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Abstract: Exploring the spatiotemporal dynamic patterns of multi-channel electroencephalography
(EEG) is crucial for interpreting dementia and related cognitive decline. Spatiotemporal patterns
of EEG can be described through microstate analysis, which provides a discrete approximation
of the continuous electric field patterns generated by the brain cortex. Here, we propose a novel
microstate spatiotemporal dynamic indicator, termed the microstate sequence non-randomness index
(MSNRI). The essence of the method lies in initially generating a sequence of microstate transition
patterns through state space compression of EEG data using microstate analysis. Following this, we
assess the non-randomness of these microstate patterns using information-based similarity analysis.
The results suggest that this MSNRI metric is a potential marker for distinguishing between health
control (HC) and frontotemporal dementia (FTD) (HC vs. FTD: 6.958 vs. 5.756, p < 0.01), as well as
between HC and populations with Alzheimer’s disease (AD) (HC vs. AD: 6.958 vs. 5.462, p < 0.001).
Healthy individuals exhibit more complex macroscopic structures and non-random spatiotemporal
patterns of microstates, whereas dementia disorders lead to more random spatiotemporal patterns.
Additionally, we extend the proposed method by integrating the Complementary Ensemble Empirical
Mode Decomposition (CEEMD) method to explore spatiotemporal dynamic patterns of microstates
at specific frequency scales. Moreover, we assessed the effectiveness of this innovative method in
predicting cognitive scores. The results demonstrate that the incorporation of CEEMD-enhanced
microstate dynamic indicators significantly improved the prediction accuracy of Mini-Mental State
Examination (MMSE) scores (R2 = 0.940). The CEEMD-enhanced MSNRI method not only aids in the
exploration of large-scale neural changes in populations with dementia but also offers a robust tool
for characterizing the dynamics of EEG microstate transitions and their impact on cognitive function.

Keywords: electroencephalogram; microstate transitions; information-based similarity; non-
randomness; dementia

1. Introduction

Global population aging is rapidly intensifying, leading to a growing number of in-
dividuals experiencing cognitive decline. According to estimates by the Global Burden
of Disease study, there are currently 57 million people worldwide living with dementia,
and it is projected to increase to 153 million in 2050 [1]. Alzheimer’s disease (AD) and fron-
totemporal dementia (FTD) are progressive neurodegenerative conditions that primarily
afflict elderly individuals. AD, the most prevalent form of dementia, constitutes 60–80%
of cases, whereas FTD, though less common, accounts for 5–10% of cases [2,3]. Cognitive
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decline and behavioral changes represent characteristic features of both AD and FTD, albeit
affecting the brain in distinct manners.

For an extended period, researchers have shared a common goal of exploring biomark-
ers or other specific indicators for dementia screening and diagnosis, aiming to replace
diagnostic methods based solely on scales or tests. Methods such as positron emission
tomography (PET) and magnetic resonance imaging (MRI) can identify certain pathological
changes associated with diseases, but they are expensive and have low acceptance rates
among patients with non-severe conditions. There is an urgent need for faster and more
cost-effective biomarker alternatives to aid in the early detection of dementia.

As technology has advanced, electroencephalography (EEG) has emerged as a crucial
tool for investigating and comprehending brain function. Previous studies have highlighted
three typical effects on resting-state EEG signals in patients with dementia compared to
healthy individuals: diffuse slowing, reduced complexity, and decreased synchrony [4,5].
Changes in the power spectrum, shifting from high-frequency components (alpha, beta,
and gamma bands) to low-frequency components (delta and theta bands), are frequently
observed in patients with dementia [6]. Reduced complexity refers to a decline in the
complexity of brain electrical activity observed in patients with dementia compared to
healthy individuals [7]. Additionally, decreased connectivity between cortical areas is seen
in many patients with dementia [8].

EEG microstates consider the spatiotemporal evolution of cortical EEG signals, de-
scribing the dynamic characteristics of the entire brain neural networks. Renowned for its
remarkable resolution in both space and time, microstate analysis finds extensive utility
across various domains including dementia [9,10], depression [11], cognitive psychol-
ogy [12], and sleep [13], facilitating deeper understanding and exploration within these
fields. Previous studies predominantly focused on temporal statistical characteristics of
microstates, such as duration, occurrence rate, coverage rate, and transition probabilities,
while overlooking the broader patterns and characteristics of large-scale changes in brain
activity. Recent research efforts have shifted towards investigating dynamic information
related to microstate transition patterns. These include analyzing scale-free properties
of microstate time series [14], conducting Lempel–Ziv complexity analysis on microstate
transitions [15], and exploring microstate entropy rate analysis [16], among others. From
the perspective of the brain’s complex systems, there is an urgent need to further inves-
tigate analytical methods that can effectively encapsulate the spatio-temporal dynamics
of microstates, thereby revealing the dynamic transition patterns inherent in microstate
sequences. We intend to employ an information-based similarity analysis tool [17] to detect
and quantify certain fundamental patterns embedded in EEG microstates.

Additionally, exploring the spatiotemporal characteristics of brain electrical signals at
different frequency scales is also meaningful. Traditional microstate analysis only analyzes
the spatio-temporal dynamics of microstates in a wide range of frequency bands and lacks
the mining of the spatio-temporal dynamics of EEG microstates in different frequency
bands. Researchers have attempted to explicitly decompose the spatiotemporal dynamics
of microstates within four discrete, narrowband frequency bands (delta, theta, alpha, and
beta) and compare them with classical analyses of broadband signals [18]. Victor Férat et al.
argued that microstate analysis with specific frequency decomposition can provide finer-
grained spectral information not observable with standard broadband analysis. Although
their study was validated in healthy subjects, it is anticipated that this analytical approach
will contribute to biomarker research in populations with dementia. Further exploration is
required to investigate independent spatiotemporal dynamics indicators across various
EEG frequency domain scales, which can be applied to biomarker research in patients
with dementia and predictive studies of cognitive function. We intend to investigate the
spatio-temporal patterns of EEG microstates across various frequency band scales based on
adaptive frequency domain decomposition.

