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Abstract: Diffusion tensor imaging (DTI) enables the assessment of changes in brain tissue microstruc-
ture during maturation and ageing. In general, patterns of cerebral maturation and decline render
non-monotonic lifespan trajectories of DTI metrics with age, and, importantly, the rate of microstruc-
tural changes is heterochronous for various white matter fibres. Recent studies have demonstrated
that diffusion kurtosis imaging (DKI) metrics are more sensitive to microstructural changes during
ageing compared to those of DTI. In a previous work, we demonstrated that the Cohen’s d of mean
diffusional kurtosis (dMK) represents a useful biomarker for quantifying maturation heterochronicity.
However, some inferences on the maturation grades of different fibre types, such as association,
projection, and commissural, were of a preliminary nature due to the insufficient number of fibres
considered. Hence, the purpose of this follow-up work was to further explore the heterochronicity
of microstructural maturation between pre-adolescence and middle adulthood based on DTI and
DKI metrics. Using the effect size of the between-group parametric changes and Cohen’s d, we
observed that all commissural fibres achieved the highest level of maturity, followed by the ma-
jority of projection fibres, while the majority of association fibres were the least matured. We also
demonstrated that dMK strongly correlates with the maxima or minima of the lifespan curves of DTI
metrics. Furthermore, our results provide substantial evidence for the existence of spatial gradients
in the timing of white matter maturation. In conclusion, our data suggest that DKI provides useful
biomarkers for the investigation of maturation spatial heterogeneity and heterochronicity.

Keywords: brain tissue microstructure; maturation; heterogeneity; heterochronicity; diffusion kurtosis
imaging; diffusion MRI

1. Introduction

In recent decades, neuroimaging methods have provided valuable insights into struc-
tural changes in the developing brain in vivo, and numerous studies [1–3] have shown that
morphometric parameters, such as whole-brain and regional brain volumes, and cortical
thickness and surface area, reveal substantial changes throughout childhood and adoles-
cence. In particular, a number of studies have shown that total brain volume tends to peak
between 10 (girls) and 14 (boys) years of age and slightly decreases thereafter, remaining

Brain Sci. 2024, 14, 495. https://doi.org/10.3390/brainsci14050495 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci14050495
https://doi.org/10.3390/brainsci14050495
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0003-2902-8667
https://orcid.org/0000-0001-8486-3126
https://orcid.org/0000-0002-8151-6169
https://doi.org/10.3390/brainsci14050495
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci14050495?type=check_update&version=2


Brain Sci. 2024, 14, 495 2 of 27

roughly stable until the mid-thirties [2,4,5]. Furthermore, cortical grey matter (GM) vol-
ume is known to be greatest during childhood and tends to follow an inverted U-shaped
trajectory, with peak volumes reached by late childhood or early adolescence, depending
on the region [5,6]. In contrast, WM volume continues to rise throughout childhood and
adolescence and stabilises around the middle of the second decade [7,8]. Although not all
studies report consistent results regarding the details of developmental trajectories [5], they
show that WM volume increases for a longer time (into late midlife) in comparison to GM
volume, suggesting protracted WM maturation [9,10].

The development of more advanced, quantitative MRI techniques [11–14], such as
diffusion MRI, relaxometry, magnetisation transfer, and myelin water imaging, has enabled
additional valuable information relating to microstructural changes in brain tissue and
neuronal circuitry to be obtained. In particular, over the last decade, diffusion MRI studies
have provided exciting new insights into maturation mechanisms, demonstrating ongoing
brain remodelling through childhood and adolescence. However, more detailed informa-
tion on the underlying biophysical mechanisms and related quantitative metrics is still
required [15–17].

The sensitivity of water diffusion in the brain to microstructural tissue properties
is the result of local geometrical barriers imposed by cellular membranes and organelles
restricting diffusional propagation. Two key scalar indices provided by diffusion tensor
imaging (DTI) [18,19] are the mean diffusivity (MD), a rotationally invariant measure of
molecular propagation in space, and fractional anisotropy (FA), a measure of diffusion
directionality linked to, among others, orientational axonal coherence and density. Using
wide age ranges and large samples of subjects, numerous DTI studies [8,10,16,20–27] have
provided evidence for a decrease in overall diffusivity measures and an increase in FA
during childhood and adolescence, which continue into middle-age adulthood and are
followed by an opposite trend in old age. In general, DTI metrics show patterns of cerebral
maturation and decline, rendering non-monotonic lifespan trajectories with age. These are
mainly characterised by three stages: (a) the fastest changes, i.e., decreases in diffusivity
and increases in FA values, are observed during the first two years of life, followed by
strongly decelerating progression of the same trend throughout childhood and adolescence;
(b) relative stability in early-to-middle-adulthood; and (c) a subsequent acceleration of the
opposite trend, i.e., increases in diffusivity and decreases in FA values, in senescence.

Among the DTI invariants investigated in age-related studies, the focus has frequently
been on FA [21,28,29] as a putative marker that reflects various underlying microstructural
features, such as axonal myelination, the orientational coherence of fibre bundles, packing
density, etc. In particular, myelination plays a crucial role in the transmission of electrical
signals and is linked to the efficiency of neuronal communication. Generally, WM matura-
tion is associated with the development of cognitive functions during childhood [30,31].
Accordingly, correlations have been reported between FA and cognitive performance or
deficits, such as in processing speed, memory, and reading ability [32–39].

Developmental trajectories of DTI metrics have been shown to be different for various
anatomic regions and have been associated with their role in the maturation of executive
functions and changes in brain circuitry [20,40]. Furthermore, they can be modelled as both
linear and non-linear (quadratic, Poisson, and exponential) functions of age [10,21,22,41]. In
particular, FA tends to follow an inverted U-shaped trajectory for several major tracts, such
as the corona radiata and cingulum, reaching individual peak maxima in early-to-middle
adulthood, most typically during the second and third decades [21,22,41]. Conversely,
diffusivity measures in these fibres reveal U-shaped curves, with the minima found in the
same decades but not necessarily at the same age as the peak for FA. Some other WM fibres,
such as the fornix, centrum semiovale, or superior fronto-occipital fasciculus show linear
decreases in FA or remain flat with age (range ca. 5–30 years). The observed magnitude
of changes attained by different fibres during different periods were consistent with the
tendency for late maturation of association (AF) in comparison to commissural (CF) and
projection (PF) fibres [41].
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More generally, the current understanding of developmental trajectories entails a com-
plex spatiotemporal dynamical pattern [42]. Cortical GM development primarily advances
in a posterior-to-anterior (P-A) direction, with myelination in WM proceeding concurrently
with the development of overlaying GM and the progression of cognitive functions [43–53].
These works, including both anatomic MRI and DTI studies, have shown that posterior–
inferior areas tend to underlie the initial emergence of basic sensory and motor functions,
whereas anterior–superior areas develop later and support higher-order executive functions
and multi-modal integration. In recent studies, Colby et al. [44] (32 subjects, 3–28 years
old) and Krogsrud et al. [54] (159 children, 4–11 years old) investigated developmental
timings in WM maturation as captured by DTI metrics. These studies have provided further
evidence for an orderly maturation progression along P-A, central-to-peripheral (C-P), and
inferior-to-superior (I-S) spatial directions.

