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Abstract: Background: Chronic hepatitis C (HCV) infection presents global health challenges with
significant morbidity and mortality implications. Successfully treating patients with cirrhosis may
lead to mortality rates comparable to the general population. This study aims to utilize machine
learning techniques to create predictive mortality models for individuals with chronic HCV infec-
tions. Methods: Data from chronic HCV patients at Sultan Qaboos University Hospital (2009–2017)
underwent analysis. Data pre-processing handled missing values and scaled features using Python
via Anaconda. Model training involved SelectKBest feature selection and algorithms such as logistic
regression, random forest, gradient boosting, and SVM. The evaluation included diverse metrics, with
5-fold cross-validation, ensuring consistent performance assessment. Results: A cohort of 702 patients
meeting the eligibility criteria, predominantly male, with a median age of 47, was analyzed across a
follow-up period of 97.4 months. Survival probabilities at 12, 36, and 120 months were 90.0%, 84.0%,
and 73.0%, respectively. Ten key features selected for mortality prediction included hemoglobin
levels, alanine aminotransferase, comorbidities, HCV genotype, coinfections, follow-up duration,
and treatment response. Machine learning models, including the logistic regression, random forest,
gradient boosting, and support vector machine models, showed high discriminatory power, with
logistic regression consistently achieving an AUC value of 0.929. Factors associated with increased
mortality risk included cardiovascular diseases, coinfections, and failure to achieve a SVR, while
lower ALT levels and specific HCV genotypes were linked to better survival outcomes. Conclu-
sions: This study presents the use of machine learning models to predict mortality in chronic HCV
patients, providing crucial insights for risk assessment and tailored treatments. Further validation
and refinement of these models are essential to enhance their clinical utility, optimize patient care,
and improve outcomes for individuals with chronic HCV infections.
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1. Introduction

Hepatitis C virus (HCV) infection is a significant global health concern, affecting
over 70 million people worldwide, and contributes to global morbidity and mortality,
leading to cirrhosis, hepatocellular carcinoma (HCC), liver transplantation, and liver-
related deaths [1]. The 2030 Agenda for Sustainable Development highlights the need to
address HCV infections, with world leaders committing to combat this global health issue
by 2030. In response, the World Health Organization (WHO) developed the Global Viral
Hepatitis Strategy, aiming to reduce deaths by two-thirds and increase treatment rates to
80% [2]. The introduction of direct-acting antiviral (DAA) therapy has transformed HCV
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clinical care and prompted efforts toward eliminating HCV infections [3,4]. Unfortunately,
around 700,000 individuals die annually as a result of HCV-related complications, with
many diagnosed only after manifesting symptoms related to either cirrhosis or HCC [5].
Observational studies have primarily focused on determining the advantages of curing
HCV, which include a reduced risk of mortality when compared to untreated individuals
with chronic HCV infection or those for whom treatment has not succeeded [6,7]. However,
the long-term prognosis for successfully treated individuals is still debatable, especially in
the era of interferon-free DAA regimens. Multiple studies propose that individuals with
cirrhosis who have been effectively treated for HCV show low mortality rates, similar to
the general population when adjusted for age, sex, and calendar year [8,9].

Other studies have identified specific factors associated with poor survival among
HCV patients, including failure to achieve sustained virological response (SVR), HCC,
human immunodeficiency virus (HIV) coinfection, hepatitis B virus (HBV) coinfection, sub-
stance abuse, decompensated liver cirrhosis, old age, HCV genotype, diabetes mellitus, and
smoking [10–14]. However, the presence of multiple factors, including comorbidities, HIV
and HBV coinfection, HCV genotype, and the presence of chronic liver disease, represents
unpredictable interactions, leading to various reported HCV survival outcomes [15,16].
Therefore, exploring nonlinear and intricate relationships among different patients and
viral characteristics becomes valuable in understanding these complex interactions.

