comprise points sampled from every 100th data point of the data frame, and they are
displayed through a scatter plot with a customized color palette to differentiate between
various “fault” categories. This method can work well for highlighting specific patterns or
anomalies within data.
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The raw data scatter plots show that the “N” (normal) bearing exhibited consistently
low vibration across all loading levels. In contrast, the “7_BA” (0.007 inch roller-element
fault) bearing showed significantly higher vibration spikes during the no-load scenario.
However, these spikes were not as prominent when the motor was subjected to a load. It is
possible that the reason for the difference in vibration spikes between the no-load scenario
and the loaded scenarios is due to the change in the operating conditions of the motor. In
a no-load scenario, the motor operates with little to no external load applied, which can
result in higher vibration levels due to the lack of damping forces. This can make it easier
for faults in the roller elements to manifest as noticeable spikes in the vibration data. In
contrast, when the motor is loaded, the roller elements may be subjected to different types
and magnitudes of forces, resulting in different vibration signatures. It is important to
note that further analysis is necessary to fully understand the root cause of these vibration
spikes and potential faults in the roller elements.

Above all, the major observation concerns the fault labels with the largest depth
damage of 0.021 inches (21_BA, 21_IR, 21_OR1, 21_OR2, 21_OR3). Notably, these labels
exhibit prominent vibration spikes that make it easier to identify them as faulty, irrespective
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of the loading scenario. In contrast, fault labels with depths of 0.014 and 0.007 inches are
not easily identifiable based on vibration spikes alone. A possible explanation for this
could be that the fault with the largest depth damage is located in a critical location of
the bearing or motor system. Certain areas of a bearing or motor system may be more
susceptible to generating larger vibrations due to their proximity to other components or
the way forces are distributed within the system. If the fault with the largest depth damage
is in a critical location, this could explain the larger vibration spikes. Additionally, the
simple reason is that faults with larger depth damage may have a greater impact on the
natural frequencies of the bearing system. The natural frequencies of the system depend on
the stiffness and mass properties of the system, which can be affected by the presence of
faults. A fault with larger depth damage may change the stiffness and mass properties of
the bearing system more significantly, resulting in larger shifts in natural frequencies and
corresponding vibration spikes.

5.2. Principal Component Analysis (PCA)

PCA is a variable reduction procedure similar to factor analysis and uses linear combi-
nations of the original correlated measurements to arrive at a new coordinate system. In
this new coordinate system, the first principal component accounts for the largest variances
in the data, and other principal components account for progressively smaller amounts of
variance [16,17]. The principal components are uncorrelated with each other, and they are
orthogonal to each other, meaning that they are perpendicular in the n-dimensional space
of the original data [18]. This study will utilize this procedure for exploratory analysis
purposes only.

When analyzing the geometry of a dataset using PCA, the resulting 2D and 3D
plots can reveal important information about the structure of the data in the case of the
CWRU bearing dataset analyzed. Figure 5a shows that one particular class label’s data
point—7_BA—is projected in a circular motion, while the other 13 label data points are not
distinguishable as they are clustered together in between the 7_BA label data point’s circular
projection. The 3D PCA view in Figure 5b presents similar results even with the additional
principal component. This finding suggests that class 7_BA, with the circular data point
projection in the PCA plot, has a unique pattern of variation that distinguishes it from the
other classes. The circular motion implies a strong circular relationship among the variables
within this category, signifying high correlations and joint variations in a circular pattern.
This circular pattern may stem from various factors, including the inherent characteristics
of the data, the instrumentation employed for measurements, or the underlying physical
processes under investigation.

