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Abstract: Infragravity (IG) waves are low-frequency water waves, which can propagate into harbors
and estuaries, affecting currents and sediment transport processes. Understanding and predicting
IG oscillations inside harbors and estuaries is critical to coastal management and estimating future
resilience to climate change impacts. High-resolution water level and flow velocity observations
collected within Seal Beach Wildlife Refuge in Southern California are analyzed for IG energy related
to atmospheric parameters, water levels, and offshore wave conditions. A proof of concept approach
for predicting infragravity oscillations within an estuary using machine learning (ML) is presented.

Keywords: infragravity waves; machine learning; wave forecast

1. Introduction

Estuaries are partially enclosed coastal water bodies that exhibit strong longitudinal
density gradients. Traditionally, estuaries are frequently described as regions where fresh-
water inputs converge and mix with saline oceanic waters. However, many estuaries have
minimal and/or intermittent inflow and are marine-process (i.e., waves, tides, infragravity)
dominated [1]. Estuaries can support extensive marsh, tidal flat, and subtidal habitats;
provide carbon sequestration and resilience to flooding from storms and sea level rise;
and are valuable recreational spaces [2,3]. Small, low inflow estuaries are particularly
dynamic coastal systems, due to the combination of tides, waves, and the presence of
shallow channels, intertidal regions, and active morphodynamics [4–6]. These unique
estuarine systems will be substantially impacted by climate change. The management of
these important systems is a major global challenge [7].

Infragravity (IG) waves are surface ocean waves with periods between 25 and 300 s [8],
and they are known to impact small harbors and estuaries [9,10]. Free IG waves may be
amplified by resonance and induce large oscillations (seiches) and ship motions in closed
or semi-enclosed water bodies, which have implications for navigation, sediment transport,
and turbidity [11]. Basin resonant modes, and their ability to trap IG waves, are defined by
a basin’s geometry and water depth; accordingly, resonance behavior may vary with tidal
water levels [12–14]. Multiple observational studies and numerical simulations have shown
that the strength of IG motions is correlated with the offshore wave conditions [8,15–21].
The relationship between short wave parameters and IG waves has been investigated in
the past [22–24]. However, while incident wave observations are frequently recorded, IG
measurements are less common.

The morphology of tidal inlets, characterized by the presence of an ebb-tidal delta,
a main channel, and secondary channels, differs from that of beaches. As a result, IG
wave generation, propagation, and dissipation mechanisms in tidal inlets may be quite
different from those on beaches. For example, on beaches all incoming IG wave energy is
dissipated or reflected. In contrast, in estuarine environments a portion of the IG energy
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may propagate through the channels and into the estuary interior [3,4,19,25]. Numerical
results have suggested that the break point and the long bound wave shoaling mechanisms
can contribute significantly to the generation of IG waves in the inlet [25]. Williams and
Stacey [19] performed field measurements at a shallow inlet in Northern California and
observed fluctuations in water levels and current velocities of the order of a minute, which
were identified as IG waves. Bowers [26] found an inverse correlation between the tidal
level and IG energy, and Bertin et al. [20] noted that the IG levels in shallow systems are
smaller during the ebb phase due to the blocking effects of opposing currents. Investigations
by Harvey et al. [4], Williams and Stacey [19], Bertin et al. [20] reveal that IG orbital motion
magnitudes inside estuaries may be similar to tidal velocities. IG waves have been shown
to induce significant currents and sediment transport changes [4,6,20,27,28]. For example,
Mendes et al. [3] showed that the IG oscillations inside a studied marsh results in sediment
accretion in specific areas, potentially altering inlet morphology and leading to estuary
mouth closures [4,29]. A comprehensive understanding of IG propagation into estuaries
is critical for quantifying future climate change impacts arising from increasing sea levels
and expected wave energy increases (i.e., Bromirski [30]).