Employing sophisticated statistical tools and machine learning techniques can improve
the accuracy of our predictions, such as survival, compared to traditional statistical methods.
This improvement is achieved by considering the higher-dimensional and potentially
nonlinear influences of different variables, resulting in a broader range of viral and host-
related variables included in the analysis [17]. Artificial intelligence (AI) is a rapidly
growing field in computer science, finding applications in diverse sectors like e-commerce,
media, and finance. While the integration of AI, particularly machine learning (ML), has
been relatively slow in the health sciences, it is now garnering interest [18,19]. ML is a subset
of AI that emphasizes the learning of algorithms from data. Unlike traditional programing,
ML algorithms derive patterns and relationships from subsets of data. There are four
main learning methods: supervised (using labeled data), unsupervised (using unlabeled
data), semi-supervised (combining labeled and unlabeled data), and reinforcement learning.
These methods are useful for different tasks and enable systems to make predictions, solve
problems, and make informed decisions [20].

Deep learning, a subset of machine learning, utilizes deep neural networks (DNNs) to
process data. DNNs mimic the structure of the cerebral cortex by using multiple layers of
interconnected artificial neurons. It consists of nodes that communicate through connec-
tions, similar to how cell bodies communicate through axons and dendrites. In biological
and artificial networks, synapses between neurons become stronger when their outputs
are correlated, shaping the network’s behavior [20,21]. Previous prediction models using
AI/ML have primarily focused on predicting the development of HCC, treatment response,
and cirrhosis rather than mortality prediction [22–24].

The aim of the present study is to use different ML techniques, along with traditional
logistic regression, to create and validate models for mortality prediction among chronic
HCV-infected patients.

2. Materials and Methods
2.1. Study Setting and Population

This study used data gathered from a database of patients seen at the adult hepatology
clinic at Sultan Qaboos University Hospital (SQUH), a 500-bed tertiary referral hospital
specializing in various medical services and featuring specific, specialized medical facil-
ities [25]. All data of patients with chronic HCV referred to the adult hepatology clinic
from January 2009 to December 2017, aged 13 years and older, were included. Patients
who experienced spontaneous clearance of HCV, patients with missing survival outcomes,
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and patients who were followed up in alternative healthcare facilities were excluded from
this study.

2.2. Definitions

The resolution of acute HCV infection was considered when the HCV viral load
became undetectable within six months of diagnosis using highly sensitive real-time poly-
merase chain reaction (PCR) with lower detection limits of 15 IU/mL. Chronic HCV
infection was defined as cases with a detectable HCV viral load after six months of infec-
tion, confirmed by two positive readings spaced six months apart. Diagnoses of HCC and
cirrhosis were made following the guidelines of the European Association for the Study of
the Liver (EASL) [26,27].

2.3. Features

Relevant data for this study were gathered from patients’ electronic medical records,
which included baseline information like demographic data, comorbidities, and relevant
laboratory results, including a detailed hematological profile, hepatic and renal function,
HCV genotype, and HCV viral load, as well as HBV and HIV coinfection status. Addi-
tionally, detailed data related to HCV treatment and outcomes were included. All patients
were followed up from their initial encounter at the adult hepatology clinic until death or
the follow-up endpoint (April 2022), whichever occurred first.

2.4. Outcome

The primary outcome of interest was all-cause mortality during the follow-up period.
Additionally, patients with end-stage liver disease or other terminal diagnoses who had
been lost to follow-up for three years were considered deceased.

2.5. Data Pre-Processing

Before creating the model, the dataset was pre-processed to manage missing values
and scale continuous features. For binary features with missing values, these were filled
using the mode. Continuous features with missing values were replaced by the median,
accommodating their skewed distribution. To ensure consistency and standardize scales
for continuous features, we applied the StandardScaler, which standardizes features by
subtracting the mean and dividing by the standard deviation. This standardization ensures
that the features have zero mean and unit variance [28].

2.6. Primary Data Analysis

All data analyses and model development relied on the Anaconda distribution, incor-
porating the Python programing language along with diverse libraries [29].

The Shapiro–Wilk test from the Scipy Library was utilized to assess the normality of
each continuous variable in the dataset. Normally distributed variables were reported as
means and standard deviations (SDs), and abnormally distributed variables were reported
as medians and interquartile ranges (IQRs). Binary variables were reported as numbers
and frequencies. The survival analysis was conducted using the KaplanMeierFitter module
from the lifelines library using the Kaplan–Meier method. The median survival time and
survival probabilities at specific time points (12, 24, 36, 60, and 120 months) were calculated.