For nearly two decades, diffusion kurtosis imaging (DKI) [55,56], a higher-order
extension of DTI, has gained increasing attention as a method for providing sensitive
biomarkers of development [57–60], ageing [61–66], and various brain pathologies, such
as stroke [67–72], neurodegenerative diseases [73–75], childhood epilepsy [76–78], and
attention-deficit/hyperactivity [59,79]. In relation to developmental processes, strong
increases in both FA and mean kurtosis (MK) have been reported for multiple WM regions
during the first two years of life, with a subsequent slowdown toward a plateau-like
behaviour [58]. The authors associated the increase in FA with a dominating myelination
and axonal packing process. Interestingly, in contrast with FA, MK continued to rise
beyond the 2-year mark and converged to a plateau at a later age, thus reflecting ongoing
remodelling of the tissue microstructural environment. A further increase in MK beyond
childhood/adolescence, as opposed to an ageing-related decrease [61,64] after the second
decade of life, has only been reported in a relatively small number of works [57,59,62,66],
emphasising the need for further studies. In particular, Falangola et al. [62] showed that
MK in the prefrontal brain region was higher in young adults (26–47 years old) than in
adolescents (12–17 years old). An increase in MK between the ages of 12 to 18 years, which
was also limited to the prefrontal cortex, was reported by Helpern et al. [59] for a small
group of subjects (n = 13). Age trajectories of DT and kurtosis tensor (KT) metrics in 21 WM
and GM anatomic regions were investigated by Das et al. [66] in a work that had ageing
processes as the primary focus.

In our previous work [57], we performed a comparative analysis of KT metrics in a
group of children and a group of middle-aged adults for 20 anatomic WM regions provided
by the Johns Hopkins University (JHU) Atlas—available in the FSL toolkit (http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/Atlases, accessed on 7 May 2024). We demonstrated that KT metrics
exhibited significant between-group differences and that they were of substantially larger
magnitude than those observed with DT metrics. Quantified in terms of the Cohen’s d of
MK (dMK), these differences showed strong heterochronicity maturation of the different
fibres and, especially, the different fibre types. The largest dMK values were observed for all
(seven) AFs studied, such as the cingulum and superior longitudinal fasciculus, which is
in agreement with their anticipated protracted maturation. The smallest dMK values were
observed in two of the CFs studied, such as forceps major and forceps minor, indicating
more advanced maturation. Two of the PFs studied exhibited intermediate dMK. Thus, our
results suggest that dMK is highly sensitive to subtle maturation between pre-adolescence
and adulthood and further indicate its ability to access the maturation grades of different
fibre types. Driven by the interest in this phenomenon, this present paper extends the
investigation of the differences between DT/DK metrics in children and adults to 27 WM
regions provided by the JHU Atlas “ICBM-DTI-81” available in FSL. Furthermore, the
spatiotemporal microstructural reorganisation of brain tissue through late childhood into
adulthood, as revealed by DKI metrics, is explored and the potential of dMK as a biomarker
of its maturation grade is tested. Additionally, the potential of KT metrics to gain insights
into major maturation gradients along the P-A, C-P, or I-S spatial directions is investigated.

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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2. Materials and Methods
2.1. Subjects

Two groups of healthy volunteers, 20 children (range, 9–12 years, mean age, 10.3) and
21 adults (range, 38–64 years, mean age, 54.3) underwent diffusion MRI.

2.2. Experiments

In vivo diffusion MRI experiments were performed with a whole-body 3T Siemens
MAGNETOM Tim-Trio scanner (Siemens Medical Systems, Erlangen, Germany). The
body coil was used for RF transmit, and a 12-element phased-array coil provided by the
manufacturer was used for signal receive. The gradient system allowed for a maximal
gradient strength of 40 mT/m and a slew rate of 200 T/m/s. As described in Grinberg
et al. [57], diffusion-weighted images (DWIs) were acquired using a double spin-echo echo-
planar imaging pulse sequence with the following protocol parameters: diffusion-encoding
gradient directions = 30; 3 diffusion-weighting factors (b-values) = 0, 1, and 2.8 ms/µm2;
TR = 10,900 ms, TE = 112 ms, pixel bandwidth = 1628 Hz/px, number of repetitions = 3,
total acquisition time = 33 min, matrix size = 128 × 128 × 72; and voxel size = 1.9 × 1.9 ×
1.9 mm3.

2.3. Data Processing and Statistical Analysis

DT scalar invariants (MD, axial (AD), and radial (RD) diffusivities and FA) and specific
KT measures (MK, axial (AK), and radial (RK) kurtoses and kurtosis anisotropy (KA)) were
determined on a voxel-by-voxel basis, within the framework of the DKI analysis [56,80].
The post-processing steps are described in detail elsewhere [57]. In brief, DWIs were
corrected for eddy-current distortions and head motion using the FDT toolkit available in
FSL [81]; signal bias due to background noise [82] was reduced following the method in
Refs. [83,84]; DT/KT metrics were evaluated with the help of the ExploreDTI toolkit [85].
Individual FA maps were aligned to the FA template in the JHU space using the linear
(firstly) and non-linear (secondly) registration approaches available in FSL. The estimated
affine transformations and warp fields were then applied to the non-FA images.

For the atlas-based analysis, the DT/KT metrics within each of the WM tracts provided
by the JHU Atlas “ICBM-DTI-81” were averaged with no distinction between the left and
right sides. In total, 27 tracts were considered and are listed in Table 1. Among the fibres
studied in this (ICBM-DTI-81 WM labels atlas) and previous [57] (JHU WM tractography
atlas) works, only five fibres (CST, Cg, Ch, SLF, and UF) were the same in both atlases. The
values of the DT/KT parameters for these fibres in both works were in good agreement,
and only small differences (~5–10%) in absolute values, easily attributable to the differences
in the corresponding template ROIs, were observed.

Table 1. Abbreviations of WM tracts provided by the Johns Hopkins University (JHU) Atlas “ICBM-
DTI-81” investigated in this work.

Number WM Tract Abbreviation

1. Middle cerebellar peduncle MCP
2. Pontine crossing tract PCT
3. Genu of corpus callosum GCC
4. Body of corpus callosum BCC
5. Splenium of corpus callosum SCC
6. Fornix column and body FCB
7. Corticospinal tract CST
8. Medial lemniscus ML
9. Inferior cerebellar peduncle ICP
10. Superior cerebellar peduncle SCP
11. Cerebral peduncle CP
12. Anterior limb of internal capsule ALIC
13. Posterior limb of internal capsule PLIC
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Table 1. Cont.

Number WM Tract Abbreviation

14. Retrolenticular part of internal capsule RPIC
15. Anterior corona radiata ACR
16. Superior corona radiata SCR
17. Posterior corona radiata PCR
18. Posterior thalamic radiation (including optic radiation) PTR

19. Sagittal stratum (including inferior longitudinal
fasciculus and inferior fronto-occipital fasciculus) SS

20. External capsule EC
21. Cingulum (cingulate gyrus) Cg
22. Cingulum (hippocampus) Ch
23. Fornix (crus) stria terminalis FST
24. Superior longitudinal fasciculus SLF
25. Superior fronto-occipital fasciculus SFOF
26. Uncinate fasciculus UF
27. Tapetum TAP

The following metrics were evaluated for each anatomically defined structure and for
each DT/KT parameter:

(a) Relative changes (∆A) in percentage between the group mean parameter values (Ā)
(i.e., averaged over all voxels for a given anatomy and a given subject and then
averaged over the whole group of subjects) according to ∆A = 100 × (Āadult −
Āchild)/Āchild, where A indicates one of the DT/KT parameters;

(b) p-values of the between-group two-sided Student’s t-test analysis. In the following,
we shall refer to statistical between-group differences as significant if p ≤ 0.00185
(after Bonferroni correction for multiple comparisons, n = 27);

(c) Between-group, age-related effect sizes using Cohen’s d [86] for each anatomically
defined structure. The subscript of Cohen’s d indicates the parameter for which it was
evaluated, i.e., dMK is Cohen’s d for MK, dFA is Cohen’s d for FA, and so forth.

In order to produce correlation plots between dMK and age of extrema in the life
trajectories of FA and MD, we used the values of age of peak for FA and age of minimum
for MD from Table 2 in Lebel et al.’s study [22].

