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Abstract: The unbonded flexible riser has been increasingly applied in the ocean engineering industry
to transport oil and gas resources from the seabed to offshore platforms. The slippage of helical
layers, especially the tensile armor layers of unbonded flexible risers, contribute to the nonlinear
hysteresis phenomenon, which is a research hotspot and difficulty. In this paper, on the basis of a
typical eight-layer unbonded flexible riser model, the nonlinear slippage of a tensile armor layer and
the corresponding nonlinear behavior of an unbonded flexible riser subjected to irregular external
loads are studied by numerical modeling with detailed cross-sectional properties of the helical layers,
and are verified through a theoretical method considering the coupled effect of the external loads
on the unbonded flexible riser. Firstly, the balance equation of each layer considering the effect of
external loads is established based on functional principles, and the overall theoretical model of the
unbonded flexible riser is set up in consideration of the contact between adjacent layers. Secondly, the
numerical modeling of each separate layer within the unbonded flexible riser, including the actual
geometry of the carcass and pressure armor layer, is established, and solid elements are applied to all
the interlayers, thus simulating the nonlinear contact and friction between and within interlayers.
Finally, after verification through test data, the behavior of the unbonded flexible riser under the
cyclic axial force, torsion, bending moment, and irregular external and internal pressure is studied.
The results show that the tensile armor layer can slip under irregular loads. Additionally, some
suggestions related to the analysis of unbonded flexible risers under irregular loads are drawn in
the end.

Keywords: unbonded flexible riser; tensile armor layer; slippage; irregular loads; numerical method;
theoretical method

1. Introduction

An unbonded flexible riser (see Figure 1) is made of multiple separate layers with
different geometric and mechanical properties, and is a key equipment to transport gas and
oil resources from the seabed to offshore platforms. Recently, unbonded flexible risers have
gained a wider application for their advantages of light weight, resistance to large bending
deformation and corrosion, and recyclability, and have become a unique equipment for
the offshore oil and gas industry in deep waters. The unbonded flexible riser has become
a necessary pipeline in the development of offshore oil and gas resources of the deep sea
and has important engineering applications and strategic value for the development of
deep-sea resources.

The development of marine oil and gas resources from shallow waters to deep waters
is the trend of the world’s marine oil and gas resource development. The fixed platform
production system is typically used in the process of developing deep-sea oil and gas
resources. This system is limited by the water depth, and usually adopts the combination
of a floating production system and an underwater production system, which requires the
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use of a large number of pipelines, such as dynamic risers, spanning pipelines, submarine
static pipelines, etc. The harsh working environment of the sea conditions puts severe
requirements on the structural performance of steel pipelines. The application of steel
pipelines in the deep sea is limited due to fatigue caused by ocean current fluctuations,
poor corrosion resistance, difficulties in laying the pipelines during construction, and long
periods of construction. The unbonded flexible riser has a special structure in that each of
the interlayers is relatively independent and can be moved relative to each other. This gives
it better flexibility and adaptability than steel pipes, and it has thus become a necessary
pipeline for ocean development, especially for deep-sea development.
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The analytical methods for assessing the cross-sectional mechanical properties of
unbonded flexible risers typically include two categories, theoretical analysis and numer-
ical simulation, since the cost of unbonded flexible riser specimens is high and the test
conditions are harsh. The method of analyzing the mechanical properties of flexible riser
sections can be divided into two stages: axisymmetric analysis (behavior under axial force,
torsion, and internal and external pressure) and bending analysis. The interlayer contact
pressure required for the bending response analysis needs to be obtained from the axisym-
metric response analysis. A large number of experimental tests show that the axisymmetric
response of the flexible riser is basically linear, while the bending response shows obvious
hysteresis behavior.

For theoretical methods under axisymmetric loads, early studies generally only fo-
cused on the overall response of the riser under a certain load alone, and the response of
each interlayer could not be decoupled [1]; subsequent studies established the equilibrium
equations of each interlayer, and gradually considered the thickness deformation of differ-
ent layers and established the geometrical relationship between layers, so as to establish
the overall stiffness matrix of the unbonded flexible riser [2–5]. The understanding about
the slippage of helical layers in unbonded flexible risers has gone through a process from
simple to complex, and the core idea is to consider the helical tendon from the non-slip
phase to the full slip phase, which gradually considers the bending moment–curvature
relationship in the partial slip phase to improve the understanding of the slippage of the
helical tendon [6–10]. Féret and Bournazel [11] were among the early investigators of the
structural response of the unbonded flexible riser; they presented an analytical method
to quickly assess the stress of the helical tendon, while ignoring the effects of internal
and external pressures and interlayer gaps in the unbonded flexible riser model, and it
was concluded that the non-metallic cylindrical shell layer only transmits the interlayer
pressures and ignores the role of its axial stiffness. Kebadze et al. [12,13] made a great
contribution to the theoretical modeling of unbonded flexible risers: for axisymmetric anal-
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ysis, they established the balance equation of each layer and took the relationship between
adjacent layers into account; for bending analysis, they divided the bending process into
three stages, no slip, partial slip, and full slip, and gave the corresponding bending stiffness
expression. Then, Dong et al. [14], based on Kebadze’s theoretical model, accurately calcu-
lated the curvature and deflection changes of the helical tendon and regained the bending
stiffness induced by the effects of local bending and torsion of the helical tendon, and at the
same time recalculated the partially slipping bending stiffness with an explicit expression,
which greatly simplified the calculation process. Karathanasopoulos et al. [15] presented
an analytical model to characterize the mechanical response of helical constructions, such
as cables and ropes, to thermal loads, providing closed-form expressions to compute the
forces and moments induced by homogeneous and non-homogeneous temperature fields.
Kee-Jeung Hong et al. [16] developed a mesoscale mechanical model that captures the
bending behavior of helically wrapped cables subjected to tension, taking into account the
cable’s nonlinear dissipative characteristics due to wire slippage under the influence of
frictional forces. Current research mainly focuses on how to accurately describe the slip
characteristics of the helical tendon, including the tensile armor layer bending hysteresis
model established by considering different friction models and based on the theory of bend-
ing beams [17,18]; the analytical analysis model considering the deformation characteristics
of the tensile armor layer under the action of riser torque and bending around the axis [19];
the bending hysteresis model established by considering the effect of shear deformation of
the cylindrical shell layer structure in the riser [20]; and so on.