2.7. Feature Selection and Model Training

The data were split into training data (80%) and testing data (20%). Feature selec-
tion and model training were performed using the sci-kit-learn library in Python. The
SelectKBest algorithm was employed to identify relevant features associated with mor-
tality. A SelectKBest object was created with the ANOVA F-value as the score function,
and a value of k = 10 was set to select the top 10 features. The SelectKBest object was
then fitted to the training data. The get support method was used to retrieve the selected
feature. The final models for logistic regression, random forest, gradient boosting, and
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support vector machine (SVM) were initialized and trained using the selected features, and
feature coefficients, importance, and contributions were reported for each feature in the
final models.

2.8. Model Evaluations

The performance metrics for each model were calculated, including the area under
the curve (AUC), accuracy, precision, recall, and F1 score. This allows for a comprehensive
evaluation of the performance of each model in terms of its predictive ability. The model’s
performance was also evaluated at different time points using a filtered dataset, with time
points of interest (12, 24, 36, 60, and 120 months) used to filter the data. The filtered dataset
was then split into training and testing sets, and the models were trained on the training
set. The probabilities of the positive class were predicted on the testing set, and the AUC
was calculated.

2.9. Model Cross-Validation

Cross-validations were performed using 5-fold cross-validation for each of the trained
models: logistic regression, random forest, gradient boosting, and support vector machine
(SVM), with an array of 5 scores for each fold. The cross-validation scores for each model
were reported using the area under the receiver operating characteristic curve (ROC AUC),
providing an overview of the model’s performance across the 5 folds.

3. Results

A total of 702 patients met the inclusion criteria. There were 477 (67.9%) men, and the
average age was 47 (IQR: 33–59) years old. The median follow-up duration was 97.4 months
(61.0–131.2). Detailed baseline characteristics and relevant clinical laboratory findings are
presented in Table 1.

The survival time for patients diagnosed with chronic HCV infections from the index
encounter at the adult hepatology clinic until death or the final follow-up date (April 2022)
is shown in Figure 1. The survival probabilities were 90.0%, 84.0%, and 73.0% at 12, 36, and
120 months, respectively.

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 5 of 11 
 

 

Sickle cell disease or thalassemia  148 (21.1%) 
Cardiovascular disease 97(13.8%) 
Chronic kidney disease  76 (10.8%) 
Hepatitis B coinfection  253 (36.0%) 
Sustained virological response (SVR) 320 (45.6%) 
HCV genotype 1 290 (41.3%) 
HCV genotype 2 27 (3.8%) 
HCV genotype 3 221 (31.5%) 
HCV genotype 4 81 (11.5%) 
HCV genotype 5 15 (2.1%) 
Ultrasound elastography (N/m2) 7.5 
White cell count × 109/L 6 (4.5–8.6) 
Absolute neutrophil count × 109/L 2.8 (1.8–4.3) 
Hemoglobin (g/dL) 12.4 (10.4–14.0) 
Platelets × 109/L 222 (143–300)  
International normalized ratio (INR) 1.04 (1.0–1.2) 
Alanine aminotransferase (ALT) U/L 50.5 (29.0–86.0) 
Aspartate aminotransferase (AST) U/L 49.0 (29.0–84.0) 
Alkaline phosphatase (ALP) U/: 87.0 (69.0–121.0) 
Bilirubin (umol/L) 11.0 (7.0–22.0) 
Albumin (g/L) 40.0 (33.0–44.0) 
Serum creatinine level (umol/L) 66.0 (52.0–81.8) 
Serum chloride (mmol/L) 3.9 (3.8–4.0) 
alpha-fetoprotein levels (AFP) (ng/mL) 3.0 (2.0–4.0) 
Ferritin level (ng/mL) 217 (214.0–217.8) 
HbA1c % 5.8 (5.6–5.9) 
HCV load (IU/L) 590,220.0 (132,550.0–2,481,070) 
Hepatocellular carcinoma  71 (10.1%) 
Follow-up duration (months) 97.4 (61.0–131.2) 

The survival time for patients diagnosed with chronic HCV infections from the index 
encounter at the adult hepatology clinic until death or the final follow-up date (April 2022) 
is shown in Figure 1. The survival probabilities were 90.0%, 84.0%, and 73.0% at 12, 36, 
and 120 months, respectively. 