While some prior studies have compared EEG biomarkers between patients with
dementia or mild cognitive impairment and healthy controls [15,19–21], this study, in
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addition to investigating EEG microstate dynamic markers in studying health and disease,
also focuses on observing the predictive capacity of EEG markers for Mini-Mental State
Examination (MMSE) scores.

In light of these challenges, we propose three hypotheses: (1) dementia causes a
disruption in the normal transition patterns of EEG microstates, (2) the non-randomness
quantification of EEG microstates’ transition patterns can be used to predict cognitive
decline scores, and (3) cross-frequency bands microstate analysis can offer more compre-
hensive insights into dementia disease. To explore these concepts, we introduce a novel
method for microstate sequence similarity analysis based on information theory, which
captures the microstate sequence non-randomness index (MSNRI) within the underlying
patterns of microstates transitions. The effectiveness of this novel approach is evaluated
using a publicly available EEG datasets including health controls (HC), FTD, and AD
participants [2]. Furthermore, we explored microstate dynamics information across multi-
ple frequencies. Based on the complementary ensemble empirical mode decomposition
(CEEMD) [22] method, we introduce a CEEMD-enhanced MSNRI method to provide finer-
grained pattern variation information that conventional broadband analysis cannot capture.
This research contributes to a more comprehensive understanding of how the dementia
brain works, representing a crucial step towards understanding and characterizing the
complexity of brain systems.

2. Materials and Methods
2.1. Dataset

The dataset contains closed-eye resting-state EEG recordings of 88 participants ob-
tained from the Second Neurology Department of the AHEPA General University Hospital
in Thessaloniki [2]. Detailed protocol and inclusion criteria are reported in the literature [2].
Thirty-six of them (13 males) were diagnosed with AD, 23 (14 males) were diagnosed
with FTD, and 29 (11 males) were healthy controls (HC). The initial diagnosis of patients
with AD and FTD was made in accordance with the Diagnostic and Statistical Manual
of Mental Disorders, Third Revised Edition (DSM-IIIR, DSM IV, ICD-10) [23], and the
criteria provided by the National Institute of Neurological, Communication Disorders and
Stroke—Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) [24].
The demographic characteristics are evaluated in Table 1. Cognitive and neuropsychologi-
cal status was evaluated using the MMSE; the MMSE includes multiple cognitive subfields,
such as orientation, memory, attention and calculation, recall ability, and language ability.
Total MMSE scores range from 0 to 30, with higher scores indicating better cognitive func-
tioning. MMSE scores of 27–30 indicate normal function, 21–26 indicate mild impairment,
10–20 suggest moderate, and 0–9 suggest severe cognitive impairment. It is important
to note that MMSE scores were not the sole criterion for diagnosing cognitive disorders
in this study. The scatter plot of total MMSE scores for all subjects is shown in Figure 1,
with a mean total MMSE of 17.75 (SD = 4.5) in the AD group, 22.17 (SD = 8.22) in the
FTD group, and 30 in the HC group. And the detailed MMSE scores for each subject are
shown in Table S1. This study was approved by the Scientific and Ethical Committee of the
AHEPA University Hospital of the Aristotle University of Thessaloniki under the protocol
number 142/12-04-2023.

Table 1. Demographic characterization and database description.

Subject Population Sex
(Male/Female) Age MMSE Duration of

Disease (Months)

HC 29 11/18 67.9 (5.4) 30 --

FTD 23 14/9 63.6 (8.2) 22.17 (8.22) 23 (9.35)

AD 36 13/23 66.4 (7.9) 17.75 (4.5) 25 (9.88)



Brain Sci. 2024, 14, 487 4 of 20

Brain Sci. 2024, 14, x FOR PEER REVIEW 4 of 21 
 

Table 1. Demographic characterization and database description. 

Subject Population Sex (Male/Female) Age MMSE Duration of Disease 
(Months) 

HC 29 11/18 67.9 (5.4) 30 -- 
FTD 23 14/9 63.6 (8.2) 22.17 (8.22) 23 (9.35) 
AD 36 13/23 66.4 (7.9) 17.75 (4.5) 25 (9.88) 

 
Figure 1. Scatter plot of total MMSE scores for all subjects. 

The EEG recordings encompass signals from 19 scalp electrodes (Fp1, Fp2, F7, F3, Fz, 
F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) and 2 reference electrodes (A1, 
A2), arranged in accordance with the 10–20 international system. Each recording session 
adhered to a standardized clinical protocol, with participants seated and their eyes closed. 
Prior to the onset of recording, impedance levels for each electrode were meticulously 
maintained below 5 kΩ. The recordings were conducted at a sampling rate of 500 Hz, with 
a resolution of 10 uV/mm. For the AD group, recording sessions lasted approximately 13.5 
min each, ranging from 5.1 to 21.3 min. In the FTD group, sessions lasted around 12 min 
per session, ranging from 7.9 to 16.9 min. For the HC group, recording sessions lasted 
approximately 13.8 min each, with durations ranging from 12.5 to 16.5 min. Overall, the 
dataset comprised a cumulative duration of 485.5 min for AD recordings, 276.5 min for 
FTD recordings, and 402 min for HC recordings. 