Machine-learning (ML) models are statistical algorithms that enable computers to
learn and make predictions based on data. ML-based predictive models include vari-
ous algorithms such as neural networks, decision trees, support vector machines (SVM),
and gradient boosting. In coastal engineering, studies based on ML-based algorithms
are increasingly conducted, e.g., prediction of waves [31] and tidal levels [32]. The com-
plexity of IG wave generation can be problematic for traditional multivariate statistical
techniques if the IG wave height depends non-linearly upon various criteria, which could
result in difficulties fitting parametric relationships when numerous variables are required.
ML algorithms have been satisfactorily applied in the past to the estimation of IG oscil-
lations outside and inside harbors by the analysis of measured deep-water swell wave
spectral [10,33]. ML models can be trained with numerical-model generated offshore bulk
wave parameters such as wave height, period, and direction (e.g., Zheng et al. [34,35]). ML
presents an attractive option to elucidate relationships between offshore meteo-marine
characteristics and estuary IG propagation. This approach may be useful to predict harbor
seiching or erosion events and advance the understanding of how different meteorological,
tidal, and wave conditions affect IG oscillations inside estuaries.

In this study, we present and analyze acoustic Doppler velocimeter (ADV) observations
collected inside a low-inflow, stabilized-inlet estuary, the Seal Beach National Wildlife
Refuge. Digital signal processing methods are employed to estimate the IG oscillations
from the ADV recordings and study their relationships to the offshore wave climate and
tidal water levels. The dominant frequencies within the IG band and their relationships to
the offshore wave parameters and tidal levels are investigated. Finally, this work proposes
a novel application of ML algorithms using offshore wave bulk parameters to forecast IG
oscillations within estuaries at least half an hour in advance.

2. Materials And Methods
2.1. Study Area and Data Acquisition

Naval Weapons Station Seal Beach (NWSSB) is located in Orange County, California,
at coordinates 33°43′30′′ N and 118°04′51′′ W. NWSSB primarily functions as a munitions
storage and supply facility for the Navy, Coast Guard, and Marine Corps. The Seal Beach
National Wildlife Refuge, shown in Figure 1, is within Naval Weapons Station Seal Beach
and is a semi-intact saltwater marsh offering vital habitat for a range of species. Tides
propagate through a stabilized navigation channel that leads to the refuge wetlands and a
boat harbor. The open coast faces southwest. Dominant wave energy is from the northwest
(Aleutian Low), west (Pineapple Express) and south [36]; see Figure 1. Catalina Island
provides partial sheltering from southwestern swells.
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Figure 1. (Left): Locations for the study area, analyzed NOAA tide gauge (circle) and wave stations
(triangles). (Right): Study area and ADV locations within the Seal beach estuary. On the bottom right
corner are wave heights for station 46253 during 2021 (https://www.ndbc.noaa.gov/, accessed on 12
March 2024). Maps extracted from https://earthexplorer.usgs.gov/, accessed on 12 March 2024.

In this study, two acoustic Doppler velocimeters (ADV) were utilized to collect data
from the Seal Beach National Wildlife Refuge from 20 August 2020 16:00 to 4 October 2020
20:00. The harbor configuration was modified between 2020 and 2021, with modifications
including a new pier and channel configuration seaward of the HW1 bridge. ADV 1
was redeployed from 23 April 2021 17:00 to 6 June 2021 16:00. The ADVs were mounted
downward looking on a sawhorse frame secured to the bed on an intertidal mudflat. ADV
1 was deployed at the primary channel (Figure 1), recording 16-min bursts every hour at
a sampling frequency of 8 Hz. The instrument’s blanking distance was 50 cm above the
bed level. ADV 2 was deployed at a secondary channel (Figure 1), recording 16-min bursts
every hour at a sampling frequency of 8 Hz. ADV 2 was deployed at a deeper location,
allowing it to record a wider range of tidal water levels (Figure 2).

Figure 2. Recorded water levels by ADV 1 and ADV2.