Numerical methods have evolved from equivalent simplified models to models that
account for detailed geometric properties. Numerical methods need to simulate, as much
as possible, the action of the layers of an unbonded flexible riser as well as the mutual
contact between the layers, and most of the early numerical models of unbonded flexible
risers simplified the internal complex structure to some extent [21,22]. Bahtui et al. [23,24]
established the separate layer model and took into account the nonlinear contact within the
unbonded flexible riser, which could provide the ability to simulate the bending behavior
of unbonded flexible riser; however, they did not account for the detailed cross-sectional
properties of the carcass layer and the pressure armor layer. Leroy and Perdrizet et al. [25,26]
discussed the explicit and implicit solution algorithms, and their results showed that the
explicit algorithm needs to take into account the influence of inertial effects on the results
of the calculations, and accordingly the computation time is long. On the contrary, the
standard solving algorithm has a higher solving efficiency; however, the calculation is
not easy to converge while considering the geometric and material nonlinearities as well
as the nonlinearities of interlayer and intralayer mutual contact. With the improvement
of computer computational performance, more and more scholars began to consider the
establishment of numerical models containing the detailed geometric characteristics of
unbonded flexible risers [20,27–34]. Among them, Ren et al. [35–37] numerically simulated
the unbonded flexible riser model using its actual geometry, including the S-type carcass
layer and the Z-type pressure armor layer. The complex behavior of unbonded flexible
risers under coupling loads can further be simulated using their model. Liu et al. [38,39]
extended the steel homogeneous tensile armor layer model to one that can simultaneously
account for the steel and composite tensile armor layers and carried out the calculation
of the mechanical properties of the composite tensile armor layer in different working
conditions by establishing a numerical model with detailed geometric properties. The
accuracy of the theoretical and numerical methods was mutually verified.

This study introduces a comprehensive experiment to understand the nonlinear slip-
page behavior of tensile armor layers in unbonded flexible risers under irregular loads by
numerical and theoretical methods. A significant advancement over existing research by
integrating detailed cross-sectional properties into both theoretical and numerical models
is present. The novelty lies in its ability to capture the complex interactions between lay-
ers, accounting for the coupled effects of external loads and interlayer contact. The main
achievements include the development of an eight-layer unbonded flexible riser model that
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simulates real-world conditions with high fidelity, and the validation of the model against
test data. The results of this study provide new insights into the hysteresis phenomenon
associated with the slippage of tensile armor layers, offering practical implications for the
design and operation of deep-sea oil and gas infrastructure. By focusing on the nonlinear
behavior under irregular loads, this research contributes to the ongoing efforts to enhance
the reliability and safety of unbonded flexible risers in the offshore industry.

2. Theoretical Formulations

A simple sketch of the deformation of an unbonded flexible riser can subject to external
loading is presented in Figure 2. The following assumptions have to first be introduced:

1. The external loads of axisymmetric loads and the bending moment can be decoupled.
2. All layers in the model are assumed to be in the small deformation stage and neglect

the material nonlinearity for the cross-sectional analysis.
3. The riser has sufficient length (L/D ∼= 10, where L is the initial length of riser and D is

the outer diameter of riser).
4. The riser segment is assumed to be far away from the bending stiffener and the initial

imperfection of the riser is also neglected, and it is assumed that each layer of the riser
has the same axial elongation and torsion angle along the central axis.

5. For helical layers, the frictional energy due to the slippage of helical tendon is ne-
glected.

6. The anti-friction layer is simplified as a cylindrical layer.
7. The thickness deformations of the carcass layer as well as the pressure armor layer

are neglected.
8. When studying the fracture of the tensile armor layer, the tensile armor layer is

considered to have lost its bearing capacity when it reaches the yield stress.
9. The static and dynamic coefficients of friction between the layers are equal.
10. When applying the bending moment, the axial direction of the tendon is the only

slip direction.
11. The only contribution to the critical bending curvature is the initial axisymmetric load

and the interlayer pressure caused by the bending moment is ignored.
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2.1. Analytical Modeling of Cylindrical Layer by Axisymmetric Loads

It can be seen in Figure 2 that the axisymmetric loads include axial force F, torsion T,
internal and external pressures Pi and Po. The energy applied by axisymmetric loads can
be assumed to be given by [12,36]:

W = F∆L + T∆φ + Pi∆Vi − Po∆Vo (1)
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where ∆L is the axial deformation, ∆φ is the rotational angle about the axial direction, and
∆Vi and ∆Vo are the internal and external volumetric distortions, separately, and can be
given as

∆Vi = π

(
Ri + ∆R − ∆t

2

)2

(L + ∆L)− πR2
i L ≈ πRiL(2Rmε2 − tε3 + Riε1) (2)

∆Vo = π

(
Ro + ∆R +

∆t
2

)2

(L + ∆L)− πR2
o L ≈ πRoL(2Rmε2 + tε3 + Roε1) (3)

where Ri and Ro are the internal and external radii of the cylindrical layers, separately;
Rm is the average radius; L is the initial length of the layer; t and ∆t are the thickness
and thickness deformation of the cylindrical layer; and the strains of the cylindrical layer
are defined by ε1 = ∆L/L, ε2 = ∆R/Rm, and ε3 = ∆t/t. Thus, Equation (1) can be
rewritten as:

W = (Fε1 + Tγ)L + πPiRiL(2Rmε2 − tε3 + Riε1)− πPoRoL(2Rmε2 + tε3 + Roε1) (4)

where γ = ∆φ/L.
According to the above strains, the derivation of the work done by the external

axisymmetric loads can be obtained [40]. For anisotropic materials, the relationship be-
tween strain and stress can be given based on Hooke’s law. The strain energy U can be
presented as:

U = 1
2

∫
V (σ1ε1 + σ2ε2 + σ3ε3 + τ12γ12)dV

= 1
2

∫
V
[
(λ + 2G)

(
ε2

1 + ε2
2 + ε2

3
)
+ 2λ(ε1ε2 + ε1ε3 + ε2ε3) + GR2

mγ2]dV
(5)

where σ1, σ2, σ3, and τ are the corresponding stresses of each direction; E is the Young’s
modulus and µ is the Poisson’s ratio; G = E

2(1+µ)
is the shear modulus; and parameter

λ = µE
(1+µ)(1−2µ)

.