The profiles of between-group, relative differences in the directions right-to-left (R-L),
P-A, and I-S were constructed using the following procedure: all individual FA maps
were linearly and non-linearly registered to the MNI152 FA standard space available in
FSL (1 × 1 × 1 mm3) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases, accessed on 7 May
2024). The corresponding affine transformations and warp fields were then applied to
the remaining DT/KT parameter maps. For each DT/KT parameter, the maps of the
group-average DT/KT parameters for children and adults, along with the corresponding
maps of the between-group relative differences in percentage, were evaluated on a voxel-
by-voxel basis, yielding the group average (Av, where “v” denotes “voxel-by-voxel”)
and the group-difference maps (∆Av). These parameters were then projected onto the
group-wise FA skeleton, which was produced with the help of TBSS (tract-based spatial
statistics), available in FSL [87]. In order to generate profiles along each of the three axes
(R-L, P-A, and I-S), the group-difference maps, ∆Av, were averaged over all voxels in the
skeleton within each individual plane perpendicular to a given direction (R-L, A-P, or
I-S), yielding one average value per plane (

〈
∆Av

〉
, where ⟨. . .⟩ indicates averaging over

a given plane). These values were then plotted as a function of the plane position. To
simplify visualisation, we subtracted the mean values of

〈
∆Av

〉
averaged over the entire

profile from the ordinates so that all profiles appear “centred” around zero. The colour of
individual data points indicates whether the t-test of between-group differences performed
for the values of Av (considering only skeleton voxels of the corresponding plane) was
significant (red) or non-significant (blue) with (threshold) α values set to 0.05. Finally, the
evaluated parameter gradient profiles were fitted using polynomials of first (linear) and

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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second (quadratic) order. To investigate the C-P direction (i.e., from the centre to the left or
right periphery), the data sets from the R-L direction were subdivided into left and right
halves of the whole profile and fitted separately. Additionally, the whole R-L profile was
fitted using a second-order polynomial. The goodness-of-fit was assessed using the values
of coefficient of determination (R2), F-statistics (F-stat), and p-values provided by the linear
regression model algorithm available in Matlab (for more detail, see the function fitlm
under www.mathworks.com/help/stats/fitlm.html, accessed on 7 May 2024).

3. Results
3.1. Whole-Brain WM Histograms and Atlas-Based Analysis of WM Tracts

Figure 1a shows the histograms of the whole-brain WM (FA > 0.2) averaged over the
group of adults and the group of children. The histograms of the DT metrics appear largely
overlapped, whereas the histograms of the kurtosis indices demonstrate clear between-
group shifts. This effect is even more pronounced in the histograms of individual fibres,
as shown for three selected tracts representative of each of the AF (Cg), PF (CST), and CF
(GCC) fibre types (Figure 1b).

The group mean values of the DT/KT parameters and the standard deviations for
various WM fibres are presented in Supplementary Table S1 (DT) and Table S2 (KT). Relative
between-group differences in the parameter means are shown in Table 2 (DT) and Table 3
(DK). As an overview, the relative differences in percentage are visualised as bar plots
in Figure 2a (DT) and Figure 2b (KT), where asterisks indicate significant (p ≤ 0.00185)
between-group differences. For each individual fibre, the between-group differences were
considerably larger for KT than for DT metrics. The magnitudes of the observed absolute
differences between the group means in any DT metrics were relatively small on average
across the fibres: approximately 2.9% for FA and MD and 3.2% for AD and RD. The largest
observed changes in the FCB were equal to 13.5% in MD, 11.0% in AD, and 15.8% in
RD, whereas in the ICP, the largest change was equal to 7.8% in FA. None of the fibres
exhibited significant differences in all DT parameters, but several fibres showed statistically
significant differences in some of the metrics: CST (FA), ICP (FA), SCP (FA), ALIC (FA), Ch
(FA), PCT (MD, AD, RD), FCB (MD, AD), PLIC (MD, AD), EC (MD), MCP (AD), RPIC (AD),
PTR (AD), EC (AD), and FST (AD). In contrast, the magnitudes of the absolute changes
in the KT parameters were rather large; that is to say, on average, across the fibres, they
were equal to ca. 11.3%, 9.6%, 13.7%, and 12.3% for MK, AK, RK and KA, respectively.
The largest differences between the group means were observed for the same fibre, i.e.,
the Ch, in all KT metrics, and were as large as 32.7% for MK, 19.8% for AK, 36.2% for RK,
and 27.5% for MK, AK, RK, and KA. The between-group mean KT parameter differences
were significant for most of the fibres, with p-values as low as ~10−15 for MK in Ch, for
example. Out of all of the fibres examined, only a few fibres, namely, the BCC (MK, AK,
and KA), FCB (all KT metrics), TAP (MK, AK, and RK), CST (AK), and SCP (AK), did not
show statistically significant differences in one or more KT metric. Additionally, ten other
fibres (GCC, ML, RPIC, ACR, SCR, PSR, PTR, SS, EC, and SLF) did not show significant
differences in only the KA parameter.

Table 2. Between-group differences in percentage, absolute values of Cohen’s d, and values of p for DT
parameters in WM ROIs. The values for all fibres were evaluated by averaging the absolute values of
percentual changes and Cohen’s d across all fibres. Significant between-group differences are indicated
by asterisks based on the two-sided Student’s t-test analysis (p ≤ 0.00185, Bonferroni corrected).

FA MD AD RD

WM
Tract ∆ [%] dFA p ∆ [%] dMD p ∆ [%] dAD p ∆ [%] dRD p

MCP 0.5 0.17 6 × 10−1 −3.7 1.07 2 × 10−3 −4.8 1.45 6 × 10−5 * −2.6 0.64 5 × 10−2

PCT 0.0 0.00 1 × 100 −10 1.55 2 × 10−5 * −10.3 1.95 4 × 10−7 * −9.7 1.17 8 × 10−4 *

www.mathworks.com/help/stats/fitlm.html
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Table 2. Cont.