2.2. Data Preparation

The entire ADV 1 recordings dataset (observational periods of 2020 and 2021) was
partitioned into 16-min blocks. Blocks that contained sporadic dry periods were excluded
from the analysis, the forecasting of IG waves at that location being the ultimate goal of
this work. For each block, the mean water depth (d) was calculated as the time-averaged
value of the water depth (h). This led to a dataset consisting of 931 16-min blocks.

The primary flow direction at both ADV locations is along-channel. Thus, the com-
puted horizontal velocities by principal axes analysis (ū and v̄) represent the along-channel

https://www.ndbc.noaa.gov/
https://earthexplorer.usgs.gov/
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(ū) and cross-channel (v̄) components of the velocity. Each time block velocity was com-
puted as the time averages of the corresponding velocities in the along- and cross-channel
directions (i.e., u, v). For example, at the ADV 1 location the principal axes reflect the
surrounding bathymetry and the along-channel direction such that flood currents are in
the northwest direction and ebb currents are in the southeast direction.

Meteo-marine observations, including atmospheric pressure, wind velocity mag-
nitude, and direction, along with tidal water level data, were recorded by the NOAA
9410660 station located at the Long Beach harbor, Los Angeles (tidesandcurrents.noaa.
gov). Offshore wave conditions were obtained from the NOAA offshore wave stations
46256 (Long Beach Channel, CA, 33°42′1′′ N, 118°12′2′′ W), 46253 (San Pedro South, CA,
33°34′33′′ N, 118°10′53′′ W) and 46222 (San Pedro, CA, 33°37′5′′ N, 118°19′1′′ W); see
Figure 1, (www.ndbc.noaa.gov).

2.3. Signal Processing

A Fourier transform was applied to the observed water levels (OWL). The power
spectrum of the recorded water level and flow velocity bursts show energy levels peak-
ing within the IG band (Figure 3). Three sub-bands within the IG band were analyzed
for their different frequency band behaviors and relationships with offshore wave pa-
rameters. The definition of the IG band varies slightly among authors (e.g., (30 s–5 min)
Masselink et al. [37], (25 s–4 min) Herbers et al. [18]). In this study, the IG band is defined
as 25 s to 5 min, consistent with Munk [8]. ADV data were band-pass filtered using a
third-order Butterworth filter to remove frequencies higher and lower than the IG limits [3].

Figure 3. (a) Water level time series for one 16-min ADV burst and (b) its associated frequency
spectrum. (c) Principal axes flow velocity time series for the same 16-min ADV burst and (d) the
associated frequency spectrum. The vertical dashed red lines represent the IG frequency band limits.

In this study, two estimators of estuary IG energy are considered and compared
(Figure 4). The first estimator is the short-term energy (STE) of the signals; this estimator is
widely used in speech recognition methodologies to detect amplitude changes in digital
signals [38], which are computed directly from the filtered signals by:

STE =
N

∑
n=1

D(n)2, (1)

tidesandcurrents.noaa.gov
tidesandcurrents.noaa.gov
www.ndbc.noaa.gov
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where N is the sample length of the signal and D(n) is the sampled points.
A common estimator found in the literature for IG energy is the significant wave

height (Hs,IG), computed as:

Hs,IG = 4
√

m0, (2)

where m0 is the variance of the filtered IG signal [19]. The two IG estimators within the
estuary exhibit similar distributions, suggesting that they may be used interchangeably
(Figure 4(a.1,a.2)).

Figure 4. (a.1) Normalized IG significant wave height (Hs,IG) and IG STE temporal distribution for
the analyzed water level ADV recordings at ADV 1 in 2020 and (a.2) 2021. (b.1) Significant wave
height and peak period from the offshore nearest buoy, 46,256 in 2020 and (b.2) 2021. (c.1) Mean
wave direction recorded by the buoy 46,256 in 2020 and (c.2) 2021. (d.1) Mean tidal water levels over
each burst at ADV 1 in 2020 and (d.2) 2021. (e.1) Wind speed magnitude and direction in 2020 and
(e.2) 2021. (f.1) Atmospheric pressure in 2020 and (f.2) 2021.