Visualizing the PCA projections of the data under the two loading levels in Figure 5c–f,
it was found that the fault class labels with the largest depth faults (21_BA, 21_IR, 21_OR1,
21_OR2, and 21_OR3) are distinguishable in the 2D PCA plot, while the other fault class
labels with lower fault depths are clustered behind the larger ones. Furthermore, in the
3D PCA plot, there were no new projection patterns that emerged beyond those already
observed in the 2D plots. This finding suggests that the fault class labels with larger fault
depths have a unique pattern of variation that distinguishes them from the other fault class
labels. This could be because the faults with larger depths involve more significant changes
in the underlying physical or geological processes, resulting in more distinct patterns of
variation in the data. On the other hand, the fault class labels with lower fault depths may
not exhibit as much variation or may be more difficult to distinguish from each other due
to their relatively minor impact on the underlying processes.

Additionally, the data geometry analysis of the dataset with three loading levels
revealed that the PCA technique was not able to separate the normal class from the fault
class labels effectively. This implies that the variation within the normal class and fault
class labels is not distinct enough to be separated by the PCA method.
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5.3. t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is an ML algorithm used for data visualization and dimensionality reduction.
This procedure is often used to display high-dimensional data in a low-dimensional space,
such as a 2D plot, to provide better insight into the data point’s relationship. t-SNE mod-
els each high-dimensional object through probability distribution in a low-dimensional
space [19]. Then, it tries to find mapping options between the two spaces that preserve
the similarities between objects. A cost function is optimized that measures the difference
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between the pairwise similarities of objects in the high-dimensional space and their coun-
terparts in the low-dimensional space. In this research, we explore the potential of t-SNE
compared to PCA.

The exploration in Figure 6 suggests that the underlying structure of the data may be
complex, with multiple overlapping patterns of variation that are difficult to distinguish
using t-SNE. It is possible that there are multiple factors driving the observed variation in
the data, such as differences in operating conditions. These factors may be difficult to fully
capture using t-SNE, which relies on the assumption of a low-dimensional structure within
the data. Furthermore, t-SNE is known to be a relatively weak technique for distinguishing
between classes within a dataset. This is because t-SNE is primarily designed to preserve
the local relationships between data points rather than the global relationships between
classes. As a result, it may not be the best technique for distinguishing between closely
related classes, such as those within the current bearing dataset.
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6. Model Description

The following section provides an overview of classifier models and their hyperpa-
rameters in two families: neural network-based and non-neural network-based. Classifier
models are widely used in machine learning for categorizing data points into different
classes based on specific features or attributes. Hyperparameters are a crucial component of
machine learning models; they are set before training and significantly impact the model’s
performance. This section delves into various types of classifier models, their architectures,
and the hyperparameters used and tuned to improve their classification performance.
In addition, this section highlights the impact of these hyperparameters on the model’s
performance and explores some of the commonly used techniques for optimizing them.
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6.1. Multi-Layer Perceptron (MLP)

MLP is a feedforward neural network that is widely used for classification tasks. It
consists of multiple layers of interconnected nodes or neurons, where each neuron receives
inputs from the previous layer and applies a nonlinear activation function to produce an
output. MLP can be trained using backpropagation with gradient descent optimization.
The hyperparameters and functions are tabulated in Table 3 below.

Table 3. Classification Model Specification List.

Model Label Classifier Specification

MLP MLP NN
Architecture: (1024IN—ReLU
|512DL—ReLU|256DL—ReLU|14OUT—Softmax|Optimizer: adam|Loss:
categorical_crossentropy)

Bidirectional LSTM Bi-LSTM

Architecture: [1BL—LSTM, 128 Units, Return Sequences: True, Input Shape: Specified],
[1DO—Dropout, Rate: 0.2], [1FD—Dense, 32 Units, Activation: tanh], [2BL—LSTM,
64 Units, Return Sequences: False], [2DO—Dropout, Rate: 0.1], [1FD—Dense, 16 Units,
Activation: tanh], [1FD—Dense, 256 Units, Activation: relu], [2FD—Dense, Number of
Classes, Activation: Softmax], Optimizer: adam,
Loss: categorical_crossentropy. Metrics: accuracy