FA MD AD RD

WM
Tract ∆ [%] dFA p ∆ [%] dMD p ∆ [%] dAD p ∆ [%] dRD p

GCC −0.5 0.12 7 × 10−1 0.8 0.12 7 × 10−1 −0.1 0.02 1 × 100 1.8 0.2 5 × 10−1

BCC 2.8 0.51 1 × 10−1 0.5 0.1 8 × 10−1 1.6 0.45 2 × 10−1 −0.8 0.08 8 × 10−1

SCC 1.1 0.36 3 × 10−1 0.4 0.1 8 × 10−1 0.4 0.11 7 × 10−1 0.6 0.09 8 × 10−1

FCB −6.4 0.57 8 × 10−2 13.5 1.13 1 × 10−3 * 11 1.33 2 × 10−4 * 15.8 1.00 3 × 10−3

CST 5.5 1.18 7 × 10−4 * −2.0 0.4 2 × 10−1 0.1 0.01 1 × 10−1 −4.2 0.61 6 × 10−2

ML 1.3 0.32 3 × 10−1 −2.3 0.49 1 × 10−1 −1.5 0.31 3 × 10−1 −3.2 0.57 8 × 10−2

ICP 7.8 1.24 4 × 10−4 * −0.2 0.07 8 × 10−1 1.9 0.72 3 × 10−2 −2.3 0.44 8 × 10−1

SCP 5.1 1.20 6 × 10−4 * −2.6 0.47 2 × 10−1 −0.2 0.05 9 × 10−1 −5.2 0.66 5 × 10−2

CP −3.0 0.73 3 × 10−2 0.7 0.16 6 × 10−1 −2.1 0.64 6 × 10−2 4.5 0.58 8 × 10−2

ALIC 4.5 1.11 1 × 10−3 * 0.4 0.08 8 × 10−1 1.1 0.26 4 × 10−1 −0.4 0.05 9 × 10−1

PLIC −1.0 0.34 3 × 10−1 −4.2 1.12 1 × 10−3 * −5.7 1.80 2 × 10−6 * −1.7 0.28 4 × 10−1

RPIC −3.2 0.87 1 × 10−2 −1.3 0.34 3 × 10−1 −4.1 1.10 1 × 10−3 * 2.4 0.42 2 × 10−1

ACR −1.6 0.30 4 × 10−1 −2.5 0.53 1 × 10−1 −3.6 0.99 4 × 10−3 −1.3 0.21 5 × 10−1

SCR −2.9 0.67 4 × 10−2 −1.5 0.32 3 × 10−1 −3.6 0.82 1 × 10−2 0.8 0.14 7 × 10−1

PSR −4.1 0.84 1 × 10−2 −1.8 0.37 2 × 10−1 −4.3 1.06 2 × 10−3 0.9 0.14 7 × 10−1

PTR −2.4 0.57 8 × 10−2 −3.4 0.8 2 × 10−2 −4.9 1.29 2 × 10−4 * −1.6 0.28 4 × 10−1

SS 0.6 0.12 7 × 10−1 −2.6 0.55 1 × 10−1 −2.2 0.53 1 × 10−1 −3.1 0.46 2 × 10−1

EC 0.6 0.14 7 × 10−1 6.7 1.44 7 × 10−5 * 6.1 1.64 9 × 10−6 * 7.3 1.22 5 × 10−4 *
Cg 5.3 0.96 5 × 10−3 2.0 0.56 9 × 10−2 3.8 0.87 9 × 10−3 0.3 0.07 8 × 10−1

Ch 6.4 1.07 2 × 10−3 * −3.0 0.94 6 × 10−3 −2.6 0.75 2 × 10−2 −3.4 0.86 1 × 10−2

FST −3.2 0.58 8 × 10−2 −2.6 0.5 1 × 10−1 −5 1.21 6 × 10−4 * 0.0 0.00 1 × 100

SLF 1.3 0.31 3 × 10−1 −0.1 0.02 9 × 10−1 0.1 0.03 9 × 10−1 −0.3 0.06 9 × 10−1

SFOF 0.4 0.06 8 × 10−1 1.0 0.12 7 × 10−1 0.2 0.03 9 × 10−1 1.8 0.18 6 × 10−1

UF 4.9 0.88 9 × 10−3 −2.5 0.73 3 × 10−2 −1.5 0.42 2 × 10−1 −3.5 0.79 2 × 10−2

TAP 3.2 0.49 1 × 10−1 −5.5 0.64 5 × 10−2 −4.7 0.63 6 × 10−2 −6.2 0.63 6 × 10−2

All fibres 2.9 0.58 2.9 0.55 3.2 0.75 3.1 0.43

Table 3. Between-group differences in percentage, absolute values of Cohen’s d, and values of p for KT
parameters in WM ROIs. The values for all fibres were evaluated by averaging the absolute values of
percentual changes and Cohen’s d across all fibres. Significant between-group differences are indicated
by asterisks based on the two-sided Student’s t-test analysis (p ≤ 0.00185, Bonferroni corrected).

KA MK AK RK

WM
Tract ∆ [%] dKA p ∆ [%] dMK p ∆ [%] dAK p ∆ [%] dRK p

MCP 16.8 2.36 6 × 10−9 * 10 2.35 8 × 10−9 * 6.1 1.41 9 × 10−5 * 13.8 2.64 4 × 10−10 *
PCT 20.3 1.87 9 × 10−7 * 16.1 3.19 3 × 10−12 * 10.2 2.26 2 × 10−8 * 16.3 2.23 2 × 10−8 *
GCC 2.3 0.24 5 × 10−1 5.4 1.08 2 × 10−3 * 10.1 2.38 6 × 10−9 * 7.9 1.08 2 × 10−3 *
BCC 7.4 0.77 2 × 10−2 1.5 0.28 4 × 10−1 8.9 2 3 × 10−7 * 1.4 0.17 6 × 10−1

SCC 16.6 1.76 3 × 10−6 * 7 1.46 5 × 10−5 * 8.1 1.62 1 × 10−5 * 11.6 1.66 7 × 10−6 *
FCB −12.5 0.62 6 × 10−2 0.1 0.01 1 × 100 −1.3 0.26 4 × 10−1 −1.6 0.15 7 × 10−1

CST 17.3 2.15 5 × 10−8 * 9.7 2.07 1 × 10−7 * 3.4 0.76 2 × 10−2 16.6 2.57 9 × 10−10 *
ML 8.6 0.97 4 × 10−3 11 2.01 2 × 10−7 * 6.6 1.28 3 × 10−4 * 11.8 1.62 1 × 10−6 *
ICP 22.4 2.51 2 × 10−9 * 11.4 2.72 2 × 10−10 * 4.4 1.09 2 × 10−3 * 15.8 2.58 9 × 10−10 *
SCP 21.6 2.21 3 × 10−8 * 7.8 1.58 2 × 10−5 * 3.9 0.85 1 × 10−2 12.9 2.31 1 × 10−8 *
CP 12.6 1.27 3 × 10−4 * 11.1 2.15 5 × 10−8 * 13 2.35 9 × 10−9 * 17.3 2.4 4 × 10−8 *

ALIC 12.9 1.47 5 × 10−5 * 11.7 2.43 4 × 10−9 * 7.8 1.98 3 × 10−7 * 11.1 1.86 1 × 10−6 *
PLIC 9.5 1.22 5 × 10−4 * 10 1.87 9 × 10−7 * 14.3 2.8 1 × 10−10 * 13.2 1.74 3 × 10−6 *
RPIC 5.3 0.68 4 × 10−2 10.9 2.3 1 × 10−8 * 14.6 3.12 6 × 10−12 * 11.5 1.67 6 × 10−6 *
ACR 4.7 0.43 2 × 10−1 9 1.88 8 × 10−7 * 8.6 2.33 9 × 10−9 * 10.8 1.78 2 × 10−6 *
SCR 7 0.78 2 × 10−2 8.7 2.01 2 × 10−7 * 10.3 2.6 8 × 10−10 * 7.2 1.3 2 × 10−4 *
PSR 10.6 1.05 2 × 10−3 10.5 2.02 2 × 10−7 * 9.7 1.96 4 × 10−7 * 10.8 1.64 9 × 10−6 *
PTR 7 0.78 2 × 10−2 10.7 1.98 3 × 10−7 * 11.5 2.41 5 × 10−9 * 12 1.58 2 × 10−5 *
SS 1.7 0.18 6 × 10−1 12.9 2.32 1 × 10−8 * 12.4 2.38 7 × 10−9 * 14 1.9 7 × 10−7 *
EC 3.2 0.38 2 × 10−1 19.9 3.83 1 × 10−14 * 11.7 3.31 1 × 10−12 * 25.6 3.47 3 × 10−13 *
Cg 16.5 2.25 2 × 10−8 * 18.4 4.07 2 × 10−15 * 7.9 1.79 2 × 10−6 * 23.5 3.1 7 × 10−12 *
Ch 27.5 2.9 4 × 10−11 * 32.7 3.97 5 × 10−15 * 19.8 3.33 1 × 10−12 * 36.2 3.83 7 × 10−14 *
FST 10.8 1.1 2 × 10−3 * 13.9 2.48 2 × 10−9 * 17.3 3.19 4 × 10−12 * 10 1.28 3 × 10−4 *
SLF 6.1 0.76 2 × 10−2 10.4 2.7 3 × 10−10 * 8.8 2.15 6 × 10−8 * 12.4 2.33 1 × 10−8 *

SFOF 17 1.3 2 × 10−4 * 13.9 2.39 5 × 10−9 * 8.8 1.84 1 × 10−6 * 18 2.22 3 × 10−8 *
UF 15.4 1.57 2 × 10−5 * 18.7 3.04 1 × 10−11 * 16.8 2.9 4 × 10−11 * 19.2 1.93 5 × 10−7 *