A variance spectral density wave spectrum (S) was obtained using Welch’s method [39].
Using this spectrum, the orbital velocities (vorb) associated with IG oscillations [3,40] can be
calculated as follows:

vorb =

√
2
∫ fmin

fmax
(Su + Sv) d f (3)

where fmax and fmin are the IG band limits and Su and Sv are the power spectra related to
the horizontal components of the flow velocity.

The Pearson linear correlation coefficients (r) were computed to assess the degree of
influence of the investigated variables on the IG energy within the estuary. The coefficients
were calculated using the formula:

r = ∑(x(i)− x̄)(y(i)− ȳ)√
∑(x(i)− x̄)2 ∑(y(i)− ȳ)2

(4)

where x(i) and y(i) are the potentially correlated variables.
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2.4. Machine Learning

This study aims to investigate the possibility of predicting the IG significant wave
height at the ADV 1 location within the estuary by using offshore wave climate data (from
NOAA buoys), along with coastal meteorological and tidal observations (from the Long
Beach harbor station). The assumptions of multivariate regression analysis are normal
distribution, linearity, and freedom from extreme values [41]. Non-linear relations have
been found between offshore short-period wave parameters and IG levels [42]. Given the
intricate relationships between the offshore wave conditions and the IG energy present
within the estuary, traditional formulations may not adequately capture these complex
correlations. Thus, ML algorithms have been selected as a suitable approach. Two ML
algorithms are selected and compared: support vector machines (SVM) [43] and random
forest classifier (RFC) [44]. Given the small size of the dataset used in this study, we opt
for the use of shallow ML techniques. This decision is motivated by the potential risk
of overfitting the data, which could lead to drops in performance [45]. Both algorithms
can be used for both classification and regression tasks. The SVM algorithm determines
a hyperplane that maximizes the margin between the closest point of each class and the
hyperplane, using a convex cost function to reach the global minimum. In this study,
a non-linear kernel (i.e., the radial basis function (RBF)) is selected to handle the non-linear
nature of the process. RFC is an ensemble technique based on decision trees that can be
used for both classification and regression tasks, such as support vector regressor (SVR) [46].
The RFC algorithm operates by dividing the dataset into smaller subsets and has been
shown to be effective in a variety of contexts [47,48].

Feature vectors are utilized as input to the ML algorithms for estimating the magnitude
of the IG oscillations. It should be noted that regularization (normalization) of the features
is necessary before applying support vector regressor (SVR), due to significant differences in
the order of magnitude between the feature values. However, regularization is not required
for random forest classifier (RFC). The K-fold (10-fold) cross-validation technique [49,50]
is applied in this study. To identify the optimal ML model, hyper-parameters grid search
(5-fold) is applied to the training set. In K-fold validation methodology, the dataset is
divided into k independent subsets of approximately equal size. One of these subsets is left
out and will be utilised exclusively to test the model performance. The ML model is trained
on k − 1 of these subsets; this process is repeated k times, with each subset used exactly once
as the validation data. For every fold, the model is trained with approximately 90% of the
data and validated with the remaining independent 10%, leading to a performance metric.

Finally, the performance of the model is then averaged across all k iterations. The sum
of squared errors (SSE) is selected as a metric for evaluating the applicability of the ML
algorithms, which is calculated by:

SSE =
n

∑
i=1

(yi − f (xi))
2, (5)

where n is the size of the test set, yi are the actual values in the test set, and f (xi) are the
predictions made by the ML algorithms.