Substituting the volume of the cylindrical layer V = π
(

R2
o − R2

i
)

L and applying the
partial derivatives for each strain yields:

∂U
∂ε1

= [(λ + 2G)ε1 + λ(ε2 + ε3)]AL
∂U
∂γ = πGR2

mγ
(

R2
o − R2

i
)

L ≈ πGγ
(

R4
o − R4

i
)

L
∂U
∂ε2

= [(λ + 2G)ε2 + λ(ε1 + ε3)]AL
∂U
∂ε3

= [(λ + 2G)ε3 + λ(ε1 + ε2)]AL

(6)

where A = π
(

R2
o − R2

i
)
.

Based on the functional principle, the relationship between the total potential energy
and the work done by the external loads and internal energy can be given by:

∂Π = ∂W − ∂U = 0 (7)

The equilibrium equation for the cylindrical layer can be obtained by combining
Equations (5)–(7) [35,38]:

k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44




∆L/L
∆ϕ/L

∆R/Rm
∆t/t

 =


F + πPiR2

i − πPoR2
o

T
2πRm(PiRi − PoRo)
−πt(PiRi + PoRo)

 (8)
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where
k11 = µEA

(1+µ)(1−2µ)
+ EA

1+µ k13 = k31 = µEA
(1+µ)(1−2µ)

k22 = E
2(1+µ)

·π
2 (Ro

4 − Ri
4) k24 = k42 = 0

k34 = k43 = µEA
(1+µ)(1−2µ)

k12 = k21 = 0

k14 = k41 = µEA
(1+µ)(1−2µ)

k23 = k32 = 0

k33 = µEA
(1+µ)(1−2µ)

+ EA
1+µ k44 = µEA

(1+µ)(1−2µ)
+ EA

1+µ

2.2. Analytical Modeling of Helical Layer by Axisymmetric Loads

For the carcass layer and pressure armor layer with complex cross-sections, only the
axial deformation is considered, while for the tensile armor layer with a regular cross-
section, the radial deformation is also involved, and the sketch of a loaded helical tendon is
presented in Figure 3. Based on the geometric properties of the helical tendon and assuming
the laying angle is α, the axial strain εa and the radial strain εr can be defined by [11,12,36]:

εa = cos2 α ∆L
L + Rm sin α cos α

∆φ
L + sin2 α ∆R

Rm

εr =
∆t
t

(9)
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The strain energy of a single helical tendon is calculated by [12,38]:

Us =
n
2

∫
V
(σaεa + σrεr)dV (10)

where n is the number of helical tendons and σa and σr are the corresponding stresses of
the helical tendon.

Similar to the deduction process in Section 2.1, the final equilibrium equation for the
helical layer can be presented as follows [12,38,39]:

k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44




∆L/L
∆ϕ/L

∆R/Rm
∆t/t

 =


F + πPiRi

2 − πP0R0
2

T
2πRm(PiRi − P0R0)
−πt(PiRi + P0R0)

 (11)

where
k11 = nEA

1−µ2 cos3 α k12 = nEARm
1−µ2 sin α cos2 α

k13 = k31 = nEA
1−µ2 sin2 α cos α k14 = k41 = nEAν

1−µ2 cos α

k22 = nEAR2
m

1−µ2 sin2 α cos α k23 = k32 = nEARm
1−µ2 sin3 α

k24 = k42 = nEARmµ

1−µ2 sin α k33 = nEA
1−µ2

sin4 α
cos α

k34 = k43 = nEAµ

1−µ2
sin2 α
cos α k44 = nEA

(1−µ2) cos α

By combining the equilibrium equations of each layer, the force–strain relationship can
be established. In addition to solving the unknowns, the geometrical relationships between
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adjacent layers should be considered. Based on the restriction of geometric continuity, the
interlayer contact relationship between adjacent layers is given by the following equation:

Rj
m + ∆Rj +

tj + ∆tj

2
= Rj+1

m + ∆Rj+1 − tj+1 + ∆tj+1

2
(12)

where j stands for the number of a separate interlayer.
When the neighboring layer starts to separate, i.e., there is gap between neighboring

layers, the contact pressure is set as 0.
Based on the above equation, the analytical solution under axisymmetric loads can

be obtained.

2.3. Analytical Modeling of Unbonded Flexible Riser by Bending Moment

For a homogeneous isotropic cylindrical shell layer, the bending characteristics can be
obtained according to the flat section assumption [39]:

M = EIκ (13)

where EI is the bending stiffness; M stands for the bending moment; and κ is the corre-
sponding curvature.

The bending stiffness of a helical layer can be divided into three stages according to
the slip phase. When in the phase where the helical tendon is bonded to the adjacent layer,
based on Equation (9), the strain of the helical tendon, in consideration of the geometric
angle of helical tendon (see Figure 4) and plane assumption under bending moment, is
simplified by only considering the axial strain [12–14]:

εa = Rm cos2 α sin θκ (14)

where θ = θj1 + θj2 = 2π j
n + z tan α

Rm
; z is the distance in the axial direction of the unbonded

flexible riser.
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According to the functional principle, the following relationship of the tensile armor
layer during the non-slip stage can be obtained [12,14]:

M = nEAR2
m cos3 α·κ/2

EIns = nEAR2
m cos3 α/2

(15)
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Based on the above assumptions, the critical curvature κcr is calculated by the contact
pressure of axisymmetric loads [12,39]:

κcr =
Piµi + Poµo

Et sin α cos2 α cos θ
(16)

where µi and µo are the friction coefficients between contact layers and Pi and Po are the
corresponding contact pressures from the axisymmetric analysis.