TAP 17.5 1.11 1 × 10−3 * 3 0.29 4 × 10−1 2.1 0.35 3 × 10−1 6.9 0.43 2 × 10−1

All fibres 12.3 1.28 11.3 2.17 9.6 2.02 13.7 1.90
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Figure 1. (a) Whole-brain histograms of the DT/KT metrics averaged within the groups of children
and adults; (b) average histograms of the DT/KT metrics for three selected fibres: the Cg (AF), CST
(PF), and GCC (CF).
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Figure 2. (a) Relative changes in the DT parameters in adults and children for different fibres;
(b) relative changes in the KT parameters in adults and children for different fibres. Significant
between-group differences are indicated by asterisks based on the two-sided Student’s t-test analysis
(p ≤ 0.00185, Bonferroni corrected).
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The Cohen’s d values were considerably larger for the KT parameters than for the
DT parameters, as clearly seen from a comparison of Tables 2 and 3. According to the
conventional rule of thumb for the classification of effect sizes [88], on average, the absolute
Cohen’s d values across the fibres were “large” (|d| ≥ 0.8) for all four KT parameters and
were equal to 2.17 (MK), 2.02 (AK), 1.90 (RK), and 1.28 (KA); whereas the corresponding DT
parameter values were equal to 0.55 (MD), 0.75 (AD), 0.43 (RD), and 0.58 (FA). Regarding
the individual tracts, the Cohen’s d values were “large” in 24 (MK), 24 (AK), 24 (RK), and
17 (KA) fibres or “medium” (0.5 ≤ |d| < 0.8) in 0 (MK), 1 (AK), 0 (RK), and 6 (KA) fibres, in
comparison to 7 (MD), 5 (AD), 4 (RD), and 9 (FA) fibres with a “large” d or 6 (MD), 5 (AD),
7 (RD), and 7 (FA) fibres with a “medium” d. Moreover, a closer differentiation shows that
the absolute Cohen’s d values were > 2.0 in 18 (MK), 15 (AK), 11 (RK), and 6 (KA) fibres
(that is, a “huge” effect size according to a more expanded classification [89]), whereas they
did not exceed 2.0 in any fibre for any DT metric.

Pearson’s correlations between Cohen’s d values for various DT and KT pairs of
parameters are shown in Table 4. In particular, dMD was strongly correlated (r > 0.5) with
dAD (r = 0.89) and dRD (r = 0.85) but not with dFA or Cohen’s d of any KT metrics. Moreover,
dMK was strongly or moderately correlated with dAK (r = 0.56), dRK (r = 0.88) and dKA but
not with the Cohen’s d of any DT parameter. Additionally, dRD was strongly negatively
correlated with dFA (r = 0.50) and dKA (r = 0.60). Finally, dRK was strongly correlated with
dKA (r = 0.63) and moderately correlated with dFA.

Table 4. Pearson correlation coefficients for pairs of Cohen’s d values of various DT and KT parameters.
Bold numbers denote large (≥0.5), significant (*, p < 0.05) correlations.

dMD dAD dRD dFA dMK dAK dRK dKA

dMD 1 0.89 * 0.85 * 0.00 −0.08 −0.17 −0.06 −0.41 *
dAD 1 0.52 * 0.42 * −0.04 −0.34 0.03 −0.15
dRD 1 −0.50 * −0.14 0.09 −0.17 −0.60 *
dFA 1 0.25 −0.29 0.40 * 0.64 *
dMK 1 0.56 * 0.88 * 0.49 *
dAK 1 0.36 −0.04
dRK 1 0.63 *
dKA 1

3.2. Assessment of Maturation Based on dMK

Figure 3 shows the bar plot of dMK values for all investigated fibres. The range of the
observed values varies from ~0 for the FCB to ~4 for the Cg and Ch. The five largest dMK
values were observed in the Cg, Ch, EC, PCT, and UF, and the five smallest ones were
observed in the FCB, BCC, tapetum, GCC, and SCC. That is, all five fibres with the smallest
dMK are CFs, whereas four out of five with the largest dMK are AFs. Taken separately, the
mean dMK values across AFs, PFs, and CFc were equal to 3.10 ± 0.75, 2.18 ± 0.40, and
0.62 ± 0.61, respectively. The quartile analysis shows that the first quartile (dMK = 1.87)
includes all of the CFs studied plus two PFs (SCP and PLIC), the range between the first
quartile and the median (dMK = 2.15) includes nine PFs, the range from the median to the
third quartile (dMK = 2.58) includes three more PFs and three AFs, and the range between
the third and fourth quartiles includes six AFs and two PFs. Thus, there is a clear tendency
for dMK to enable the different fibres to be partially sorted in such a way that the AFs
predominantly occupy the top (largest dMK, the most protracted maturation), the CFs
predominantly occupy the bottom (smallest dMK, the most complete maturation), and the
PFs predominantly occupy the middle of the descending order.

Figure 4 shows the scatter plots of dMK versus age of peak for FA and age of minimum
for MD for the ten investigated fibres. Herein, we used the values published by Lebel
et al. [22] in Table 2 for age of peak and age of minimum. The respective Pearson’s
correlation coefficients, r, were equal to 0.64 and 0.8, providing evidence of a strong
correlation between dMK and the age at which FA and MD reach their extreme values.
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Figure 3. The values of dMK for various fibres used to characterise the maturity of these fibres with
respect to their microstructural changes between childhood and adulthood. The values are shown
in descending order. The fibres with the highest dMK are assumed to exhibit the most protracted
maturation. AF, PF, and CF denote association, projection, and commissural fibres, respectively.
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Figure 4. Scatter plots of dMK versus age of peak for FA and age of minimum for MD for 10
investigated fibres. Herein, we used the data published by Lebel et al. [22] for the age of peak and
age of minimum. Pearson’s correlation coefficients, r, are indicated on the plots and provide evidence
of strong correlations between dMK and the age at which FA and MD reach their extreme values. ▼,
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3.3. Patterns of Developmental Change along C-P, P-A, and I-S Directions

Plane-by-plane profiles of percentual between-group differences in the mean DT
and KT metrics along the indicated directions are shown in Figure 5a and Figure 5b,
respectively. It can be seen that the profiles of the KT metrics are predominantly composed
of red points (significant between-group differences, see Section 2.3), whereas those of DT
metrics contain a considerable number of blue points (non-significant differences). Visual
inspection exposes certain characteristic patterns, which are most pronounced in the C-P
and P-A directions. The first striking difference can be seen between the C-P (first column)
and the two other directions (second and third columns). In the C-P direction, KT metrics
(except KA) show rather symmetric V-like patterns descending from the peripheral towards
the central regions. The DT metrics also descend roughly from the periphery toward the
centre but exhibit an additional symmetric upward change in the middle (rendering a more
W-like pattern). Due to this characteristic pattern, the left and right halves of the profiles
in the C-P direction were fitted and considered separately. In the P-A and I-S directions,
the observed KT profiles are ascending, with the exception of those of KA. DT metrics
provide a mixed picture, descending in P-A and ascending in I-S directions. Quantitative
fit characteristics (R2, F-stat, and p-values) for linear and quadratic functions are shown in
Table 5. F-statistics show that both linear and quadratic functions were significant for all
parameters in all directions, with the exception of RD in the R-L (right) direction and KA in
the R-L (left) and I-S directions.

Table 5. The values of R2, F-stat, and p-values for the fits of the data points in Figure 5a,b using linear
regression models (see Section 2.3).