Additionally, the R-squared (R2) estimator, which represents the part of the variance
for a dependent variable that is explained by the independent variables in a regression
algorithm, is computed by:

R2 = 1 − Sres/Stot, (6)

where Sres is the sum of squares of the residual errors and Stot is the total sum of the errors.
In the context of training the ML algorithms, several characteristics related to the meteo-

rological conditions and offshore wave climate were selected as features (Table 1). The 16-min
blocks of data recorded each hour result in one IG significant wave height per hour, i.e., the
input features are based on hourly average values. Additionally, the recorded hourly averaged
tidal water levels at Long Beach harbor tide station and the meteorological conditions are
used as features (i.e., wind magnitude and direction and atmospheric pressure).
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Table 1. Features utilized as input of the ML algorithm. Areaspec stands for the area under the
wave frequency energy spectrum associated with the wave buoy recordings and Mwd is the mean
wave direction.

Buoy 46,256 Tide Station Met. Station

HsT2
p (ms2) OWL (m) patm (Pa)

Mwd (Deg) wmag (m/s)
Areaspec wdir (Deg)

Fp,swell (Hz)
Kurtosis
Skewness

IG waves are significantly influenced by incident swell direction [18]. Hence, the mean
swell direction is considered a feature for training the ML algorithms. We investigated
correlations among the variables Tp, Hs, and HsT2

p , derived from data recorded by NOAA
wave buoys, in relation to estuarine significant wave height. Similarly to Ardhuin et al. [51],
the parameter HsT2

p was included in the analysis due to the IG wavelength scaling with
T2 [42,52]. The HsT2

p parameter exhibited the highest correlation coefficients (see Figure 5).
Consequently, HsT2

p was chosen as a feature for training the machine-learning algorithms.
Additionally, features based on the lower frequency range of the wave spectrum recorded
by the NOAA buoys (0.04–0.11 Hz) are incorporated into the dataset, as swell waves are
considered to be the primary contributor to the generation of IG waves [12,18,53]. Note
that alternative implementations of the parameter HsT2

p (e.g. Hs and Tp separately as input
features) are feasible and may yield different performances of the ML algorithms.

Figure 5. (a) Correlation coefficients for the 2020 and 2021 ADV deployments. HsT2
p , where Hs

and Tp are the significant wave height and peak period for the considered NOAA wave buoys
(subindices: 1–46,253, 2–46,256 and 3–46,222); d is the hourly tidal water level at Long Beach Harbor
tide station. For all the obtained correlations, the obtained P value lies below 0.001. (b) RFR feature
importance, Table 1.

The features obtained from the lower portion of the frequency spectrum include
the statistical measures of skewness and kurtosis, as well as the area beneath the energy
spectrum curve. The kurtosis is calculated as:

Kurtosis = ∑N
n=1(Xn − X)4

Nσ4 , (7)
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where σ represents the standard deviation, N the total number of samples considered, and
X is the average. The skewness is described as:

Skewness = ∑N
n=1(Xn − X)3

Nσ3 (8)

Additionally, the frequency corresponding to the maximum point of spectral density
(Fp,swell) recorded by the NOAA buoy is included as an ML training feature (Table 1).

3. Results
3.1. Infragravity Correlations and Orbital Velocities

IG significant wave heights inside the estuary were calculated and their correlation
with the offshore wave climate recorded by the NOAA buoys. Water levels measured by tide
gauges for both observational periods were established using Pearson linear correlation
formula (Figure 6). The 2021 observational period exhibited stronger associated wave
conditions compared to 2020. Accordingly, higher IG energy levels within the estuary were
expected and observed in 2021 (Figure 6b).

Figure 6. (a.1) Spectrogram associated with the CDIP buoy 46,256 during the observational periods
of 2020 and (a.2) 2021. (b.1) Calculated estuarine IG significant wave height at ADV 1 during the
2020 observational period and (b.2) during the 2021 observational period. (c.1) Offshore significant
wave height for the three considered NOAA buoy stations during the 2020 observational period and
(c.2) during the 2021 observational period. (d.1) Tidal and orbital velocities recorded by ADV 1 during
the 2020 observational period and (d.2) during the 2021 observational period.