When κmin
cr < κ < π·κmin

cr /2, the tensile armor layer is in the partial slip stage, and the
bending characteristics are presented as [14]:

M = 4EInsκ
min
cr (sin θcr − θcr cos θcr)/π + EInsκ[π − 2θcr + sin 2θcr]/π

EIps = EIns − EIns(2θcr − sin 2θcr)/π − 4ξ sin θcrEIns
tan(θcr/ξ)π

(
θcr cos θcr

ξ − sin θcr

) (17)

When the bending curvature exceeds π·κmin
cr /2, the tensile armor layer enters the full

slip phase and loses its corresponding bending stiffness, which can be set to zero. The
remaining bending stiffness is caused by the deformation of the helical tendon [14]:

Mbt =
nκ
2
[
EIn

(
1 + sin2 α

)
cos α + EIb cos7 α + GJ sin2 α cos5 α

]
EIbt =

n
2
[
EIn

(
1 + sin2 α

)
cos α + EIb cos7 α + GJ sin2 α cos5 α

] (18)

where In stands for the inertia moment of the helical tendon; Ib is the bi-normal inertia
moment; and J is the torsional inertia moment of helical tendon.

The effect of axisymmetric loads is also considered in this paper and is given by the
following equation [39]:

Mh
p =

nbRoPo − nbRiPi
2κ2 cos α

(
2 sin

Lκ

2
− sin Lκ

2
− sin

Lκ

2
cos

Lκ

2

)
(19)

Additionally, for the irregular external pressure applied to the outer sheath, an integral
approach is used to synthesize the effect of the external pressure.

3. Numerical Simulation

Detailed geometric and material properties of unbonded flexible riser models are
very rare since the riser model is not only difficult to produce, but also very expensive,
and there are few published riser models with detailed properties. In 1996, Witz [41]
presented some classic experiments of a typical 2.5-inch unbonded flexible riser model
with eight layers, which not only includes detailed geometric properties, but also detailed
experimental measurements and boundary conditions, and many scholars have conducted
research based on these tests since then. Thus, Witz’s model is also used to simulate the
complex behavior of unbonded flexible risers in this paper. The corresponding geometric
and material characteristics are presented in Table 1. Additionally, a sketch of the numerical
model, including the all-inclusive helical layer with detailed geometric properties, is
illustrated in Figure 5.

Some settings have to be established first. At first, the numerical model should have
sufficient length, typically no less than twice the tensile armor pitches [42], to avoid the
effect of the stress concentration phenomenon at the end of riser model. To accurately cap-
ture the behavior of the unbonded flexible riser, a 1.0-m numerical model was constructed
using the finite element (FE) software Abaqus of 6.13 version. This model’s length is more
than twice the pitch of the tensile armor layer to ensure accurate representation (as detailed
in Table 1). The FE model utilized 8-node linear elements with incompatible modes to
simulate the solid layers and account for geometric nonlinearities. Then, since there are
a large number of geometric and contact nonlinearities within the numerical model, the
explicit solution method is adopted for calculations. The simulations were conducted on a
high-performance computing cluster, requiring approximately 20 h of processing time on
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64 cores. Also, two reference points (see Figure 5, RP1 and RP2) are set at the geometric
center of both cross-sections of the unbonded flexible riser model and all the boundary
nodes of each separate interlayer are bounded onto the reference points, thus applying
the boundary conditions and external loads. Additionally, a general contact is applied
within the numerical model, and the tangential behavior is simulated by using the Coulomb
friction model [27], where the corresponding frictional coefficient is 0.1 [43]. The inertia
effect must be taken into account for the explicit solution method and the kinetic energy
during the calculation process should be controlled. As a consequence of controlling the
kinetic energy, which is under 5% compared with the internal energy, during simulation,
a smooth step loading method is applied to extend the simulation time and decrease the
inertia effect. Two steps are applied for the analysis of the bending behavior: an initial
external pressure is applied first to simulate the prestressing state and then the bending
moment is applied.

Table 1. Geometric and material properties of unbonded flexible riser model.

Layer
Number Layer Type Section Size

(mm2)
Number of

Tendons
Inner

Radius (mm)
Outer

Radius (mm)
Laying

Angle (◦) Material
Young’s

Modulus
(GPa)

Poisson’s
Ratio

1 Carcass 19.60 1 31.60 35.10 −87.5 AISI 304 205 0.29
2 Pressure sheath - - 35.10 40.00 - Nylon 12 0.28 0.30
3 Zeta layer 5.55 1 40.05 46.25 −85.5 FI-15 205 0.29

4 Anti-friction
layer - - 46.25 47.75 - Nylon 11 0.30 0.30

5 Inner tensile
armor layer 18.00 40 47.75 50.75 −35.0 FI-41 205 0.29

6 Anti-friction
layer - - 50.75 52.25 - Nylon 11 0.30 0.30

7 Outer tensile
armor layer 18.00 44 52.25 55.25 35.0 FI-41 205 0.29

8 Fabric tape 4.50 - 55.25 55.75 - - 0.60 0.30
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4. Model Verification
4.1. Axial Tensile Behavior of Unbonded Flexible Riser

The axial tensile behavior is presented in this section to verify the proposed theoretical
and numerical methods based on Witz’s test [41]. A total axial tension of 500 kN is applied
to RP1 and the corresponding boundary condition is top-end free, while the other reference
point, RP2, is set as fixed of all degrees of freedom. A quasi-static method is used to apply
the axial tension, and in order to minimize the inertia effect, the tension loading duration is
increased while ensuring computational efficiency. The axial tension–elongation curves
of the unbonded flexible riser model by different methods are shown in Figure 6, and the
axial tensile stiffness can be found in Table 2. During the numerical simulation, the ratio
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of kinetic energy to internal energy is presented in Figure 7, where the ratio is no more
than 5%.
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Figure 6. Axial tension–elongation curves of different methods [41]. 
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Table 2. Axial stiffness by different methods.