2.2. Preprocessing 
The preprocessing of EEG signals was conducted using the Fieldtrip toolbox (version 

20220215) implemented in Matlab R2023a [25]. The EEG signals were filtered using a notch 
filter with a frequency range of 49.8–50.2 Hz, along with a 5th order high-pass filter with 
a cutoff frequency of 0.3 Hz and a 5th order low-pass filter with a cutoff frequency of 70 
Hz. 

The EEG data were subsequently down-sampled to 250 Hz and re-referenced to the 
average reference. After filtering, we conducted a visual inspection of signal quality and 
removed segments with significant artifacts. The eye movements, eye blinks, or heartbeat-
related signal contaminants were removed through infomax independent component 
analysis (ICA) with the “fastica” method [26]. The preprocessed data for each participant, 
comprising 180 s of data, were selected for subsequent analysis. 

  

Figure 1. Scatter plot of total MMSE scores for all subjects.

The EEG recordings encompass signals from 19 scalp electrodes (Fp1, Fp2, F7, F3,
Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) and 2 reference electrodes
(A1, A2), arranged in accordance with the 10–20 international system. Each recording
session adhered to a standardized clinical protocol, with participants seated and their
eyes closed. Prior to the onset of recording, impedance levels for each electrode were
meticulously maintained below 5 kΩ. The recordings were conducted at a sampling rate
of 500 Hz, with a resolution of 10 uV/mm. For the AD group, recording sessions lasted
approximately 13.5 min each, ranging from 5.1 to 21.3 min. In the FTD group, sessions
lasted around 12 min per session, ranging from 7.9 to 16.9 min. For the HC group, recording
sessions lasted approximately 13.8 min each, with durations ranging from 12.5 to 16.5 min.
Overall, the dataset comprised a cumulative duration of 485.5 min for AD recordings,
276.5 min for FTD recordings, and 402 min for HC recordings.

2.2. Preprocessing

The preprocessing of EEG signals was conducted using the Fieldtrip toolbox (version
20220215) implemented in Matlab R2023a [25]. The EEG signals were filtered using a notch
filter with a frequency range of 49.8–50.2 Hz, along with a 5th order high-pass filter with a
cutoff frequency of 0.3 Hz and a 5th order low-pass filter with a cutoff frequency of 70 Hz.

The EEG data were subsequently down-sampled to 250 Hz and re-referenced to the
average reference. After filtering, we conducted a visual inspection of signal quality and
removed segments with significant artifacts. The eye movements, eye blinks, or heartbeat-
related signal contaminants were removed through infomax independent component
analysis (ICA) with the “fastica” method [26]. The preprocessed data for each participant,
comprising 180 s of data, were selected for subsequent analysis.

2.3. EEG Microstate Analysis

We performed the EEG microstate analysis using the functions provided by Microstate
EEGlab Toolbox (version 1.0) [27]. We first extracted the peak of the Global Field Power
(GFP), setting the minimum peak distance to 10 ms, and configuring the number of GFP
peaks for segmentation for each participant to be 2000. Additionally, any GFP peaks exceed-
ing one standard deviation of the GFPs across all maps were excluded from consideration.
For microstate segmentation, we employed a modified K-means algorithm, disregarding
the polarity of EEG topographies during clustering [28,29]. Here, we set the number of
microstates to four based on previous findings from methods employing K-means clus-
tering, which demonstrated, through cross-validation, that this number yielded optimal
clustering with high reproducibility [30,31]. We configured the algorithm with 50 random
initializations and a maximum of 1000 iterations. Additionally, the threshold of conver-
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gence based on relative change in noise variance was set to 1 × 10−6. The original toolkit
documentation includes a complete set of sample code for microstate analysis.

Then, the clustered stable-state templates were reverse-fitted onto the EEG or IMFs of
each participant, marking the microstate categories for segments of EEG or IMFs. Addi-
tionally, to mitigate short-term continuous changes in microstate labeling caused by noise,
microstates with durations of less than 30 ms were classified as the next most probable
microstate class based on global map dissimilarity (GMD). Next, we computed classical
microstate dynamic characteristics, including duration (the average duration of a microstate
activity in milliseconds), occurrence (the frequency of occurrence of a particular microstate),
and coverage (the percentage of time that each microstate category occupies throughout
the entire period of analysis).

When evaluating the microstate templates for health and disease, we created group-
level microstate templates separately for the HC group, FTD group, and AD group, and
global maps between groups were aligned by calculating correlation coefficients of the
maps and visual inspection. However, in subsequent analyses of microstate indicators, we
uniformly employed the microstate template of all participants to reverse-fit the data of
each individual participant.

2.4. CEEMD-Enhanced Microstate Sequence Non-Randomness Analysis

Here we propose a novel measure of EEG microstate transitioning, called microstate
sequence non-randomness analysis. In addition to studying the spatio-temporal patterns
of microstates at a broadband scale or at narrowband frequency bands (delta, theta, alpha,
and beta), this study explores the dynamic patterns of microstates at multiple adaptive
frequency scales applying CEEMD. The schematic flow of CEEMD-enhanced microstate
sequences non-randomness analysis is shown in Figure 2.

Brain Sci. 2024, 14, x FOR PEER REVIEW 6 of 21 
 

 
Figure 2. Schematic flow of CEEMD-enhanced microstate sequences non-randomness index analy-
sis. Step 1: decompose broadband EEG signals into a sequence of Intrinsic Mode Functions (IMFs) 
using CEEMD. Step 2: perform the microstate analysis on different IMFs and reconstruct the mi-
crostate sequence based on the microstate topographic template at each IMF (Red and blue indi-
cate positive and negative values, respectively). Step 3: construct microstate transition sequences 
from microstate sequences. Step 4: calculate the microstate sequence non-randomness index ac-
cording to the proposed methodology. 