Deep LSTM D-LSTM

Architecture: [1LD—LSTM, 64 Units, Return Sequences: True, Input Shape: Specified],
[1DO—Dropout, Rate: 0.2], [2LD—LSTM, 32 Units, Return Sequences: False],
[2DO—Dropout, Rate: 0.2], [1FD—Dense, 32 Units, Activation: ReLU], [2FD—Dense,
Number of Classes, Activation: Softmax], Optimizer: adam,
Loss: categorical_crossentropy. Metrics: accuracy

1D-CNN 1D Convolutional NN

Architecture: ([1Fd—Conv1D, 64 Filters, 100 Kernels, Activation:
ReLU]|[2FD—Conv1D, 32 Filters, 50 Kernels, Activation: ReLU]|1FL|
[1PL—4 MaxPooling1D]|[1FC—100 Dense, Activation: ReLU]|Optimizer: adam|Loss:
categorical_crossentropy)

MK-CNN 1D Multi Kernel
CNN

Architecture 1: ([1Fd—Conv1D, 64 Filters, 200 Kernels, Activation: ReLU, 0.5 Dropout,
1PL—20 MaxPooling1D, 1FL—Flatten]|
Architecture 2: ([1Fd—Conv1D, 64 Filters, 100 Kernels, Activation: ReLU, 0.5 Dropout,
1PL—10 MaxPooling1D, 1FL—Flatten]|
Architecture 3: ([1Fd—Conv1D, 64 Filters, 50 Kernels, Activation: ReLU, 0.5 Dropout,
1PL—5 MaxPooling1D, 1FL—Flatten])|
[1DL—100 layers, Activation: ReLU]|[1OUT—Activation: Softmax]|Optimizer:
adam|Loss: categorical_crossentropy)

2D-CNN 2D CNN

Architecture: Sequential|([1FD—Conv2D, 32 Filters, Kernel size (3, 3), Activation:
ReLU]|[1PL— MaxPooling2D (2, 2), Strides (2, 2)]|[1CL—64 Conv2D, Kernel size (3, 3),
Activation: ReLU]|[1PL—MaxPooling2D (2, 2), Strides (2, 2)]|[1DL—128 layers,
Activation: ReLU]|[1OUT—Activation: Softmax]|Optimizer: adam|Loss:
categorical_crossentropy)

Note: DL: filters in the dense layer, FC: neurons in a fully connected layer: (size), BL: Bidirectional layer,
OUT: neurons in the output layer, IN: input layer, Fd: Feature Detector, PL: Pooling Layer, FL: Flatten Layer,
CL: Convolutional Layer, LD: “LSTM Dense” layer, DO: “Dropout”, FD: Fully Connected (Dense) layer.

6.2. Recurrent Neural Network

The long short-term memory (LSTM) model, a variant of recurrent neural networks,
has been increasingly recognized for its proficiency in handling time-series data, as noted
in critical studies [20,21]. The research focuses on two types of RNN, namely deep LSTM
and bidirectional LSTM. These RNNs excel in capturing the temporal dependencies and
complexities present in sequential data, making them a great fit for our application in fault
classification in bearing components using raw accelerometer data.

• Deep LSTM: This model stacks multiple LSTM layers to create a deeper network architec-
ture. This setup allows the model to learn higher-level temporal representations at each
layer, making it more robust and accurate. This is particularly beneficial for complex
time-series prediction tasks, where long-range dependencies and patterns are important.
Each LSTM layer captures different aspects of the temporal data, and the deep architec-
ture usually ends with a fully connected layer that maps the final LSTM layer’s output
to the desired output shape. This could be a specific number of classes for classification
tasks. Deep LSTMs are typically trained using backpropagation through time (BPTT)
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and are often optimized with algorithms such as Adam or RMSprop, leveraging the
categorical cross-entropy loss function for classification problems.