The RFR algorithm allows the classification of the input features by importance scores
based on the reduction in the criterion used to select split points, Gini impurity in this case
(Figure 5). To estimate feature importance, the Gini gain is calculated, which is the amount
of Gini impurity that was eliminated at each branch of the decision tree. HsT2

p (offshore
wave conditions), tidal levels, and wind direction are identified as the main features that
can provide information forecasting future IG energy levels in the estuary.

Correlations between the IG levels (STE and Hs,IG) inside the estuary and the offshore
wave conditions are dependent on the offshore instrument location. Notably, the correla-
tions between the estuarine IG levels and the offshore wave conditions varied for the three
considered buoys. Generally, the buoy situated nearest to the estuary mouth and in the
shallowest water (buoy 46,256) shows the highest correlation with measured IG energy
levels within the estuary (Figures 6(c.1,c.2) and 5a). For example, the Hs,IG correlation
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for buoy 46,256 is 0.33 and 0.53 in 2020 and 2021, respectively. This observation suggests
that IG oscillations within the estuary are most related to the local (i.e. nearest) offshore
wave conditions. Buoys located farther from the study site (∼33 km, buoy 46,222) exhibit
moderate correlations with the IG measured within the estuary; however, these correlations
increase as selected buoys closer to the study site are analyzed. This implies that estuarine
IG oscillations may also be correlated with the wave climate at more distant locations
(Figure 5a). The correlation coefficients calculated for the 2021 observational period were
found to be higher compared to 2020, which can be attributed to a modification of the
harbor configuration that provides entrance to the estuary. Negative correlations between
IG oscillations and water levels were identified, suggesting that water levels are a relevant
variable for the prediction of IG oscillations within the estuary. We also speculate that such
correlations could be related to changes in wave reflections due to temporal variation in the
beach slope during a tidal cycle [54]. Consistent with the literature, we observe that water
levels are correlated with the IG wave energy present in the estuary [26,55] (Figure 5a).
The features Fp,swell and the skewness and kurtosis of the swell part of the spectra are noted
to exhibit low relative importance in the prediction of estuarine IG oscillations by the RFR
algorithms (Figure 5b). Consequently, the removal of the mentioned input features may
result in minimal performance variations.

The IG wave-generated orbital velocities, vorb, were calculated as follows [40]:

vorb =

√
2
∫ fmax

fmin

Su + Sv d f (9)

where Su and Sv are the horizontal velocity components spectra and ( fmin, fmax) were set
to the IG band limits (0.004–0.4) Hz. A variance spectral density wave spectrum, S, was
calculated with the Welch’s method [39] using u and v as input for each block.

IG orbital velocities are known to have a significant impact on the suspended sedi-
ment in the water column and increase the sediment transport within the estuary [3,40].
The computed IG orbital velocities exhibit magnitudes that, in some events, exceed 20% of
the total tidal velocities, IG orbital velocity maxima can reach up to approximately 0.18 m/s
(Figure 6(d.1,d.2)).

Tidal current impact on the IG energy transmission into the estuary was examined.
The average observed IG energy corresponding to each recorded tidal level at ADV 2,
which captured a broader range of tidal levels due to its deeper positioning, was computed
and plotted against tidal water levels (Figure 7(b.1,b.2)). Lower tidal levels might facilitate
IG propagation into the estuary, leading to higher IG energy levels (Figure 7(d.1,d.2)).
Upon closer inspection of the spectra at low (lower than the mean low water level) and
high (higher than the mean high water level) recorded tidal levels, a discernible shift
in the highest frequency peaks and attenuation in the lowest two peaks were observed
(Figure 7(d.1,d.2)). This suggests that higher tides may induce a frequency shift and
attenuate IG energy. Additionally, the average spectra associated with ebbing and flooding
stages are analyzed. Consistent with the literature (i.e., Mendes et al. [3], Williams and
Stacey [19]), the data suggest that ebbing currents impede IG wave propagation inside the
estuary due to their opposing velocity direction (Figure 7(c.1,c.2)).