Prior to conducting microstate analysis, broadband EEG signals are decomposed into 
a sequence of Intrinsic Mode Functions (IMFs) using CEEMD. These IMFs elucidate the 
oscillatory patterns of EEG across various frequency scales, enabling microstate analysis 
to be conducted at different IMF scales thereafter. 

The CEEMD proposed by Yeh et al. [22] effectively addresses the mode mixing issue 
of the Empirical Mode Decomposition (EMD) algorithm and the noise residue problem of 
the Ensemble Empirical Mode Decomposition (EEMD) algorithm. CEEMD and EEMD 
have similar computational processes, with the difference being that EEMD adds white 
noise only once each time, while the CEEMD algorithm adds white noise to the original 
signal and subtracts white noise from the original signal. Both signals undergo EMD de-
composition simultaneously, and the average is found to counteract the noise added to 
the signal. 𝑀1𝑀2 = 1     11 − 1 𝑆𝑁 , (1) 

where, 𝑆 represents the original signal, 𝑁 represents the added white noise, 𝑀1 is the 
original data with added white noise, and 𝑀2 is the original signal with subtracted white 
noise. Then, EMD decomposition is performed separately on the signals with added noise 
and subtracted noise. The resulting two sets of IMFs are averaged to obtain the final IMF 
component. In this study, the standard deviation of the added white noise is set to 0.1, 
and the number of iterations is set to 100. The waveform and corresponding spectrum 
results of the IMF components after CEEMD decomposition are displayed in Figure 3. 

Figure 2. Schematic flow of CEEMD-enhanced microstate sequences non-randomness index analysis.
Step 1: decompose broadband EEG signals into a sequence of Intrinsic Mode Functions (IMFs) using
CEEMD. Step 2: perform the microstate analysis on different IMFs and reconstruct the microstate
sequence based on the microstate topographic template at each IMF (Red and blue indicate pos-
itive and negative values, respectively). Step 3: construct microstate transition sequences from
microstate sequences. Step 4: calculate the microstate sequence non-randomness index according to
the proposed methodology.

Prior to conducting microstate analysis, broadband EEG signals are decomposed into
a sequence of Intrinsic Mode Functions (IMFs) using CEEMD. These IMFs elucidate the
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oscillatory patterns of EEG across various frequency scales, enabling microstate analysis to
be conducted at different IMF scales thereafter.

The CEEMD proposed by Yeh et al. [22] effectively addresses the mode mixing issue
of the Empirical Mode Decomposition (EMD) algorithm and the noise residue problem
of the Ensemble Empirical Mode Decomposition (EEMD) algorithm. CEEMD and EEMD
have similar computational processes, with the difference being that EEMD adds white
noise only once each time, while the CEEMD algorithm adds white noise to the original
signal and subtracts white noise from the original signal. Both signals undergo EMD
decomposition simultaneously, and the average is found to counteract the noise added to
the signal. [

M1
M2

]
=

[
1 1
1 − 1

][
S
N

]
, (1)

where, S represents the original signal, N represents the added white noise, M1 is the
original data with added white noise, and M2 is the original signal with subtracted white
noise. Then, EMD decomposition is performed separately on the signals with added noise
and subtracted noise. The resulting two sets of IMFs are averaged to obtain the final IMF
component. In this study, the standard deviation of the added white noise is set to 0.1, and
the number of iterations is set to 100. The waveform and corresponding spectrum results
of the IMF components after CEEMD decomposition are displayed in Figure 3.
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EEG IMF frames are labeled based on their best matching group template using a
“winner takes all” strategy (frames with correlations below 0.5 are not labeled), thereby gen-
erating microstate sequences. We first transformed the microstate sequence into a sequence
without duplicate labels, for example, transforming a sequence like AACCDDBBBBDDCCA
into ACDBDCA. This transformation overlooks the duration of microstates, rooted in the
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notion that transitions between different brain states measured through EEG microstates
convey fundamental information about brain activity [28].

Following that, we utilized the Information-based Similarity (IBS) analysis, a tool
rooted in physics and statistical linguistics [32], to detect and quantify the inherent patterns
of microstate dynamic transitions. Subsequently, the microstate transition sequence MS
was partitioned into numerous sets of symbolic sequences wt with length m, called m-bit
“word”. Each m-bit word, denoted as wt, signifies a particular change pattern within cortical
EEG IMFs. Through the incremental shifting of a single symbolic point, a sequence of m-bit
words is generated, resulting in 2m distinct change patterns for each microstate transition
sequence. The frequency of occurrence for each word is tabulated, and all m-bit words are
then arranged in descending order based on their respective frequencies. Subsequently,
the change pattern sequences (“words”) present in both microstate symbolic sequences are
singled out for scrutinizing the information-based similarity between two EEG signals.

p1(wt) and R1(wt) represent the probability and rank of the m-bit word wt in the
symbolic transition sequence MS1, and p2(wt) and R2(wt) represent the probability and
rank of the same word wt in the sequence MS2, respectively. The rank of each m-bit
word in the first symbolic sequence is plotted against its rank in the second symbolic
sequence, creating a rank order comparison graph. When two symbolic series exhibit a
similar arrangement, the scatter points will cluster around the diagonal line. We defined the
microstate sequence IBS distance DMSIBS(MS1, MS2) between MS1 and MS2 as follows:

DMSIBS(MS1, MS2) =
∑2m

t=1 |R1(wt)− R2(wt)|F(wt)

2m − 1
, (2)

F(wt) =
1
Z
[−p1(wt)logp1(wt)− p2(wt)logp2(wt)], (3)

Z = ∑t[−p1(wt)logp1(wt)− p2(wt)logp2(wt)], (4)

F(wt) represent the weight of each m-bit word, computed through Shannon’s entropy
and normalized with the normalization factor Z. Given that not all words carry equal
weight in the rank frequency distribution, a weight function F(wt) must be factored in
when computing IBS distance.