MD AD RD FA MK AK RK KA

R-L (left)
R2 (linear) 0.18 0.25 0.12 0.44 0.81 0.61 0.68 0.003

F-stat (linear) 14 20 9 48 270 97 131 0.2
p-value (linear) <10−3 <105 4.6 × 10−3 <10−5 <10−20 <10−10 <10−10 6.9 × 10−1

R2 (quadratic) 0.92 0.90 0.86 0.44 0.84 0.72 0.68 0.06
F-stat (quadratic) 348 264 189 24 159 78 65 2

p-value (quadratic) <10−20 <10−20 <10−20 <10−5 <10−20 <10−10 <10−10 1.4 × 10−1

R-L (right)
R2 (linear) 0.09 0.14 0.06 0.36 0.86 0.69 0.72 0.09

F-stat (linear) 6 10 4 34 366 133 156 6
p-value (linear) 1.8 × 10−2 2.5 × 10−3 5.7 × 10−2 <10−5 <10−20 <10−10 <10−10 2.1 × 10−2

R2 (quadratic) 0.45 0.54 0.34 0.36 0.86 0.69 0.73 0.35
F-stat (quadratic) 24 34 15 17 181 66 79 16

p-value (quadratic) <10−5 <10−5 <10−5 <10−5 <10−20 <10−10 <10−10 <10−5

R-L
R2 (quadratic) 0.31 0.39 0.24 0.37 0.82 0.67 0.65 0.09

F-stat (quadratic) 28 39 19 36 279 124 112 6
p-value (quadratic) <10−5 <10−10 <10−5 <10−10 <10−20 <10−20 <10−20 3.5 × 10−3

P-A
R2 (linear) 0.49 0.51 0.44 0.04 0.67 0.65 0.70 0.48

F-stat (linear) 151 168 125 6 324 294 379 150
p-value (linear) <10−20 <10−20 <10−20 1.4 × 10−2 <10−20 <10−20 <10−20 <10−20

R2 (quadratic) 0.69 0.68 0.65 0.18 0.68 0.80 0.70 0.50
F-stat (quadratic) 177 172 150 17 169 325 190 80

p-value (quadratic) <10−20 <10−20 <10−20 <10−5 <10−20 <10−20 <10−20 <10−20

I-S
R2 (linear) 0.66 0.55 0.67 0.15 0.18 0.03 0.27 0.02

F-stat (linear) 239 152 257 22 27 4 46 2
p-value (linear) <10−20 <10−20 <10−20 <10−5 <10−5 4.4 × 10−2 <10−5 1.2 × 10−1

R2 (quadratic) 0.77 0.79 0.70 0.56 0.21 0.61 0.27 0.48
F-stat (quadratic) 205 233 146 79 16 96 23 56

p-value (quadratic) <10−20 <10−20 <10−20 <10−20 <10−5 <10−20 <10−5 <10−10



Brain Sci. 2024, 14, 495 14 of 27

Brain Sci. 2024, 14, x FOR PEER REVIEW 15 of 29 
 

metric upward change in the middle (rendering a more W-like pattern). Due to this char-

acteristic pattern, the left and right halves of the profiles in the C-P direction were fitted 

and considered separately. In the P-A and I-S directions, the observed KT profiles are as-

cending, with the exception of those of KA. DT metrics provide a mixed picture, descend-

ing in P-A and ascending in I-S directions. Quantitative fit characteristics (R2, F-stat, and 

p-values) for linear and quadratic functions are shown in Table 5. F-statistics show that 

both linear and quadratic functions were significant for all parameters in all directions, 

with the exception of RD in the R-L (right) direction and KA in the R-L (left) and I-S di-

rections.  

 
(a) 

Figure 5. Cont.



Brain Sci. 2024, 14, 495 15 of 27Brain Sci. 2024, 14, x FOR PEER REVIEW 16 of 29 
 

 
(b) 

Figure 5. (a) Profiles of 〈Δ�̅�v〉, where A denotes one of the DT parameters indicated at the vertical 

axes; (b) profiles of 〈Δ�̅�v〉, where A denotes one of the KT parameters indicated at the vertical axes. 

All profiles appear “centred” around zero since the mean values of 〈Δ�̅�v〉 averaged over the entire 

profile were subtracted from the ordinates (to simplify visualisation). The colour of individual data 

points indicates whether the t-test of between-group differences performed for the values of �̅�v 

(considering only skeleton voxels of the corresponding plane) was significant (red) or non-signifi-

cant (blue) with (threshold) α values set to 0.05. 

  

Figure 5. (a) Profiles of
〈
∆Av

〉
, where A denotes one of the DT parameters indicated at the vertical

axes; (b) profiles of
〈
∆Av

〉
, where A denotes one of the KT parameters indicated at the vertical axes.

All profiles appear “centred” around zero since the mean values of
〈
∆Av

〉
averaged over the entire

profile were subtracted from the ordinates (to simplify visualisation). The colour of individual data
points indicates whether the t-test of between-group differences performed for the values of Av

(considering only skeleton voxels of the corresponding plane) was significant (red) or non-significant
(blue) with (threshold) α values set to 0.05.



Brain Sci. 2024, 14, 495 16 of 27

4. Discussion

Characterising WM microstructure at different stages of maturation can deepen our
understanding of how the development of cognitive functions, behaviour, and emotions
are supported by an underlying anatomic substrate [49,90,91]. It may also help elucidate
the heterogeneity/heterochronicity of regional maturation in relation to brain functionality.
This work substantially advances our preliminary study [57] and compares the potential
of DT and KT parameters to assess the microstructural changes in WM between (pre-
adolescent) childhood and middle adulthood. It further demonstrates the use of KT metrics
as sensitive biomarkers of maturation beyond pre-adolescence.

Generally, our findings are in agreement with previous DTI studies [7,10,21,92], indi-
cating protracted maturation of widespread WM structures into the third/fourth decades
and providing evidence of considerable regional heterochronicity. However, our results
also demonstrate that KT indices are much more sensitive indicators of ongoing subtle
microstructural development in comparison with DT parameters, thereby significantly
enriching the palette of maturation-sensitive MRI tools. In the following, we shall discuss
some noteworthy observations of heterochronicity, the correlation with age of peak, the
maturation ranking of various fibres/types, and potential neurobiological mechanisms in
the context of our experimental findings.

4.1. DT Metrics

The range of percentual changes (between 0 and ~10–15%) observed in our work for vari-
ous DT metrics and fibres generally agreed with typically reported findings [8,10,16,21,22,24,43].
However, a direct quantitative comparison is difficult because of the considerable differ-
ences between the investigated age ranges, selection of fibres, and applied methodical
approaches used in the different works. In particular, the average percentual changes across
all studied fibres (~3%) for both FA and MD in our work were somewhat smaller than the
average 8% (FA) and 10% (MD) changes reported by Lebel et al. [22]. However, this can be
easily attributed to differences both in the age ranges and in the selected anatomic regions
(of which only a part was the same in both works). For example, the age range studied
by Lebel et al. [22] included younger children, starting at five years old. Conversely, our
group of children (9–11 years old) misses a portion of more rapid microstructural changes
seen in earlier childhood and is closer to the transition age, where these changes become
slower and continue to evolve more gradually, with a linear or non-linear dependence on
age [10,21,22]. Furthermore, the reference data is evaluated differently, i.e., in our work, it
is represented by average data for the range of 38 to 64 years old (mean age, 54.3 years),
whereas Lebel et al. [22] consider the data until the peak of FA or the minimum of MD,
which is usually reached between the second and third decades of life. In this context,
one should consider that the patterns of lifespan trajectories [10,21,22,92] in fibres with
non-linear age-dependence suggest that FA/MD changes in the range between circa ten
years old and the age of extrema may be partially compensated by slow, opposite changes
during the period of relative middle age stability. Moreover, not all WM regions exhibit
such non-linear age-dependence in the relevant age interval but rather reveal a more linear
behaviour [10,21,66]. Taken together, these factors may easily explain some differences
between our findings and those reported in the aforementioned works.