To identify the most energetic wave frequencies within the IG band present inside the
estuary during the recording period, the spectra obtained for each water level burst are
added up and the maxima are identified. Three narrow frequency bands ((0.01–0.013) Hz,
(0.018–0.023) Hz, and (0.0033–0.0054) Hz), which lie within the IG frequency band limits,
were extracted from the recordings and correlated with the offshore wave conditions and
water levels (Figure 8). The chosen frequency bands correspond with the three most
energetic peaks in the data (Figure 8). The extracted lower frequency bands showed higher
correlations with the offshore wave parameters than with the complete IG band, while the
higher frequency bands had lower calculated correlations. Observations suggest different
frequencies within the IG band behave differently to changing offshore wave conditions
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and tidal water levels. IG waves in close proximity to 0.02 Hz demonstrate the strongest
negative correlation (<−0.3) with water levels when compared to the other frequencies
investigated. Additionally, although average frequency spectra of the observed water levels
show similar behavior for the 2020 and 2021 observational periods, differences may be
associated with the channel realignment, suggesting channel morphology is impacting IG
propagation into the estuary.

Figure 7. (a.1) Estuarine IG spectral energy for the observational period of 2020. (a.2) Total IG energy
per burst from ADV 1. (b) Average energy per burst related to the tidal water level for both studied
ADVs during the observational period of 2020. (c) Average frequency energy spectrum for ebbing
and flooding stages at ADV 2. (d) Average frequency energy spectrum for the 20% highest and 20%
lowest observed water levels for ADV 2.

Figure 8. (a) Average frequency spectrum for the all the 2020 and 2021 analyzed recordings at ADV
1. The extracted IG sub-bands are highlighted in gray. (b) Calculated Pearson linear correlation
coefficients between the STE of different IG wave sub-bands and different variables, including
offshore wave conditions and water levels for the recordings during 2020 and (c) 2021.
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3.2. Infragravity Predictions

IG-induced seiching has been shown to substantially affect ports and harbor operations
(e.g., González-Marco et al. [56], Cuomo and Guza [57], Okihiro et al. [58]). In this section,
we present a novel approach, where IG oscillations inside the Seal Beach National Wildlife
Refuge estuary are forecast half an hour ahead. This approach is based on the fact that
relevant correlations between offshore wave conditions, water levels, and estuarine IG
energy have been found. The features extracted from the offshore NOAA wave buoy
records are chosen half an hour ahead of the estimated IG wave heights due to cross-
correlation analysis computed between the IG significant wave height time series and the
offshore HsT2

p time series recorded by NOAA buoy 46,256, which showed a 0.51 h lag
difference. For this analysis, only the most energetic events were selected, see the area
highlighted in yellow in Figure 7a.

The presented ML algorithms are implemented on the generated dataset, and the
averaged 10-fold outcomes are depicted in Table 2 and Figure 9. The random forest
regression (RFR) algorithm attains the highest prediction accuracy, where the IG significant
wave height inside the estuary is predicted with R2 > 0.6 and low RMSE, while the SVR
algorithm underpredicts Hs,IG values (Figure 9, Table 2).

The ability of the RFR and SVM algorithms to predict IG along with decomposing
the variable HsT2

p into two input variables, Hs and Tp has been assessed. This approach
resulted in regression performances of R2 = 0.614 and MSE = 1.92 × 10−6 m2 for RFR and
R2 = 0.556 and MSE = 2.22 × 10−6 m2 for SVM. Both examined ML algorithms yielded
lower performance metrics when the variable HsT2

p was divided into two independent
variables (Hs and Tp) serving as input features.