Method Axial Tensile Stiffness (MN) Axial Compressive Stiffness
(MN)

Analytical method 105.88 1.46
Numerical method 99.19 1.49

Experimental method 91.19 -
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Unlike the test results, from Figure 6, the numerical and theoretical results do not
exhibit significant nonlinearities since the tensile armor layers do not have obvious slippage.
However, in terms of the axial tensile stiffness, the numerical results are relatively close
to the experimental results, while the theoretical method is a little larger. The relative
deviation of the theoretical method is mainly caused by the above assumptions, such as ne-
glecting the nonlinear distribution of stress due to the boundary condition, etc. Noting that
the average tensile stiffness predicted by other scholars [41] is 128.33 MN, the theoretical
method in this paper can predict a closer result to the true value than the experimental and
numerical results. The numerical method includes all the geometric and contact nonlineari-
ties, and can properly predict the axial tensile stiffness, where the relative deviations are
mainly caused by the possible initial pre-stress and initial defects in the unbonded flexible
riser specimens.

The axial compressive stiffness is also presented in Table 2 with the same boundary
condition as the tension case. Since Witz [41] did not present the test results of the com-
pressive case, only analytical and numerical results are calculated and prepared in Table 2,
where the numerical results agree well with the analytical results in the case of the riser
under axial compression.

4.2. Clockwise Torsional Behavior of Unbonded Flexible Riser

The clockwise torsional behavior with different boundary conditions is presented
in Figure 8. The ratio of kinetic energy to internal energy is also verified to be under 5%
during numerical simulation.

Boundary conditions significantly affect the torsional stiffness. Figure 8 presents the
clockwise torsion versus twist curves with different boundary conditions and the corre-
sponding torsional stiffness is presented in Table 3. From Figure 8a, the theoretical and
numerical results with the top end free are basically consistent and in good agreement, and
the clockwise torsion–twist angle is about linear for both methods. The relative deviation
between the theoretical and numerical models is about 2%. The main reason for the error
is due to the simplifications and assumptions in the theoretical approach. Additionally,
compared with the mean theoretical prediction of clockwise torsional stiffness by orga-
nizations and scholars [41], the theoretical method proposed in this paper has a better
prediction of the numerical results. From Figure 8b, the theoretical and the numerical
results with the top end prevented from moving axially is compared with experimental
data. Unlike the numerical and theoretical methods, the test data shows some hysteresis
phenomena, and Witz [41] explained that this could be caused by the initial prestressing in
the unbonded flexible riser test specimen. The boundary conditions have a great influence
on the torsional stiffness, and the torsional stiffness under the restricted axial displace-
ment at the top end is about 20 times more than that with the top end prevented from
moving axially.

Table 3. Clockwise torsional stiffness with different models.

Loading Cases Top End Free (kNm2/rad)
Top End Prevented from

Moving Axially (kNm2/rad)

Analytical model 4.07 64.80
Numerical model 3.69 77.40
Mean prediction 3.28 87.08
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4.3. Bending Behavior of Unbonded Flexible Riser

A 0.2 MPa initial pressure is applied on the outer sheath first to simulate the pre-
stressing by the manufacture of the riser, and then the bending moment is applied on the
reference points [12,27]. Figure 9 presents the bending behavior of the unbonded flexible
riser by different methods, which both exhibit obvious nonlinear hysteresis phenomena.
The full-slipping bending stiffness by different methods is presented in Table 4. Theoretical
predictions are in good agreement with both numerical and experimental results. Two
loading cases of the theoretical method are presented in this section to be consistent with
the numerical and test results. On one hand, the first theoretical prediction did not account
for the initial external pressure (consistent with the test setting), and the corresponding
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result is a straight line through the origin (the magenta line in Figure 9), where the cor-
responding bending stiffness is consistent with experimental results. On the other hand,
the theoretical prediction has an initial external pressure consistent with the numerical
method, and an obvious nonlinear trend is observed in the blue line of Figure 9. The
numerical method exhibits obvious nonlinear behavior, which is in good agreement with
the test measurement. The curve of numerical method (red line in Figure 9) illustrates three
obvious stages when neglecting the instability during numerical simulation. The relative
deviation of the full-slipping bending stiffness of the unbonded flexible riser between the
analytical and numerical results is relatively small, at only 3.4%.
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Table 4. Bending stiffness of full-slipping phase by different methods.

Loading Cases Without Initial Pressure
(kNm2)

With 02 MPa Initial Pressure
(kNm2)

Analytical method 1.19 1.42
Numerical method - 1.41
Experimental result 1.190 & 1.041 -

However, the critical bending curvatures when the helical tendon begins to slip for
the proposed numerical and analytical methods have some deviation (see Figure 9). The
main reason is caused by the contact pressure caused by the bending moment, which the
analytical method has ignored. When in the full-slipping phase, the interlayer pressure
would no longer have an effect on the bending stiffness, and the corresponding analytical
and numerical results are in good agreement.

5. Discussion

An initial external pressure is applied on the outer sheath to simulate the wet envi-
ronment and the initial prestressing of the riser. Then, the axial tension and compression,
the clockwise and counterclockwise torsion, and the bending moment are applied on the
reference point. Additionally, the hysteresis behavior under cyclic axial loads is analyzed
by outputting the load–displacement curves combined with the friction dissipation energy
qualitatively analyzed within the ABAQUS software of 6.13 version.
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5.1. Axial Cyclic Behavior of Unbonded Flexible Riser under Cyclic Axial Tension and
External Pressure

The corresponding numerical and analytical results are presented in Figure 10. The
black line illustrates the numerical results. Due to the initial external pressure, the riser
would have an initial axial elongation of about 0.002%. After applying a cyclic axial tension
of 6 kN, the numerical curve shows a linear increase, which is mainly due to the effect
of the external pressure, which increases the contact pressure between adjacent layers.
Thus, the initial gap between adjacent layers is not reduced. Also, the numerical results
do not show significant hysteresis characteristics, that is, the first cycle’s process and
the subsequent cyclic process of the tension–elongation relationship do not present with
obvious differences, which is mainly because the extrusion of the layer by a certain external
pressure leads to the difficulty of the occurrence of relative displacement of the layer, and
friction is still mainly manifested as static friction.
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external pressure.