4.2. KT Metrics

All KT parameters (MK, RK, AK, and KA) significantly increased from childhood
to adulthood in the majority of the investigated tracts and demonstrated an enormously
large magnitude of changes, such as average (across all fibres) values of dMK, dAK, and
dRK > 2.0 and dKA > 1.0, in comparison to moderate, < 0.8, average Cohen’s d of DT metrics.
It is also worth mentioning that the t-test analysis provided much lower p-values for the
between-group differences in KT compared to the DT metrics. This finding is important
when considering the minimum group size required for statistical comparisons [93] during
study planning. In particular, for a sample of 41 subjects, as in our work, the minimum
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detectable effect size for the two-tailed test is equal to 0.9 (provided the statistical power
is set to 0.8 and the probability of making a Type I error is set to 0.05; see Table A1.1 in
Ref. [88]). In our study, the Cohen’s d values ≥ 0.9 were relevant for the majority of the
27 fibres investigated and for all four KT metrics. Only three fibres (tapetum, BCC, and FCB)
showed dMK and dRK < 0.9, three fibres (CST, tapetum, and FSB) showed dAK < 0.9, and ten
fibres showed dKA < 0.9. In contrast, the Cohen’s d values of DT metrics were <0.9 in the
majority of the fibres (i.e., in 21 fibres for dFA and dMD, in 17 fibres for dAD, and in 24 fibres
for dRD). Thus, a much larger sample size is required for statistically powerful studies
based on DT parameters in the studied age range, increasing the overall expenditure and
effort. As an example, very large sample sizes, such as 831 [21] or 3513 [94] subjects, have
been used in some large-scale, age-related DTI studies.

4.3. Maturation “Ranking” Based on dMK

As first suggested in our previous work [57], dMK can be used for the assessment of
fibre maturation: large values are indicative of more protracted development, whereas low
values indicate more complete maturation. The observed dMK values clearly confirmed
essential heterochronicity in the maturation of various fibres. Moreover, they allowed for
the partial sorting of maturation levels reached by the age of pre-adolescence in different
fibre groups, such as CFs, PFs, and AFs. The differentiation grade of these fibre groups was
astonishingly high; in fact, according to the values of dMK, all (five) investigated CFs were
the most matured, followed by the majority of PFs, whereas the majority of AFs were the
least matured. The results of this work underline the potential of dMK as a useful parameter
for the study of brain development and largely strengthen our previous findings [57].

The ages of peak/minimum are important indices used in DTI studies to assess
the heterochronicity of maturation and decline in different anatomic regions. That is,
the higher the age of peak/minimum is, the more protractive maturation is. In this
context, a new finding of the present work refers to the observation of strikingly strong
correlations between dMK (our work) and peaks/minima ages for FA/MD (published in an
independent study [22]). However, it should be noted that the estimation of peak/minimum
ages requires very large sample sizes distributed across a very broad age interval, i.e., a
life span, in order to enable non-linear fits of age-dependent evolution trajectories with
reasonable statistical accuracy. This is due to the relatively high inter-subject variability of
diffusion MRI metrics, which, in cross-sectional studies, can mask real age-related changes
for an individual. In turn, the fitted values of ages of peak/minimum exhibit rather
large standard deviations, such as ca. 6–10 years for the FA peak, reported by Kochunov
et al. [21], and 8–30 years for the RD minimum, reported by Hasan et al. [92]. Moreover,
the evaluated ages of the peak/minimum depend on the selected fitting functions [16],
such as quadratic [21,92], exponential [8,95] or Poisson [22], and can also be influenced
by fitting algorithms. These, and other factors, may lead to large differences between the
estimations, such as, for example, 27.6 years [22] versus 38.9 ± 6.6 years [21] reported for
the FA peak in the fronto-occipital fasciculi in different works or 44.6 years [66] versus
35.0 years [22] reported for the FA peak of the CST. In addition, the ages of peak/minima
cannot be estimated for fibres that support linear rather than non-linear dependence in
the investigated age interval [64,66]. In view of all of these confounding factors, our
results suggest that KT metrics, and in particular the dMK of differently aged groups, may
become robust biomarkers for the elucidation of heterochronous maturation in moderately
sized subject samples, thereby potentially avoiding the need for the full time-consuming
measurements of lifespan age dependences. In turn, dMK in small subject samples may be
a helpful test parameter at the pre-measurement planning stage of any comprehensively
large statistical study.

4.4. Evidence of the Heterochronicity of Fibre Maturation Based on dMK

Tendentially, late-peaking tracts are mostly represented by AFs, such as the cingulum,
UF and SLF. The latter are frontal-temporal connections that were shown to mature slowly
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during childhood and adolescence [10,22] and exhibit prolonged development and late
decline. Thus far, the latest age trend reversal has been reported for the cingulum [21,22],
with the peak/minimum at around 40 years old. Also, in our work, the Cg and Ch
showed the largest dMK (4.07 and 3.97, respectively) among all of the fibres studied. The
cingulum is a complex WM tract constituting an important part of the limbic system
and is associated with executive function, decision-making, and emotion. It is located
beneath the cingulate cortex and contains connections entering and exiting the cingulate
gyrus, as well as projections between prefrontal and parahippocampal cortices [96,97].
Therefore, late maturation of the cingulum bundle is assumed to underlie the protracted
development of emotional and cognitive processes supported by these connections. In
particular, a comparison of structure–function relationships in children and adults has
shown that posterior cingulate–medial prefrontal cortex connectivity along the cingulum
bundle is the most immature link in the default mode network of children [98]. In addition,
several other fibres with late trend reversals, such as the UF, SLF, and SFOF [21,22,92],
exhibited very large values of dMK. In particular, the long-lasting maturation of the SLF,
a large AF bundle—connecting the cortical regions of the frontal, parietal, temporal, and
occipital lobes—is associated with playing an important role in emotional regulation,
executive functioning, and language processing [99,100]. The UF is another prominent
long-range tract connecting the orbito-frontal cortex and the Brodmann area 10 with the
anterior temporal lobes. Although its exact function is not well understood, it has been
suggested that it plays an important role in episodic memory, language processing, and
social/emotional functioning [101,102]. As a part of the frontotemporal network, it is
also associated with several age-related and psychiatric disorders [101,102], including
schizophrenia [103,104], primary progressive aphasia [105], temporal lobe epilepsy [106],
and impaired error monitoring in a visual object–location association task [107]. More
generally, it has been shown [108] that late-maturing WM tracts are likely to appear more
sensitive to the pathophysiology of schizophrenia and are more susceptible to a faster
age-related decline in FA values. Thus, studies and biomarkers of anachronous regional
development might be of paramount importance for clinical diagnostics and for deepening
our understanding of developmental pathologies.

The dMK values found in the group of CFs (FCB, TAP, and major partitions of the
corpus callosum), crucial for inter-hemispheric interactions, were the lowest among those
studied, indicating that these fibres were the most mature in our group of children. In
particular, the fornix represents an example of the earliest peaking fibres with the ages of
peak/minimum equal to 19.5/17.8 years [22] and, correspondingly, the dMK value close
to zero. Also, the Cohen’s d values of DT parameters in partitions of the corpus callosum
were all very small (~0.1), which is in agreement with other DTI studies [8,58,109] showing
an early rise of FA that already reaches 90% of its maximum by 11 years of age. The early
development of these fibres can be associated with their basic functions, such as integrating
information, visual perception, and language [110–112].

A unique aspect of our findings is that, in contrast to the Cohen’s d of DT parameters
in the corpus callosum, which are small on an absolute scale (<0.2), the values of dMK and
the Cohen’s d of other KT parameters, although relatively small in comparison to other
fibres, were medium to large on the absolute scale (dMK = 0.28, 1.08, and 1.46 in the BCC,
GCC, and SCC, respectively). This finding furnishes evidence of ongoing microstructural
development in the corpus callosum beyond pre-adolescence (although not captured
by DT metrics) and may provide further inferences in the biophysics of developmental
microstructural changes.