Figure 9. IG significant wave height predicted values by the RFR and SVR algorithms against the
actual values. The line in red represents the best fit.

Table 2. Final ML IG oscillation regression results after the application of hyperparameter grid search
and k-fold technique. The features are listed in Table 1.

R2 MSE (m2)

SVR 0.575 2.094 ×10−6

RFR 0.643 1.864 ×10−6

It is noteworthy to mention that incorporating meteorological parameters, specifically
atmospheric pressure and wind magnitude, resulted in a ∼5% increase in the efficacy of
the ML algorithms. We speculate that variations in atmospheric pressure and local winds
may be responsible for generating some of the IG oscillations inside the studied estuary.

Finally, the efficacy of the presented methodology to forecast IG oscillations with
the use of varying prediction time windows is tested. It can be observed (Figure 10)
that predictive accuracy diminishes with the extension of forecast time. The prediction
ability is higher when exclusively utilizing the observational data from 2021, which in
combination with the higher correlations observed for the same observational period
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between IG oscillations within the estuary and offshore variables potentially indicates that
modifications to harbor configurations contribute to an increase in the potential for the IG
waves to propagate into the estuary.

Figure 10. (a) SVR and (b) RFR algorithms applied first to a dataset constructed with the 2020 and
2021 observational periods in grey and to a dataset composed by both observational periods together
with different prediction time windows. The circles represent outliers.

4. Conclusions

This work investigates IG oscillation forecasting in a shallow, low inflow estuary.
The study employs a combination of water level and flow velocity oscillations measured
by two ADVs inside the estuary. ML algorithms are used to predict IG oscillations.

This work involved the examination of wave climate data recorded by three NOAA
buoys located at varying distances from the estuary mouth. The analysis reveals moderate
correlations (>0.5) between estuarine IG levels and offshore wave conditions, indicating
that some of the IG energy in the estuary originates from the offshore swell. The buoy
located nearest to the estuary mouth exhibited the highest correlations. Consequently, it
was chosen as the optimal location for training machine-learning (ML) algorithms, which
had half an hour lag to the measured estuarine IG levels, giving that as the forecast time
window. We speculate that the location of the buoy is of high importance, with closer loca-
tions potentially leading to higher prediction accuracy but shorter forecast time windows.
The offshore wave parameter weighting wave period, HsT2

p , shows the highest correlation
with estuarine IG oscillations. As found in other estuaries, flood tides are the most energetic
while ebb currents block a portion of IG propagation into the estuary.

Orbital velocities related to IG reach up to 20% of total tidal velocities in this system,
indicating that IG orbital motions may be important for sediment transport due to their
significant magnitudes. This percentage is less than in other shallower estuarine systems,
likely due to instrument site distance upstream and a deeper and wider overall estuary.
The most energetic frequencies within the IG frequency band were analyzed, and it was
observed that the different frequencies exhibit different correlations with offshore wave
characteristics and tidal water levels, with lower frequencies being more correlated to the
offshore swell, whereas higher frequencies are less correlated to offshore wave parameters,
suggesting that they could be generated more locally. Tidal water levels are found to be
negatively correlated with IG motions within the estuary, indicating that some of the IG
energy that comes from offshore could be released by wave breaking in front of the harbor.

This study also presents a novel method of forecasting IG oscillations thirty minutes
in advance within a small low-inflow estuary based on publicly available meteo-marine
observations. However, due to the small dataset size, this is a proof of concept, and it is
speculated that the inclusion of more data in the ML training could increase the accuracy
of the presented methodology and reduce model uncertainties. Note that the particular
algorithms produced here are specific to SBNWR. To apply the same methodology to
alternative sites (other LIEs, but also other harbors and embayments), IG observations at
the specific location would be required. This paper presents a guideline for the implemen-
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tation of this technology, such as the potential location of the required instrumentation
and significance of specific variables, including water levels, offshore wave conditions,
and meteorological parameters.
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