Finally, we proposed a method to estimate the degree of complexity or structural
richness of spatiotemporal changes in EEG microstate. To this end, we generated alternative
symbolic transition sequences by randomly shuffling the microstate transition sequence
Y. Random shuffling of the data produces exactly the same distribution as the original
sequence but destroys the sequential ordering. The microstate sequence non-randomness
index (MSNRI) was defined as the distance between an EEG spatiotemporal symbolization
sequence and its random alternatives,

MSNRI= DMSIBS(MS, shuffled(MS)), (5)

The closer the distance between the original microstate dynamic sequence and its
disordered sequence, the smaller the MSNRI. On the contrary, the farther the distance, the
greater the MSNRI. The different IMFs were analyzed separately to obtain the CEEMD-
enhanced MSNRI.

2.5. Microstate Sequence Lempel–Ziv Complexity

Calculating the nonlinear complexity of transition sequences using the Lempel–Ziv
compression algorithm has been a commonly used method in previous studies [15,16].
The Lempel–Ziv complexity measurement quantifies the number of sub-words that can
be found in the entire sequence, assessing the richness of a sequence with a finite number
of generating elements. In this study, the calculation of microstate sequence Lempel–
Ziv complexity (MSLZC) follows the method proposed by Michael Lassi et al. [9] The
MSLZC is computed by measuring the length of the encoded dictionary in the microstate
sequence using the zlib Python package (version 1.3.1), after excluding the Huffman coding
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component. To address variations in sequence length, normalization by the total length of
the signal is conducted.

2.6. Statistical Analysis

To explore the potential disparity between the EEG microstate features of health
and patients, as well as to prove the probable significance of our proposed methodology,
we employ the Mann–Whitney U test on our datasets. The Mann–Whitney U test is a
nonparametric method enabling us to ascertain whether the statistics under consideration,
in our case, synchrony results, exhibit differing values across two distinct populations.
Significant difference was defined as a p-value < 0.05. All statistical analysis methods were
performed in MATLAB R2023a.

2.7. Predictive Models for the MMSE Score

We developed a predictive model for MMSE total scores based on resting EEG mi-
crostate metrics to explore the possibility of resting-state EEG microstate dynamics char-
acterization to replace or supplement MMSE screening. For feature preprocessing, all
predictor variables were normalized from 0 to 1. To fully capture the contribution of mi-
crostate dynamics features to predict MMSE scores, we used multiple linear regression to
estimate MMSE scores.

In order to demonstrate the effectiveness of the predictive model in real-world sce-
narios and to ensure the stability and accuracy of the prediction outcomes, we employed
the Leave-One-Subject-Out (LOSO) cross validation method. For the LOSO classification
experiment, all data from all subjects except one was used for training, with the excluded
subject’s data reserved for testing. For a dataset containing N samples, LOSO performed
N iterations. Specifically, for the MMSE score prediction model for all subjects (N = 88),
the LOSO approach required 88 iterations for validation, with 87 subjects as the training
set and the remaining 1 subject as the test set for each iteration. Finally, the coefficient of
determination (R-squared), mean squared error (MSE), root mean squared error (RMSE),
and mean absolute error (MAE) metrics were utilized to assess the consistency between the
actual MMSE scores and the predicted MMSE scores by the prediction model.

3. Results
3.1. Microstate Maps Analysis

The topology of each of the four microstate categories in the data separately for all
subjects, the healthy group, the FTD group, and the AD group is shown in Figure 4. In
the HC group, these microstate classes closely correspond to the classical categories A–D,
which are linked to wakeful rest and represent electrophysiological manifestations of the au-
ditory (Map-A), visual (Map-B), salience (Map-C), and frontal working memory/attention
(Map-D) resting state networks [28].

Spatial correlation between microstate topographies measured by the absolute value
of spatial cross-correlation coefficients reveals subtle differences between healthy and
diseased groups. Figure 5 illustrates the topological correlation comparison matrix between
microstate template maps of the same category across different groups (all groups, HC,
FTD, AD). The largest difference was observed for Map-D between HC and disease groups
(Table 2, average correlation of 0.921 for Map-D).

Table 2. Spatial correlation between microstate template maps across groups.

Groups Map-A Map-B Map-C Map-D Average Pre-Comparison

HC vs. FTD 0.922 0.938 0.913 0.887 0.915

HC vs. AD 0.914 0.947 0.944 0.924 0.932

FTD vs. AD 0.993 0.985 0.983 0.952 0.978

Average per map 0.943 0.957 0.947 0.921
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respectively. The polarity is ignored during microstate analysis.
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Finally, spatial correlation between the microstate templates identified for all people
(All) and those identified for each subject was calculated using a segment temporal smooth-
ing constraint of 5 samples (20 ms). EEG frames are labeled based on their best matching
group template using a “winner takes all” strategy (frames with correlations below 0.5 are
not labeled), thereby generating microstate sequences for each participant, each comprising
45,000 symbols (180 s multiplied by 250 Hz) for further analysis.