The red line in Figure 10 represents the theoretical results. The theoretical method
integrates the effect of the initial external pressure and axial load. The corresponding axial
tension–elongation curve is linear, which is mainly because the theoretical solution process
is based on strict assumptions, ignoring the influence of dynamic friction within interlayers
and the cross-sectional properties of the carcass and the pressure armor layer.

The numerical results from 5900 to 6000 N are shown in Figure 10. It is found that the
unbonded flexible riser still exists within a certain range of hysteresis properties, and its
stiffness varies from 225.22 MN to 224.26 MN and the corresponding relative deviation
is no more than 0.5%. The reason for the hysteresis is due to the fact that slippage still
occurs within the layers during cyclic loading, which leads to an axial force greater than
the maximum static friction. This phenomenon is common in such multilayer composite
pipes used as marine hoses and cables. Notably, the axial tensile stiffness is increased by
126.39% compared to the case without external pressure (see Table 2) where the interlayers
of the unbonded flexible riser are bonded together by the external pressure.

The friction dissipation energy of the system under an external pressure of 1.2 MPa
is about 119.5 times that of the system without external pressure during the numerical
calculation, which is presented in Table 5. The external pressure makes the interlayer
contact pressure greater; under the same friction coefficient, the interlayer friction under
1.2 MPa external pressure is much larger and the axial tension–axial elongation curve under
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1.2 MPa external pressure shows a more obvious hysteresis effect than that without external
pressure.

Table 5. Frictional energy under cyclic tension during numerical simulation.

Loading Cases Without Pressure External Pressure/1.2 MPa

Frictional energy/J 0.308 36.8

5.2. Axial Cyclic Behavior of Unbonded Flexible Riser under Cyclic Axial Compression and
External Pressure

Similar to the axial cyclic tension loading condition, the same initial external pressure
is applied first, and then the cyclic axial compression of 8 kN is applied on the RP1. The
corresponding calculation results by the proposed methods are presented in Figure 11.
The external pressure also affects both the axial compressive stiffness and the nonlinear
hysteresis behavior, especially for the axial compressive stiffness, which is much greater
than the case without external pressure. Furthermore, the hysteresis behavior is also more
obvious than the axial tension case, where the axial compressive stiffness has a relative
deviation of about 1%.
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From Figure 11, the numerical results exhibit a more obvious hysteresis behavior than
that under cyclic tension, and the local details of the numerical results from −250 N to
0 N are also presented in Figure 11: (1) stage a to b is the axial deformation caused by
the initial external pressure, which is consistent with the tension loading case; (2) then,
after applying the axial compression, the axial elongation of the riser increases with the
increasing compression; (3) with the unloading of the axial compression, the compressive
behavior of the unbonded flexible riser shows some nonlinearity, and finally returns to
point g in Figure 8, which is far away from the initial point b. In addition, the correspond-
ing axial compressive stiffness of the unbonded flexible riser ranges from 94.34 MN to
95.58 MN during the numerical simulation, which is much greater than that without ex-
ternal pressure in Table 2. As a comparison, the axial compressive stiffness calculated
by the theoretical method is 110.94 MN, and the relative deviation is about 15%. Both
theoretical and numerical results show a greater increase of the axial compressive stiffness,
which is mainly due to the fact that when loading the external pressure, the interlayers
are in closer contact and the gap between adjacent layers is reduced, contributing to the
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increasing friction that leads to a substantial increase in the axial compressive stiffness of
the unbonded flexible riser.

5.3. Behavior of Unbonded Flexible Riser under Cyclic Torsion and External Pressure

For the hysteresis response of the unbonded flexible riser under cyclic torque loading,
the torque is taken as 40 NM. The effect of external pressure, which is taken as 0.6 MPa, 1.2
MPa, and 1.8 MPa, is also considered and applied on the outer sheath. Also, a quasi-static
loading is applied in this paper.

Figure 12 describes the torsion–twist angle curve of different loading conditions. As
the theoretical model ignores the influence of frictional contact in the calculation process,
the torsion–twist angle curve cannot accurately reflect the hysteresis characteristics, and the
torsional stiffness of the theoretically calculated unbonded flexible risers is consistent under
three external pressures. In order to make the graph more concise and clearer, Figure 12
only shows the theoretical results under the external pressure of 0.6 MPa. From Figure 12,
the horizontal line indicates the initial amount of torsion of the riser after applying the
external pressure only. The following conclusions can be drawn from the analysis of the
calculation results:

1. The difference between theoretical and numerical results is small. Taking 0.6 MPa as an
example, the torsional stiffness obtained by theoretical calculation is
173.52 N·m2/rad, and the torsional stiffness obtained by numerical calculation is
160.02 N·m2/rad. The relative error is about 8.4%, which is mainly because the theo-
retical calculation process is based on a relatively strict assumption for the solution,
ignoring the influence of mutual contact between the helical tendon.

2. Under the same external pressure condition, the torsional stiffness of loading clock-
wise torque is almost the same as that of loading counterclockwise torque. This is
different from the torsional stiffness when loaded without external pressure, where
counterclockwise torque stiffness is about 40 times higher than that of clockwise
torque stiffness [44]. The reason is that when no external pressure is applied, due to
the counterclockwise helical structure of the tensile armor layer, loading the coun-
terclockwise torque makes the external tensile armor layer tighten along the circle
direction, the layers do not separate, and the riser as a whole exhibits higher torsional
capacity. While loading the clockwise torque, the external tensile armor layer helical
steel tendon expands along the circle direction, the interlayers separate, and the riser
exhibits lower torsional stiffness. When under external pressure, each layer is com-
pressed, and the interlayers do not separate, which shows higher torsional stiffness.

3. With the increasing of external pressure, the unbonded riser shows more obvious
hysteresis characteristics, i.e., the curves do not completely overlap in the cyclic
process, which is mainly due to the exertion of a certain amount of pressure on the
interlayer resulting in the interlayer not being easily relatively displaced. Furthermore,
the friction between the interlayer is gradually increased, so that the torsion–twist
angle curves show a more pronounced hysteresis response.