A further valuable finding of this study is the observation of characteristic patterns
in the profiles of between-group differences. These patterns were mostly consistent for
the C-P and A-P directions and more reliable in KT metrics compared to DT metrics. Our
observations strongly support the existence of gradients in the timing of WM maturation
consistent with those predicted in the literature.
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4.5. Underlying Neurobiological Aspects

Neurobiological mechanisms of diffusion non-Gaussianity in brain tissue giving rise
to positive kurtosis values are multiple and are not yet fully understood. In development,
they are usually associated with myelination, axonal growth, and changes in axonal pack-
ing [8,113–115]. Our work has shown that the strong increase in diffusional kurtosis from
childhood to middle adulthood is widespread across WM and has different magnitudes
for different fibres. This increase indicates a protracted formation of diffusional barriers
and may provide additional insight into the mechanisms of microstructural reorganisation
during late maturation.

The common understanding of microstructural tissue changes in early childhood sug-
gests that these changes are predominately due to myelination and axonal reorganisation,
which is particularly rapid in the first two years of life. During this rapid change, the same
mechanisms (myelination and axonal reorganisation) should dominate the evolution of
both the DT and DK metrics: rapid increase in WM anisotropy, a decrease in MD, and an
increase in diffusional kurtosis. However, some differences between the age trajectories of
FA and MK values reported by Paydar et al. [58] suggest that additional mechanisms may
also contribute to the evolution of MK during this early period. Thereafter, the develop-
mental processes continue at a generally slower rate until adulthood. However, as this and
our previous work [57] show, the mechanisms of microstructural reorganisation between
pre-adolescence and adulthood are such that they cause greater diffusional kurtosis changes
than changes in diffusivity and fractional anisotropy.

Considering multi-compartment models of WM [56,116–118], with the simplest real-
isation being two water pools linked to the intra-axonal and extra-axonal spaces, larger
diffusional kurtosis can result from increasing axonal density (i.e., an increase in the water
fraction in the intra-axonal space) or decreasing water diffusivity in the extra-axonal space.
Due to the limited range of b-factors (≤2.8 ms/µm2) and strongly restricted diffusion
in the intra-axonal space, the slope of the slow diffusion component (in the plot of the
signal vs. b-factors) cannot be accurately resolved. Thus, a high sensitivity of diffusion
kurtosis measures to the changes in (apparent) water diffusivity in the extra-axonal space is
unlikely. Consequently, we hypothesise that our results provide strong evidence of ongoing
increasing axonal density/volume with age after pre-adolescence. This consideration can
explain the differences in the sensitivity of diffusivity and diffusion kurtosis measures to
late development tissue reorganisation. Kurtosis differences for various fibres can, in turn,
be attributed to the corresponding differences in axonal water fractions and in the rates of
their increase with age. Interestingly, kurtosis changes in the axial direction are not much
smaller than those in the radial direction—compare dAK and dRK in Table 3. This indicates
that significant fibre reorganisation also takes place in the axial direction. In particular, the
formation or remodelling of crossing fibres and increasing neurite orientation dispersion,
as described by the NODDI model [119], may contribute to changes in radial and axial
diffusion kurtoses with age.

The ability to detect microstructural variations in the neural substrates non-invasively
allows inferences on both normal and abnormal cognitive development to be made, and
provides a valuable tool for the assessment of various treatment strategies. The high
sensitivity of DK parameters to subtle microstructural remodelling beyond pre-adolescence
makes them potentially attractive covariates for the study of cognitive development in
combined studies of functional and structural connectivity. In particular, the use of dMK
can be expected to be a promising, robust parameter in future studies. Firstly, the large
age-related effect size associated with this parameter can be beneficial for longitudinal
studies (with fixed intervals between the starting and final ages), in which DT metrics can
be expected to provide only incremental changes [109]. Secondly, it can be used in studies
with only moderate sample sizes available for between-group comparisons, such as studies
aiming to compare neuro-psychological scores and functional capabilities in differently
aged groups.
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The rationale for choosing DKI over other biophysical models to analyse the diffusion
MRI signal (such as NODDI [119]) relates to the fact that DKI makes no assumptions
about the underlying tissue microstructure. To a greater or lesser extent, the majority of
the biophysical models available in the literature make assumptions regarding the tissue
microstructure or diffusion properties and, therefore, any deviation of the sample group
from a specific assumption of a biophysical model may lead to bias in the corresponding
model parameters, hence losing the desired specificity [120].

4.6. Limitations of the Study

The main limitation of this work predominately relates to the relatively small group
size and the absence of longitudinal measurements. On the other hand, very large effect
size values observed with dMK in various group comparisons allow one to ameliorate
this limitation. Nevertheless, a more comprehensive study should benefit from being
longitudinal in design and from including a greater number of subjects across a broader
age interval from childhood to adulthood. Some other technical limitations, such as the
influence of motion, eddy-currents, co-registration approach, etc., have been discussed
in detail in a previous study [57]. A potentially important confounding factor in the
present work is the partial volume effect between different fibre bundles, or between tissue
and CSF, which is particularly prominent in diffusion MRI experiments performed under
conventional resolution settings, i.e., with a voxel size in the order of 8 mm3. In this regard,
more sophisticated models able to account for this effect, such as the DTI or DKI with free
water elimination [121–124], may prove to be more specific and robust in these types of
analyses than their conventional counterparts.

5. Conclusions

We observed a unique sensitivity of DKI metrics as biomarkers of microstructural
development and regional heterochronicity of various anatomic regions between pre-
adolescence and middle adulthood. The increase in diffusional kurtosis after pre-adolescence
indicates a protracted formation of diffusional barriers and, hence, can provide additional
insights into the mechanisms of microstructural reorganisation during late maturation.
Developmental changes were observed across the majority of anatomic regions and were
substantially better captured by KT compared to DT metrics. In particular, Cohen’s d of the
mean kurtosis revealed itself as a promising parameter for ranking the maturity of various
fibres and, beyond that, different fibre types as well (AFs, PFs, and CFs). Based on this
parameter, most fibres that exhibit more protracted maturation belong to AFs, whereas the
most matured fibres belong to CFs. At the same time, relatively elevated values of dMK
suggest that the maturation of CFs is still ongoing in these fibres, although at slower rates
compared to other fibre types.

Our data provide important evidence for the existence of gradients in the timing of
WM maturation. Here, we refer to striking differences in the profile shapes of dMK for
R-L, P-A, and I-S directions, which tend to be in accordance with those predicted in the
literature. Beyond that, a strong correlation of dMK with the age of peak for FA and MD
suggests that dMK, in relatively small groups—due to its proven large effect size in the
context of maturation processes—might serve as a promising preliminary test parameter
when planning comprehensive studies with thousands of participants involved to ensure
the statistical significance of the results.

It can be assumed that the biophysical mechanism underlying the different sensitiv-
ities of DT and KT metrics to developmental tissue remodelling is predominantly due
to the greater effect of increasing axonal density/volume on KT than on DT indices. In
turn, the regional heterogeneity of KT metrics and heterochronicity in the maturation of
various fibres can also be, at least partially, attributed to the corresponding differences in
axonal density/volume and the rates at which axonal water fractions increase with age in
different fibres. Large effect sizes were found in between-group comparisons with Cohen’s
d values of KT metrics. More generally, the high sensitivity of DKI parameters to subtle
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spatiotemporal microstructural reorganisation beyond pre-adolescence makes them also
potentially attractive covariates for the study of cognitive development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci14050495/s1. Table S1: Mean and standard deviation
values of DT parameters in various WM ROIs; Table S2: Mean and standard deviation values of KT
parameters in various WM ROIs.
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Abbreviations

GM grey matter
WM white matter
DTI diffusion tensor imaging
MD mean diffusivity
FA fractional anisotropy
AF association fibre
CF commissural fibre
PF projection fibre
P-A posterior-to-anterior
C-P central-to-peripheral
I-S inferior-to-superior
DKI diffusion kurtosis imaging
MK mean kurtosis
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KT kurtosis tensor
AD axial diffusivity
RD radial diffusivity
AK axial kurtosis
RK radial kurtosis
KA kurtosis anisotropy
R-L right-to-left
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