• Bidirectional LSTM (Bi-LSTM): Bi-LSTM networks enhance the standard LSTM by
introducing another layer that processes the input sequence in reverse. This allows
Bi-LSTMs to capture dependencies from both past and future contexts, resulting in a
more comprehensive understanding of the sequence. This architecture is particularly
useful for tasks where comprehending each part requires understanding the entire
sequence’s context, such as natural language processing and speech recognition. In
Bi-LSTMs, the forward and backward LSTM layers run parallel to each other, and
their outputs are combined at each time step through concatenation or summing. This
combined output is then passed through additional layers or directly to the output
layer, depending on the complexity of the task. Bi-LSTM networks also benefit from
deep learning optimizations and loss functions like deep LSTMs, ensuring effective
training and convergence for various sequence modeling tasks.

6.3. Convolutional Neural Network

A CNN is a type of neural network particularly suited for image classification tasks.
It consists of multiple convolutional layers, which apply a set of learnable filters to the
input image, followed by pooling layers to reduce the spatial dimensions of the feature
maps. The output of the last convolutional layer is typically flattened and fed into a fully
connected layer for classification. Three powerful variances of CNN have been developed
and used to classify faults using the raw accelerometer data in this research article; its
architecture is represented in Figure 7 below.

• One-dimensional CNN (1D-CNN): supervised learning algorithm used mainly for
processing data sequences such as time series, text, and speech. A set of learnable
filters is applied to the input, which is this configuration is a one-dimensional sequence
of values [22]. The architecture consists of a 1D convolutional layer, each followed by
a max pooling layer to reduce the spatial dimensions of the feature map. A flattened
output is then passed through a fully connected layer with 100 units, following a final
output layer with SoftMax activation to produce a probability distribution of the input
belonging to each of the 14 classes. The categorical cross-entropy loss function is used
to train the model and optimized using the Adam optimizer.

• Multi Kernel 1D-CNN: This is the second CNN variant developed with three different
input signals processed through three separate 1D convolutional layers. Each 1D
convolutional layer has been assigned different kernel sizes of 200, 100, and 50. Each
layer is followed by a max pooling layer to reduce the spatial dimensions of the
feature maps. The resulting feature maps are flattened and concatenated, then passed
through a fully connected layer with 100 units and a final output layer with a SoftMax
activation function to produce the probability distribution of the input belonging to
each class. The model is trained using the categorical cross-entropy loss function and
the Adam optimizer.

• Two-dimensional (2D) CNN: In this model, raw accelerometer signals are first trans-
formed into 28 × 28 pixel grayscale images for each class’s points. The 2D-CNN
consists of two convolutional layers, each followed by a max pooling layer to down-
sample the feature maps. The first convolutional layer has 32 filters with a kernel size
of 3 × 3, while the second layer has 64 filters with the same kernel size and activation
function ReLU. The padding parameter is set to “same” to ensure that the output
feature maps have the exact spatial dimensions as the input. The output of the last
max pooling layer is flattened and passed through two dense layers with 128 and
14 neurons, respectively. The activation function used for these layers is ReLU. Finally,
the output layer uses the SoftMax activation function to predict the probability of
each class. By using a 2D CNN, the model can capture spatial correlations between
adjacent pixels in the grayscale images, which can be helpful in detecting patterns in
the accelerometer raw signals [23,24].
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7. Results

It is essential to comprehend the significance of the various metrics used to assess
the performance of machine learning models before delving into the detailed metrics in
our study. These metrics, including specificity, F1-score, recall, and precision, provide an
understanding of the model’s efficiency and highlight strengths and areas for improvement.
In Section 7.1, works on the application of these metrics to analyze classifier performance
are elaborated relating to the CWRU bearing dataset. This evaluation is instrumental in
comprehending the abilities of both non-neural and neural network-based classifiers in
processing raw data, which is a crucial aspect of our study. Through this analysis, we aim
to provide a comprehensive overview of each model’s effectiveness when applied directly
to unprocessed datasets, paving the way for a detailed exploration of their performance.