Table 6 shows the numerically calculated frictional dissipation energy under three
different external pressure loading conditions. With the increasing of external pressure, the
frictional dissipation energy increases gradually, which further proves that the interlayer
frictional slip generated by the loading of unbonded flexible risers with external pressure is
one of the main reasons for the hysteresis phenomenon.

Table 6. Frictional energy under cyclic torsion during numerical simulation.

Loading Cases 0.6 MPa 1.2 MPa 1.8 MPa

Frictional energy/J 9.94 52.39 123.28



J. Mar. Sci. Eng. 2024, 12, 818 17 of 24J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 17 of 23 
 

 

 

Figure 12. Axial cyclic torsion–twist curves of different cases. 

Table 6. Frictional energy under cyclic torsion during numerical simulation. 

Loading Cases 0.6 MPa 1.2 MPa 1.8 MPa 

Frictional energy/J 9.94 52.39 123.28 

5.4. Bending Behavior of Unbonded Flexible Riser under Bending Moment and Irregular Exter-

nal and Internal Pressure 

When unbonded flexible risers are in the actual working environment, due to the 

actual configuration, the internal and external pressure loads acting on the inner and outer 

sheath layers might not be uniformly distributed along the length of the riser, but rather 

show a linear variation with the depth at which the unbonded flexible riser is located. 

Considering the loading cases of applying external and internal pressure respectively, 

six calculation conditions are given by the numerical method as shown in Table 7, and the 

friction coefficients are all taken as 0.1. Among them, loading cases A1 and B1 are the 

control cases, assuming that the non-uniform pressure acting on the inner and outer 

sheath layers of unbonded flexible risers can be equated to the corresponding uniformly 

distributed pressure effects, and the uniformly distributed internal and external pressure 

effects of 0.5 MPa are taken as the reference conditions. Loading cases A2 and B2 apply 

significantly varying external and internal pressures to the external and internal sheath 

layers of the unbonded flexible riser, respectively, and the corresponding pressures vary 

linearly along the length of the unbonded flexible riser from 0 MPa to 1 MPa. For cases A3 

and B3, the unbonded flexible riser model is considered to be at a certain water depth and 

the riser model is perpendicular to the seabed direction, and it is assumed that the pres-

sure action acting on the corresponding inner and outer sheath layers varies linearly along 

the direction of the water depth (linearly in the range of 0 MPa to 0.01 MPa); an initial pres-

sure of 0.495 MPa is applied to the corresponding layer structure, considering that it is com-

parable to the action of the internal and external pressure loads acting in cases A2 and B2. 

Table 7. Geometric and material properties of unbonded flexible riser model. 

Pressure Case Number Distribution of Pressure Range of Pressure/MPa Initial Pressure/MPa 

External pressure 

A1 Uniform distribution - 0.5 

A2 Non-uniform distribution From 0 to 1 - 

A3 Non-uniform distribution From 0 to 0.01 0.495 

Internal pressure 

B1 Uniform distribution - 0.5 

B2 Non-uniform distribution From 0 to 1 - 

B3 Non-uniform distribution From 0 to 0.01 0.495 

Figure 12. Axial cyclic torsion–twist curves of different cases.

5.4. Bending Behavior of Unbonded Flexible Riser under Bending Moment and Irregular External
and Internal Pressure

When unbonded flexible risers are in the actual working environment, due to the
actual configuration, the internal and external pressure loads acting on the inner and outer
sheath layers might not be uniformly distributed along the length of the riser, but rather
show a linear variation with the depth at which the unbonded flexible riser is located.

Considering the loading cases of applying external and internal pressure respectively,
six calculation conditions are given by the numerical method as shown in Table 7, and
the friction coefficients are all taken as 0.1. Among them, loading cases A1 and B1 are
the control cases, assuming that the non-uniform pressure acting on the inner and outer
sheath layers of unbonded flexible risers can be equated to the corresponding uniformly
distributed pressure effects, and the uniformly distributed internal and external pressure
effects of 0.5 MPa are taken as the reference conditions. Loading cases A2 and B2 apply
significantly varying external and internal pressures to the external and internal sheath
layers of the unbonded flexible riser, respectively, and the corresponding pressures vary
linearly along the length of the unbonded flexible riser from 0 MPa to 1 MPa. For cases
A3 and B3, the unbonded flexible riser model is considered to be at a certain water depth
and the riser model is perpendicular to the seabed direction, and it is assumed that the
pressure action acting on the corresponding inner and outer sheath layers varies linearly
along the direction of the water depth (linearly in the range of 0 MPa to 0.01 MPa); an initial
pressure of 0.495 MPa is applied to the corresponding layer structure, considering that it
is comparable to the action of the internal and external pressure loads acting in cases A2
and B2.

The pressure contours for the external sheath layer, the external tensile armor layer,
and the internal tensile armor layer are given for cases A1 and A2, respectively, as shown
in Figure 13. Compared with Figure 13b, it can be seen that the outer sheath layer with
non-uniformly distributed external pressure exhibits obvious pressure nonlinearity when
neglecting the influence of boundary effects. The pressure contours of the external tensile
armor layer structure adjacent to the outer sheath layer are shown in Figure 13c,d, and
there is little difference between the two types of pressure. A similar phenomenon can be
observed for the internal tensile armor layer structure (Figure 13e,f).
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Table 7. Geometric and material properties of unbonded flexible riser model.