 
Figure 1. Kaplan–Meier survival curve for patients with chronic HCV infections.



J. Clin. Med. 2024, 13, 2939 5 of 10

Table 1. Demographic, clinical, and laboratory characteristics of the study population.

Characteristics Total n = 702

Age (years) 47 (33–59)

Men 477 (67.9%)

Weight (kg) 67 (57–76)

Height (cm) 160 (156–167)

Body Mass Index (BMI; kg/m2) 25.3 (22.2–29.1)

History of drug abuse 182 (25.9%)

History of alcohol 151 (21.5%)

Smoking 95 (13.5%)

Liver cirrhosis 244 (34.8%)

Decompensated liver cirrhosis 93 (13.2%)

Diabetes mellitus 198 (28.2%)

Liver transplant 23 (3.3%)

HIV coinfection 12 (1.7%)

Other malignancy 41 (5.8%)

Hypertension 91 (13.0%)

Sickle cell disease or thalassemia 148 (21.1%)

Cardiovascular disease 97(13.8%)

Chronic kidney disease 76 (10.8%)

Hepatitis B coinfection 253 (36.0%)

Sustained virological response (SVR) 320 (45.6%)

HCV genotype 1 290 (41.3%)

HCV genotype 2 27 (3.8%)

HCV genotype 3 221 (31.5%)

HCV genotype 4 81 (11.5%)

HCV genotype 5 15 (2.1%)

Ultrasound elastography (N/m2) 7.5

White cell count × 109/L 6 (4.5–8.6)

Absolute neutrophil count × 109/L 2.8 (1.8–4.3)

Hemoglobin (g/dL) 12.4 (10.4–14.0)

Platelets × 109/L 222 (143–300)

International normalized ratio (INR) 1.04 (1.0–1.2)

Alanine aminotransferase (ALT) U/L 50.5 (29.0–86.0)

Aspartate aminotransferase (AST) U/L 49.0 (29.0–84.0)

Alkaline phosphatase (ALP) U/: 87.0 (69.0–121.0)

Bilirubin (umol/L) 11.0 (7.0–22.0)

Albumin (g/L) 40.0 (33.0–44.0)

Serum creatinine level (umol/L) 66.0 (52.0–81.8)

Serum chloride (mmol/L) 3.9 (3.8–4.0)

alpha-fetoprotein levels (AFP) (ng/mL) 3.0 (2.0–4.0)

Ferritin level (ng/mL) 217 (214.0–217.8)

HbA1c % 5.8 (5.6–5.9)

HCV load (IU/L) 590,220.0 (132,550.0–2,481,070)

Hepatocellular carcinoma 71 (10.1%)

Follow-up duration (months) 97.4 (61.0–131.2)
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The SelectKBest function from the scikit-learn library was used to select the top
10 features based on the ANOVA F-value. These features, namely hemoglobin level
(Hb), alanine aminotransferase (ALT), alpha-fetoprotein, hypertension, cardiovascular
system diseases, HCV genotype 1, HCV genotype 3, coinfection with HBV virus, follow-
up duration, and SVR, were used for model training and evaluation. Higher hemoglobin
levels, the presence of cardiovascular system diseases, HBV virus coinfection, longer follow-
up duration, and failure to achieve a SVR were associated with an increased likelihood
of mortality in patients with chronic HCV infections. On the other hand, lower levels
of alanine aminotransferase, the absence of hypertension, and HCV genotype 3 were
associated with improved survival outcomes.

The performance of the different machine learning models in predicting the mortality
outcome was evaluated using several performance metrics, as presented in Table 2. The
logistic regression, random forest, gradient boosting, and support vector machine models
achieved AUC values of 0.926, 0.897, 0.919, and 0.907, respectively.

Table 2. Metrics highlighting the performance of each model in terms of its discriminative ability
(AUC), overall accuracy, precision (ability to identify positive cases correctly), recall (ability to capture
all true positives), and F1 score (a harmonic mean of precision and recall).