7.1. Recall, Sensitivity, F1-Score and Precision

Accuracy, F1-score, recall, and precision are common evaluation metrics used in clas-
sification tasks to measure the performance of a machine learning model [25]. A brief
description of each of these metrics is listed below:

# Accuracy: measures the percentage of correctly classified instances by a model out of
the total number of instances. It is calculated as the ratio of the number of correctly
classified instances to the total number of instances, as per the formula below:
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Accuracy =
(Tp + Tn)

(Tp + Tn + Fp + Fn)
(1)

# Recall: is the proportion of true-positive instances (i.e., instances correctly classified as
positive) out of the total number of positive instances. It is calculated as the ratio of
true-positive instances to the sum of true-positive and false-negative instances.

Recall =
Tp

(Tp + Fn)
(2)

# Precision: is the proportion of true-positive instances out of the total number of
instances the model classified as positive. It is calculated as the ratio of true-positive
instances to the sum of true-positive and false-positive instances.

Precision =
Tp

(Tp + Fp)
(3)

# F1-score: is a measure of the harmonic mean between precision and recall. It is a more
informative metric than accuracy in situations with a class imbalance in the data, i.e.,
when the number of instances in one class is much larger than the other. The F1-score
considers both the precision and recall of a model and is calculated as the harmonic
mean of these two metrics.

F1 score =
2(Precision × Recall)
(Precision + Recall)

(4)

# Specificity: also referred to as the true-negative rate, calculates the ratio of actual
negatives that are correctly identified as negatives. For instance, it measures the
percentage of healthy individuals who are correctly identified as not having the
condition in a medical test. It is a key metric in evaluating the performance of
a classification model, especially in imbalanced datasets or when the cost of false
negatives is high.

Speci f icity =
Tn

(Tn + Fp)
(5)

Note: Tp—True Positive, Tn—True Negative, Fn—False Negative, Fp—False Positive.
In the present study, we have utilized a variety of classification models, both non-

neural and neural, to analyze the CWRU bearing dataset. It is worth noting that our
approach involved using the raw datasets, with only normalization and segmentation
procedures applied, as input for training the selected models provided in Table 3. This
approach is distinct from previous works, which commonly employ feature engineering,
dimensionality reduction, and other preprocessing steps prior to classification analysis. We
aimed to explore the effectiveness of using raw data directly in classification tasks and to
compare the performance of different models under this approach.

Upon examining the results obtained, we observed that several classifiers, such as
Fine Tree, Naïve Bayes, Linear Discriminant, Quadratic Discriminant, and Medium Tree,
demonstrated poor performance in accurately classifying the CWRU bearing class labels,
with average prediction accuracy under 35% in all loading levels; hence, these results were
not placed in the paper. There are several possible hypotheses as to why these classifiers
may have performed poorly. Fine Tree is a decision tree-based algorithm that may struggle
to handle complex and noisy data, which could potentially result in the overfitting or
underfitting of the model. Linear Discriminant and Quadratic Discriminant are based on a
statistical approach that assumes the input data is normally distributed, which may not
hold true in the case of the CWRU bearing dataset. This assumption violation can negatively
affect the performance of these classifiers. A Medium Tree is a variation of decision trees
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and is also susceptible to overfitting when applied to high-dimensional datasets with large
numbers of features. Therefore, through the evaluation of these classifiers, we understand it
is essential to analyze the characteristics of the dataset and choose an appropriate classifier
that can effectively capture the underlying patterns and relationships in the data whilst
avoiding issues of overfitting and underfitting to achieve satisfactory classification results.