3.2. EEG Microstate Sequence Analysis

We meticulously examined the temporal dynamics of EEG microstates, specifically fo-
cusing on the mean duration (Figure 6a–d) and occurrence (Figure 6e–h) of each microstate
among different groups. Our results, detailed in Figure 6, revealed significant disparities in
the temporal properties of the microstates when comparing the HC group to both the FTD
and AD groups.
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Figure 6. Classical dynamic characteristics of microstates. (a–d) Duration of microstates in the HC,
FTD and AD groups; (e–h) occurrence of microstates in the HC, FTD and AD groups. In all panels,
the significance of the corresponding statistical test is represented as follows: * p < 0.05, ** p < 0.01,
*** p < 0.001.

For microstate B, the disease groups exhibited a pronounced increase in both the mean
duration and occurrence, as illustrated by the following statistics: HC (50.180 ms) versus
FTD (57.485 ms) with a non-parametric Mann–Whitney U test (z = −3.058, p = 0.002),
and HC versus AD with a duration of 50.180 ms versus 58.223 ms (z = −4.058, p < 0.001).
Similarly, the occurrence parameters were significantly higher in the disease groups, with
3.318 for HC compared to 3.862 for FTD (z = −2.763, p = 0.006) and 3.318 for HC compared
to 3.777 for AD (z = −2.408, p = 0.016).

Conversely, microstate D showed a significant decrease in both metrics within the
disease groups compared to the HC group: HC versus FTD with a duration of 84.160 ms
versus 75.397 ms (z = 2.506, p = 0.012), and HC (84.160 ms) versus AD (75.348 ms) (z = 2989,
p = 0.003). The occurrence parameters were only significantly reduced in the AD group
(HC vs. AD: 5.333 vs. 4.725, z = 3.082, p = 0.002). No significant differences in the
time-domain characteristics between the FTD and AD groups were found in any of the
microstate categories.

We next explored whether the transition behavior of microstate sequences was altered.
Researches have shown that the transitions of microstate sequence are non-smooth, non-
Markovian, and scale-free [14]. We therefore calculated the MSNRI and MSLZC of the
microstate transitioning sequenc. Compared with the HC group, the MSNRI was markedly
reduced in both the FTD group (6.958 vs. 5.756, z = 2.805, p = 0.005, Figure 7a) and
AD group (6.958 vs. 5.462, z = 3.426, p = 0.0006, Figure 7a), suggesting the presence of
abnormal microstate pattern transitions in the EEGs of patients with cognitive impairment.
Furthermore, this effect size was notably larger compared to other used measures of
EEG microstate complexity utilized in previous studies on AD or MCI (Mild Cognitive
Impairment), such as MSLZC (HC vs. FTD: 0.394 vs. 0.405, z = −2.414, p = 0.016, HC vs.
AD: 0.394 vs. 0.403, z = −3.200, p = 0.001, Figure 7a). Meanwhile, we also compared the
results of NRI and LZC computed on the EEG time series (EEG-NRI and EEG-LZC), both of
which had weaker intergroup differences than those analyzed on the microstate transition
series (Figure 7c,d).



Brain Sci. 2024, 14, 487 11 of 20
Brain Sci. 2024, 14, x FOR PEER REVIEW 12 of 21 
 

 
Figure 7. Microstate sequence dynamic statistics are significantly altered in disease condition (both 
FTD and AD). (a) Microstate sequence NRI, (b) microstate sequence LZC, (c) EEG time series NRI, 
(d) EEG time series LZC. Stars denote effect size of Mann–Whitney U test: * p < 0.05, ** p < 0.01, *** 
p < 0.001. Points in the boxplots show values for each participant. (MSNRI with parameter m = 8). 

3.3. CEEMD-Enhanced Non-Randomness Analysis of Microstate Dynamic Patterns 
Next, we expanded the EEG into various IMFs using CEEMD decomposition, aiming 

to gain insights into the microstate spatio-temporal dynamics of different IMFs. Figure 8 
illustrates the topographic results of microstate segmentations in the different IMF bands 
(IMF2, IMF3, IMF4, and IMF5). We found that these microstate topologies on different 
IMFs are very similar to those on the full-band EEG, all conforming to previously specified 
prototypes in the literature. As shown in Figure 9, all spatial correlations are very high 
when comparing the topology of the microstate templates between the broadband EEG 
and each IMFs (i.e., diagonal entries in the correlation matrix), which provides a rationale 
for reconstructing the sequence of microstate transitions within the different IMFs using 
their respective microstate templates. 

Figure 7. Microstate sequence dynamic statistics are significantly altered in disease condition (both
FTD and AD). (a) Microstate sequence NRI, (b) microstate sequence LZC, (c) EEG time series NRI,
(d) EEG time series LZC. Stars denote effect size of Mann–Whitney U test: * p < 0.05, ** p < 0.01,
*** p < 0.001. Points in the boxplots show values for each participant. (MSNRI with parameter m = 8).

3.3. CEEMD-Enhanced Non-Randomness Analysis of Microstate Dynamic Patterns

Next, we expanded the EEG into various IMFs using CEEMD decomposition, aiming
to gain insights into the microstate spatio-temporal dynamics of different IMFs. Figure 8
illustrates the topographic results of microstate segmentations in the different IMF bands
(IMF2, IMF3, IMF4, and IMF5). We found that these microstate topologies on different
IMFs are very similar to those on the full-band EEG, all conforming to previously specified
prototypes in the literature. As shown in Figure 9, all spatial correlations are very high
when comparing the topology of the microstate templates between the broadband EEG
and each IMFs (i.e., diagonal entries in the correlation matrix), which provides a rationale
for reconstructing the sequence of microstate transitions within the different IMFs using
their respective microstate templates.