Model AUC Accuracy Precision Recall F1 Score

Logistic regression 0.926 0.887 0.868 0.750 0.805

Random forest 0.897 0.915 1.000 0.727 0.842

Gradient boosting 0.919 0.894 0.939 0.705 0.805

Support vector machine 0.907 0.872 0.933 0.636 0.757

Cross-validation using five folds resulted in AUC scores ranging from approximately
0.972 to 1.000 for logistic regression models. The random forest model demonstrated
variations in performance across different folds, with the cross-validation AUC scores
ranging from approximately 0.633 to 1.000. Similarly, the gradient boosting model showed
variations in performance across different folds, with the cross-validation AUC scores
ranging from approximately 0.270 to 1.000. In contrast, the support vector machine model
demonstrated consistent performance across the different folds, with the cross-validation
AUC scores ranging from approximately 0.915 to 0.996, as shown in Table 3.

Table 3. Cross-validation ROC AUC scores for machine learning models.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Logistic regression 0.993 0.990 1.000 0.999 0.972

Random forest 0.825 1.000 1.000 0.754 0.633

Gradient boosting 0.588 1.000 0.995 0.270 0.690

Support vector machine 0.996 0.992 0.999 0.987 0.915

The predictive ability of machine learning models for mortality outcomes over time
was assessed at different time points (12, 24, 36, 60, and 120 months). The logistic regression
model consistently achieved an AUC of 0.929 at each time point, indicating its stable
performance over time, as shown in Table 4.

The random forest model demonstrated varying performance across the different
time points, with its AUC values ranging from approximately 0.908 to 0.915. Similarly, the
gradient boosting model showed consistent performance, with its AUC values ranging
from approximately 0.918 to 0.919 across the time points.
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Table 4. AUC values for machine learning models at 12, 24, 36, 60, and 120 months.

Model 12 Months 24 Months 36 Months 60 Months 120 Months

Logistic regression 0.929 0.929 0.929 0.929 0.929

Random forest 0.915 0.900 0.919 0.910 0.907

Gradient boosting 0.918 0.919 0.918 0.919 0.919

Support vector machine 0.925 0.925 0.925 0.925 0.925

4. Discussion

This study presents a novel mortality prediction model using machine learning for
patients with chronic HCV infections. The median follow-up duration was approximately
97.4 months, allowing for a significant observation period to analyze mortality outcomes.
The prediction models achieved high accuracy levels in predicting mortality at different
time points.

The survival probabilities at specific time points, calculated using the Kaplan–Meier
method, indicate the long-term prognosis of patients with chronic HCV infections. At 12,
36, and 120 months, the survival probabilities were 90.0%, 84.0%, and 73.0%, respectively.
Survival rates can vary in chronic HCV patients, depending on the study population. For
instance, a study from the USA reported a 5-year survival rate of 82%, which is consistent
with our findings [30]. Another study from South Korea observed high overall survival
rates in HCV patients without cirrhosis, reaching 99.7% at 3 years and 96% at 5 years,
similar to the general population [30,31].

In a large meta-analysis of 31 studies, including 33,360 patients, it was found that
achieving a SVR after HCV treatment significantly reduces the risk of death compared to
unsuccessful therapy across different populations. The risk of all-cause mortality decreases
by approximately 50% in the general population, 74% in cirrhotic patients, and 79% in
coinfected patients [32]. This demonstrates a significant survival benefit, even in patients
with cirrhosis and HIV coinfection. These findings highlight the relatively high survival rate
among patients treated for CHC. However, it is important to note that various factors, such
as treatment advances, adherence to therapy, and patient characteristics, may influence
these survival probabilities [32].

The SelectKBest algorithm was utilized to identify the top 10 features associated with
mortality. Raised alpha-fetoprotein, failure to achieve a SVR, and coinfection with the HBV
were associated with high mortality, consistent with the findings of previous studies [32,33].
In addition, lower levels of ALT, the absence of hypertension, and the presence of HCV
genotype 3 were associated with improved survival outcomes in patients with chronic
HCV infections. However, factors such as age, HCC, liver cirrhosis, other non-hepatic
malignancies, and liver transplants were not among the top 10 features that impacted
patient survival. This highlights the comprehensive nature of machine learning models in
predicting outcomes by considering the complex interactions of different patients and viral
factors beyond those specifically related to liver diseases [34].