Furthermore, shallow and deep models of the NN family were experimented upon,
where a relatively high classification accuracy above 85% was recorded in the RNN and CNN
variant architectures. Although MLP is a fundamental architecture in neural networks, it
may not be as effective as RNN and CNN variants in classifying the CWRU bearing dataset
due to its limitations in processing sequential or spatial data. MLPs are networks that are
fully connected and excel at capturing linear relationships between inputs and outputs.
However, they lack the ability to model the temporal dependencies and spatial patterns
that are inherent in time-series or image data. This limitation is particularly important
in applications like the CWRU dataset analysis, where the data are inherently sequential
(bearing vibration signals) or spatial (transformed accelerometer signals into images for
CNN analysis).

RNNs are neural networks that have recurrent connections, allowing them to retain
information from previous inputs. As a result, they are particularly useful for time-series
data since they can capture temporal dependencies. This ability enables RNNs to compre-
hend the order of events in vibration signals, which is crucial for precise fault classification
in bearings. On the other hand, CNNs are designed to recognize spatial patterns by using
convolutional filters, making them exceptionally effective for tasks that involve the spatial
arrangement of data points, such as pixels in an image or patterns in a signal transformed
into a 2D representation.

In contrast, MLP models treat input features independently, ignoring the order or
spatial arrangement, which can lead to a significant loss of information critical for making
accurate predictions in such datasets. Consequently, while MLPs serve as a strong baseline
for many classification tasks, their structure inherently limits their effectiveness in tasks
requiring an understanding of temporal sequences or spatial patterns, leading to their
lower performance compared to RNNs and CNNs in this context.

The optimal performance of the models relied heavily on tuning the hyperparameters.
In order to achieve greater classification accuracy, it is essential to conduct a hyperparameter
search using techniques like “random search” and “Bayesian optimizer”. The models
employed in this study were deep neural network architectures, including D-LSTM, Bi-
LSTM, 1D-CNN, MK-CNN, and 2D-CNN. The specifications and hyper-parameters for all
the tested models are presented in detail in Table 3. The test accuracies for all the different
NN models were calculated using Equation (1), and they ranged from 70% to 99%, as shown
in Table 4. Several factors contributed to the success of these models; notably, their flexibility
allows them to capture complex patterns and relationships within the accelerometer dataset.
The deeper architectures of these models allow for the extraction of more abstract features,
enabling better discrimination between different classes. In particular, the convolutional
layers in CNNs are designed to identify spatial and temporal patterns in data, making
them well-suited for tasks like sequential data and image classification. Additionally, the
careful tuning of hyperparameters, such as learning rate, number of layers, and number of
filters, can lead to better model performance. The best result of all was certainly shown
by the 2D-CNN classifier. The accelerometer data transformed into grayscale images
allowed the CNN to learn spatial patterns in the images, which can be used to distinguish
between different class labels. The 14 class labels captured in imaging allowed the model
to learn different levels of abstraction, from low-level features such as edges and corners
to high-level features such as shapes and patterns. Additionally, the proper tuning of the
hyperparameters of the learning rate, batch sizing, and epoch count established a robust
network for classifying raw accelerometer signals.
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Table 4. Results of Validation and Test Accuracy for the Classification Models.

Classifier
Validation Accuracy (%) Test Accuracy (%)

0 hp 1 hp 2 hp 0 hp 1 hp 2 hp

MLP 73.94 55.74 51.3 68.38 55.73 54.66
D-LSTM 81.32 81.51 78.93 70.50 81.50 82.54
Bi-LSTM 89.84 81.90 80.33 78.96 81.89 81.70
1D-CNN 90.26 89.14 89.2 85.02 89.27 90.30
Mk-CNN 95.72 92.36 90.67 94.26 91.87 93.44
2D-CNN 98.40 93.62 95.63 99.32 91.16 94.97

Table 4 shows that the 2D-CNN model consistently outperforms DNNs for all three
load levels. Figure 8 displays confusion matrices for all three load settings to provide
a closer look at its test accuracy performance, These matrices reveal positive signs for
classifying bearing states. High values along the diagonal (true positives) indicate good
identification of both normal and faulty conditions. However, there are some interesting
differences depending on the load.
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• No-Load: The model achieves near-perfect accuracy for most classes, suggesting strong
discriminative power despite the absence of load-induced stress signatures. Minimal
off-diagonal values indicate a low number of false positives.