Here, we obtained the sequence of microstate transitions specific unique to each IMF
through a conventional microstate analysis conducted on individual IMF components.
Subsequently, we obtained MSNRI and MSLZC for each distinct IMF to discern variations
in microstate dynamic patterns among the HC, FTD, and AD groups across different IMF
components. The analysis results of the MSNRI and MSLZC indices across IMF components
for the HC, FTD, and AD groups are illustrated in Figure 10. The detailed results of MSNRI
and MSLZC for the HC, FTD, and AD groups across different IMF scales are shown in
Table 3.

Across all IMF components, the HC group consistently exhibited the highest MS-NRI,
followed by the FTD group, and the lowest was observed in the AD group. Notably, in all
the IMF components included in the analysis, the MS-NRI index for the AD group was
significantly lower than that for the HC group (IMF2: z-value = 3.196, p = 0.001, IMF3:
z-value = 3.507, p < 0.001, IMF4: z-value = 3.304, p = 0.001, IMF5: z-value = 3.264, p = 0.001).
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For the FTD group, there was a significant decrease in MS-NRI compared to the HC group
across the scales of IMF2 to IMF5.

It is noteworthy that the trend in MSLZC contrasted with that of MSNRI. Across all
IMF components, the AD group consistently demonstrated the highest MSLZC, followed
by the FTD group, while the HC group consistently displayed the lowest. Although MSLZC
across different IMF scales also exhibited significant intergroup differences, the MSNRI
index proposed in this study statistically demonstrated more significant distinctions in
characterizing differences between healthy individuals and those with cognitive impair-
ment disorders. The findings imply that conducting cross-frequency microstate dynamic
analysis could provide further valuable insights into diagnosing and predicting cognitive
impairment disorders.
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Figure 10. Microstate sequence dynamic statistics are significantly altered in disease condition (both
FTD and AD) in all IMFs after CEEMD decomposition. (a) The CEEMD-enhanced MSNRI among the
HC, FTD, and AD groups (MSNRI with parameter m = 8). (b) The CEEMD-enhanced MSLZC among
the HC, FTD, and AD groups. Stars denote effect size of Mann–Whitney U test: * p < 0.05, ** p < 0.01,
*** p < 0.001.

Table 3. The detailed results of MS-NRI and MS-LZC for the HC, FTD, and AD groups across
different IMFs.

Features HC FTD AD p1 p2 p3

EEG MSNRI 6.976 ± 1.623 5.809 ± 1.121 5.485 ± 1.614 0.008 0.152 <0.001

IMF2 MSNRI 6.545 ± 1.684 5.572 ± 1.109 5.288 ± 1.441 0.039 0.216 0.0014

IMF3 MSNRI 6.726 ± 1.559 5.596 ± 1.138 5.273 ± 1.531 0.009 0.152 <0.001

IMF4 MSNRI 7.103 ± 1.648 5.952 ± 1.329 5.689 ± 1.774 0.012 0.283 0.001

IMF5 MSNRI 7.606 ± 1.717 6.310 ± 1.447 6.027 ± 1.833 0.009 0.338 0.001

EEG MSLZC 0.394 ± 0.011 0.403 ± 0.008 0.405 ± 0.010 0.016 0.267 0.0014

IMF2 MSLZC 0.396 ± 0.013 0.405 ± 0.009 0.407 ± 0.009 0.041 0.2871 0.0016

IMF3 MSLZC 0.397 ± 0.011 0.404 ± 0.007 0.407 ± 0.010 0.034 0.115 0.0016

IMF4 MSLZC 0.390 ± 0.016 0.401 ± 0.012 0.404 ± 0.012 0.025 0.309 0.0022

IMF5 MSLZC 0.391 ± 0.014 0.397 ± 0.015 0.402 ± 0.015 0.136 0.247 0.0099

p1: Statistical significance between HC and FTD, p2: Statistical significance between FTD and AD, p3: Statistical
significance between HC and AD.

3.4. Microstate Sequence Non-Randomness Has Predictive Power for MMSE Scores

To better understand how well the CEEMD-enhanced non-randomness analysis
method can aiding diagnosis and cognitive prediction of Alzheimer’s disease, we de-
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veloped a predictive model for MMSE scores based on EEG microstate metrics to explore
the possibility of resting-state EEG to replace or supplement MMSE screening. The baseline
method incorporates temporal statistical features of microstates extracted from resting-state
EEG, along with MSLZC and MSNRI (with parameter m from 4 to 8). By contrast, the pro-
posed method in this paper includes CEEMD-enhanced MSLZC and MSNRI (with parame-
ter m from 4 to 8), along with the integration of microstate temporal statistical indicators.

The results of the multivariate linear regression prediction model based on MMSE
scores for all subject samples are shown in Figure 11 and Table 4. Compared to the baseline
method (R2 = 0.388, rMSE of 4.784, and MAE of 3.511), the proposed method in this paper
achieved superior predictive performance (R2 = 0.702, rMSE of 3.340, and MAE of 2.555).
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Figure 11. The results of the multivariate linear regression model predicting MMSE scores using
resting-state EEG indices for all participants, with target MMSE scores on the x-axis and predicted
MMSE scores on the y-axis. (a) Scatter plot and fitted line of the baseline model’s predicted values
and true values based on microstate temporal metrics. (b) Scatter plot and fitted line of the prediction
model’s predicted values and true values based on the microstate sequence dynamic metrics proposed
in this paper. Black circles represent the HC group, blue circles represent the FTD group, and red
circles represent the AD group. The solid red line represents the scatter fit curve, and the shaded area
indicates the 95% confidence interval.