The performance of different machine learning models in predicting mortality out-
comes was evaluated using various performance metrics, including the AUC, accuracy,
precision, recall, and F1 score. The logistic regression model displayed the highest AUC
value of 0.926, indicating its excellent discriminatory ability in distinguishing between
survivors and non-survivors. Logistic regression models have been widely used in medical
research and are known for their simplicity and interpretability [35]. In this study, the
logistic regression model showed promising performance in predicting mortality outcomes,
suggesting its potential utility as a predictive tool for clinicians.

The random forest, gradient boosting, and support vector machine (SVM) models
also showed good predictive performances, with AUC values of 0.897, 0.919, and 0.907,
respectively. These models utilize complex algorithms that capture nonlinear relationships
and interactions between different variables, improving prediction accuracy [36,37]. The
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consistent performance of these models across multiple performance metrics suggests their
robustness in predicting mortality outcomes in patients with chronic HCV infections.

Cross-validation was performed to assess the generalizability of these models. The
logistic regression model showed high cross-validation AUC scores, ranging from ap-
proximately 0.972 to 1.000. This demonstrates the model’s stability and reliability across
different folds. The random forest and gradient boosting models showed variations in
their performance across different folds, indicating potential sensitivity to changes in the
training dataset. In contrast, the support vector machine model demonstrated consistent
performance across different folds, boosting confidence in its predictive ability. Employing
cross-validation is an important step to ensure that the machine learning models can be
moderated against excessive optimism and potential biases arising from hyperparameter
tuning and algorithm selection [38].

Additionally, the predictive performance of these models was evaluated at different
time points to assess their ability to predict mortality outcomes over time. The logistic
regression model consistently achieved an AUC of 0.929, indicating its stable performance.
The random forest model showed varying performance across different time points, with
its AUC values ranging from approximately 0.908 to 0.915. The gradient boosting model
demonstrated consistent performance, with its AUC values ranging from approximately
0.918 to 0.919. Similarly, the support vector machine model consistently achieved an AUC
of approximately 0.925 across all time points. These findings suggest that these models
have the potential to predict mortality outcomes with reasonable accuracy at different
stages of the disease.

It is important to note that the predictive performance of these models should be
interpreted cautiously. Although the models showed good discrimination and predictive
abilities, they are not without limitations. The models were developed using data from
a single center and a specific patient population, which may limit their generalizability
to other populations. Furthermore, the models were trained on retrospective data, and
the retrospective nature of the study may introduce biases and limit causal inference.
Prospective validation studies are needed to confirm the predictive accuracy of these
models in diverse patient populations.

In addition, the models may not capture all relevant factors contributing to mortality
outcomes in patients with chronic HCV infections. There may be other unmeasured
variables that influence long-term prognoses, such as lifestyle factors, socioeconomic
status, and access to healthcare. Including these factors in future studies may improve the
predictive accuracy of these models.

Despite these limitations, the findings of this study provide valuable insights into
the prediction of mortality outcomes in patients with chronic HCV infections. The use of
machine learning algorithms and feature selection techniques offers a promising approach
to identifying high-risk patients who may benefit from early interventions and targeted
treatment strategies. The models can assist clinicians in risk stratification and personalized
management, ultimately leading to improved patient outcomes.

Future research should focus on the external validation of these models in independent
cohorts to assess their generalizability and applicability in different healthcare settings.
Additionally, efforts should be made to incorporate additional variables and risk factors
that may contribute to mortality outcomes. Long-term prospective studies are warranted
to further refine and optimize predictive models for mortality in patients with chronic
HCV infections.

5. Conclusions

The present study demonstrates the potential of ML models in predicting mortality
outcomes in patients with chronic HCV infections. The logistic regression, random forest,
gradient boosting, and support vector machine models showed good performances in dis-
criminating between survivors and non-survivors. These models highlight the importance
of factors such as hemoglobin level, ALT level, alpha-fetoprotein level, comorbidities, HCV
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genotype, coinfection with the HBV, and SVRs in predicting mortality outcomes. Further
research and validation are needed to confirm the utility of these models and refine their
predictive accuracy. Implementing these predictive models in clinical practice has the
potential to improve risk stratification and individualized treatment strategies for patients
with chronic HCV infections, ultimately leading to better patient outcomes and healthcare
resource allocation.
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