• Loaded Conditions: Both the 1 hp and 2 hp scenarios show a slight increase in
misclassifications (higher off-diagonal values) compared to the no-load model. This
suggests the model struggles to differentiate between certain fault types, possibly due
to inherent data complexity or similar signatures under load.

• Impact of Load: Increased load introduces a trade-off. While the model maintains good
accuracy for some fault types and the normal state, others exhibit lower precision under
higher loads. This highlights the varying influence of load on different fault signatures.

Figure 9 illustrates the accuracy prediction behavior for each model in the three loading
levels. It can be hypothesized that the accuracy of all models decreased gradually as the
loading increased. This could be due to the rise in complexity of the accelerometer spikes
due to changes in the loading level. However, deep NN models were able to preserve
their high percentage accuracy even with the change in loading. The KPIs for the deep NN
models were further calculated and are tabulated in Table 5 to support the justifications
made previously.
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Figure 9. Performance evaluation classifier models under the three loading levels (a) Classifier
validation accuracy, (b) Classifier test accuracy.

Table 5. KPI evaluation of the best classifiers.

Classifier Loading
KPI

Precision Specificity Recall F1-Score

MLP

0 hp 0.693 0.975 0.683 0.685

1 hp 0.565 0.966 0.557 0.558

2 hp 0.534 0.914 0.545 0.551

D_LSTM

0 hp 0.615 0.977 0.705 0.638

1 hp 0.735 0.985 0.815 0.763

2 hp 0.843 0.983 0.8253 0.8115

Bi-LSTM

0 hp 0.6902 0.983 0.789 0.724

1 hp 0.816 0.915 0.892 0.813

2 hp 0.865 0.923 0.817 0.821

1D-CNN

0 hp 0.865 0.988 0.850 0.846

1 hp 0.897 0.991 0.983 0.892

2 hp 0.863 0.964 0.902 0.876
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Table 5. Cont.

Classifier Loading
KPI

Precision Specificity Recall F1-Score

MK-CNN

0 hp 0.942 0.995 0.942 0.940

1 hp 0.915 0.895 0.9167 0.882

2 hp 0.923 0.996 0.932 0.910

2D-CNN

0 hp 0.993 0.999 0.993 0.998

1 hp 0.913 0.993 0.911 0.910

2 hp 0.950 0.996 0.949 0.949

8. Conclusions and Remarks

This paper proposed a methodology for the efficient fault classification of bearing-
related faults. A variety of classification models, both non-neural and neural, were utilized
to analyze the CWRU bearing dataset. It is important to note that the performance of a
classifier can be heavily dependent on the specific dataset being analyzed and the char-
acteristics of the data. While some classifiers may perform poorly on a given dataset,
others may exhibit superior performance. Therefore, it is crucial to thoroughly evaluate
the performance of multiple classifiers to determine the optimal algorithm for a specific
classification task.

It is worth noting that our approach involved using raw datasets, with only normaliza-
tion and segmentation procedures applied, as input for training the selected models. This
approach is distinct from previous works, which commonly employ feature engineering,
dimensionality reduction, and other preprocessing steps prior to classification analysis.
The proposed methodology had practical implications for predictive maintenance and
contributed to the field of machine learning by demonstrating the effectiveness of using
raw accelerometer signals for fault classification.

Future research could delve into integrating this methodology with real-time moni-
toring systems, harnessing the capabilities of IoT and edge computing. By doing so, we
can create more dynamic and responsive fault-detection mechanisms in industrial settings.
Additionally, the proposed deep neural network (DNN) models will undergo further en-
hancements to classify all forms of bearing failure, taking into account the specific loading
level state of the machine.
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