Pressure Case Number Distribution of Pressure Range of
Pressure/MPa Initial Pressure/MPa

External pressure
A1 Uniform distribution - 0.5
A2 Non-uniform distribution From 0 to 1 -
A3 Non-uniform distribution From 0 to 0.01 0.495

Internal pressure
B1 Uniform distribution - 0.5
B2 Non-uniform distribution From 0 to 1 -
B3 Non-uniform distribution From 0 to 0.01 0.495
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Figure 13. Pressure contours of the numerical riser model under a wide range of non-uniform external
pressures and equivalent uniform external pressures. (a) Outer sheath, non-uniform external pressure
from 0 to 1 MPa. (b) Outer sheath, uniform external pressure of 0.5 MPa. (c) Outer tensile armor
layer, non-uniform external pressure from 0 to 1 MPa. (d) Outer tensile armor layer, uniform external
pressure of 0.5 MPa. (e) Inner tensile armor layer, non-uniform external pressure from 0 to 1 MPa.
(f) Inner tensile armor layer, uniform external pressure of 0.5 MPa.
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The bending moment–curvature curves for the three cases are given in Figure 14,
where the black solid line is the theoretical prediction, the violet solid curve represents A1,
and the dashed curves represent A2 and A3. In the full slip stage, the theoretical method
has better predictions and the full slip bending stiffnesses obtained by the two methods
are close to each other. Neglecting the instability of the numerical model, it can be seen
from Figure 14 that the mechanical properties under combinations of different forms of
external pressure and bending moment maintain a good agreement. In particular, in the
case where the range of variation of the external pressure distributed along the pipe length
direction is not significant (Case A3), the numerical results are in good agreement with the
results of the numerical calculation of the equivalent uniformly loaded external pressure
(Case A1). Therefore, for the numerical modeling of unbonded flexible risers of limited
length, the external non-uniform pressure distribution acting on the risers can be equated
to a uniformly distributed external pressure load with the same value of total pressure in
the study of their bending characteristics.
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Figure 14. Bending behavior under non-uniform external pressure and equivalent uniform external
pressure.

Since the innermost carcass layer is a non-watertight layer structure, the internal
pressure acts on the internal sheath layer of the unbonded flexible riser. Considering the
different loading forms of internal pressure loads, the pressure contours of the numerical
model of the unbonded flexible riser after the application of internal pressure are given
in Figure 15. Comparison of the pressure contours of different layers for the case B2,
which has a large variation of the internal pressure load along the pipe length direction,
and the control case B1, which has a uniformly loaded internal pressure load, are given.
Neglecting the influence of the boundary condition, consistent with the non-uniformly
loaded external pressure loading case, the non-uniform distribution of internal compressive
load is obvious in the inner sheath layer, as shown in Figure 15a, whereas the corresponding
uniformly loaded internal pressure of the control case (as shown in Figure 15b) has a
uniform distribution after loading. The pressure distribution level of the corresponding
internal and external tensile armor layers is comparable (Figure 15c–f). Unlike the cases A1
to A3, due to the detailed simulation of the pressure armor layer, the effect of the internal
pressure on the external and internal tensile armor layers is limited, especially for the
external tensile armor structure, which suffers from a very low pressure level (Figure 15e,f).
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Figure 15. Pressure contours of the numerical riser model under a wide range of non-uniform internal
pressures and equivalent uniform internal pressures. (a) Inner sheath, non-uniform internal pressure
from 0 to 1 MPa. (b) Inner sheath, uniform internal pressure of 0.5 MPa. (c) Inner tensile armor
layer, non-uniform internal pressure from 0 to 1 MPa. (d) Inner tensile armor layer, uniform internal
pressure of 0.5 MPa. (e) Outer tensile armor layer, non-uniform internal pressure from 0 to 1 MPa.
(f) Outer tensile armor layer, uniform internal pressure of 0.5 MPa.

The bending behavior of the unbonded flexible riser for loading cases from B1 to B3
are given in Figure 16. The numerical results show good agreement in general, and the
different internal pressure loading methods have limited influence on the numerical results.
The corresponding theoretical prediction is presented as the black solid line in Figure 16.
There is a certain difference between the theoretical and numerical results, which is due to
the fact that the numerical model in this paper adequately takes into account the actual
geometry of the pressure armor layer (Zeta layer). The pressure armor layer is the most
important internal pressure-bearing layer of the unbonded flexible riser. It is positioned
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next to the inner sheath layer and it resists the radial loads due to its special geometry.
After applying the internal pressure, the pressure armor layer carries most of the internal
pressure and only a small portion of the internal pressure is transferred to the outer layers,
e.g., internal and external tensile armor layers.
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6. Conclusions

This paper presents the nonlinear behavior of unbonded flexible risers under irregular
loads. Firstly, the theoretical model is derived by function principles. Then, based on a
typical 2.5-inch unbonded flexible riser model with eight layers, the numerical model is
established by a combination of separate interlayers with detailed geometric properties.
After the verification through Witz’s experimental case, the proposed numerical and the-
oretical methods can possibly predict the nonlinear behavior and are in good agreement.
Some useful conclusions are drawn in this section:

1. The axial stiffness of the unbonded flexible riser under cyclic axial force would show
a certain hysteresis characteristic, and the corresponding axial stiffness would change
in a certain small range, while the overall behavior is still close to a linear change. The
external pressure would enhance the axial stiffness of unbonded flexible riser and the
axial compressive behavior is especially sensitive to the external pressure, not only in
the form of a significant increase in compressive stiffness, but also in the form of a
more obvious hysteresis phenomenon.

2. When under cyclic torsion and external pressure, the friction under the external
pressure can lead to hysteresis characteristics. As the external pressure increases, the
interlayer friction increases, the slip decreases, and the frictional dissipation energy
increases significantly, affecting the torsional stiffness significantly.

3. The bending characteristics of an unbonded flexible riser under irregular distributed
internal and external pressures that vary linearly along its own length can be equated
to the bending characteristics under equivalent uniformly distributed internal and
external pressures. The linearly distributed internal and external pressure effects are
only more pronounced in the corresponding layer structure where the internal and
external pressure loads are applied, and the internal layer (especially the tensile armor
layer) is subjected to comparable levels of pressure.

In conclusion, the proposed method’s ability to capture the intricate dynamics of
tensile armor layer slippage under various load conditions has profound implications
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for the design, deployment, and maintenance of deep-sea oil and gas infrastructure. By
enhancing predictive capabilities, the corresponding work can contribute to a reduction in
the risk of structural failure, which is paramount for the safety and economic viability of
offshore operations. The findings, particularly the insights into the hysteresis phenomenon
and the effects of external pressure on axial and torsional stiffness, provide a foundation
for further research and development in the field. The model can be utilized to optimize
riser design, improve the reliability of load predictions, and inform maintenance schedules
to prevent costly downtime.
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