Table 4. Evaluation metrics for the multivariate linear regression model predicting MMSE scores
using resting-state EEG indices for all participants.

Methods Participants Features Model R2 MSE RMSE MAE

Microstate
dynamics HC, FTD, AD

MSNRI, MSLZC, Duration,
Occurrence,
Coverage

Multiple linear
regression 0.388 22.888 4.784 3.511

CEEMD-enhanced
microstate
dynamics

HC, FTD, AD
CEEMD-enhanced (MSNRI,

MSLZC, Duration,
Occurrence, Coverage)

Multiple linear
regression 0.702 11.158 3.340 2.555

From the scatter plot of predicted MMSE scores against target MMSE scores (Figure 11),
it is evident that the MMSE scores for the HC group are all 30, forming a cluster on the plot,
which might have influenced the overall performance of the predictive model. Therefore,
this subsection further establishes a multivariate linear regression prediction model for
MMSE scores based on participants with cognitive impairment disorders. The results are
illustrated in Figure 12 and summarized in Table 5. On the disease group, the proposed
method in this paper exhibited significantly improved predictive performance (R2 = 0.940,
rMSE of 1.077, and MAE of 0.807) compared to the baseline method (R2 = 0.297, rMSE of
3.680, and MAE of 2.877).
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scatter fit curve, and the shaded area indicates the 95% confidence interval.

Table 5. Evaluation metrics for the multivariate linear regression model predicting MMSE scores
based on resting-state EEG indices for the cognitive impairment group.

Methods Participants Features Model R2 MSE RMSE MAE

Microstate
dynamics FTD, AD

MSNRI, MSLZC, Duration,
Occurrence,
Coverage

Multiple linear
regression 0.297 13.543 3.680 2.877

CEEMD-enhanced
microstate
dynamics

FTD, AD
CEEMD-enhanced (MSNRI,

MSLZC, Duration,
Occurrence, Coverage)

Multiple linear
regression 0.940 1.160 1.077 0.807

The results of the multivariate linear regression prediction model demonstrate that uti-
lizing resting-state EEG microstate indicators can achieve high accuracy in the cross-subject
prediction of MMSE scores, confirming the potential of EEG biomarkers as substitutes or
complements to MMSE. Additionally, the exploration of non-randomness and complex-
ity indices of microstate spatio-temporal patterns enhanced by CEEMD holds significant
importance in assessing the severity of cognitive impairment.

4. Discussion

In this study, our core hypothesis is that the disruption in the equilibrium between
spatiotemporal pattern transitions in brain microstates constitutes a crucial characteristic of
the dementia process. Furthermore, we postulate that the patterns of transitions between
EEG microstate may be biomarkers to predict cognitive abilities. To test this hypothesis,
we developed a microstate sequence non-randomness index and gauged its efficacy in
distinguishing HC and dementia diseases (FTD and AD). Our research findings indicate
that this method exhibits highly significant differences in distinguishing between healthy
subjects and patients with dementia, providing compelling evidence that spatiotemporal
patterns of microstates in resting-state EEG signals can serve as valuable biomarkers
for dementia.

This investigation uncovers another significant revelation. Cross-frequency microstate
dynamic analysis, CEEMD-enhanced MSNRI, expands the differences between healthy
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and dementia states, significantly enhancing cognitive function prediction performance,
making it a reasonable complement to broadband microstate analysis. These findings carry
practical significance, suggesting that EEG can offer an alternative avenue for assessing
cognitive diseases or cognitive abilities.

In this work, we present a novel method of non-randomness to microstate tran-
sition sequences since microstate transitioning is non-linear, non-stationary, and non-
Markovian [14]. As anticipated [9], maintaining the balance and stability of brain spa-
tiotemporal pattern transitions plays a crucial role in human cognitive health. We found
significant differences in the non-randomness of spatiotemporal patterns of microstates be-
tween healthy individuals and patients with cognitive impairment disorders. The MSNRI
of patients with dementia decreases, indicating a shift towards more randomness in the
spatiotemporal patterns of their brain’s complex system (Figure 7a, HC vs. FTD vs. AD:
6.958 vs. 5.756 vs. 5.462). Interestingly, MSNRI will decline more in AD than in FTD. In
addition, the CEEMD-enhanced MSNRI produced consistent results at every IMF scale
(Figure 10a, all IMF scales). In a healthy state, the spatiotemporal patterns of brain mi-
crostates exhibit a more complex macroscopic structure and demonstrate the lowest level
of randomness. Conversely, dementia diseases lead to increased randomness in brain
spatiotemporal patterns. This understanding contributes to a deeper comprehension of the
neural mechanisms underlying cognitive impairment disorders and provides crucial clues
for related research and clinical diagnosis.

MSLZC is a previously reported measurement for studying microstate transitions [9,15,16].
In this study, we also observed differences in MSLZC between the healthy group and the
group with the disease, but the significance of the differences was weaker compared
to MSNRI. We observed a significant increase in MSLZC tendency in the AD group
(Figures 7 and 10). It is worth noting that, in comparison with another MSLZC-based
analysis of AD patients, our results for the LZC analysis of the EEG time series were
consistent, but the results for the MSLZC analysis of the microstate series were reversed
(MSLZC was reduced in AD, p = 0.0023) [15]. Possible reasons for this discrepancy include
(1) differences in the length of data included in the analysis (we used 180 s, while they
used 20 s), (2) differences in microstate segmentation methods, and (3) variations in the
severity of AD; in their study, the average MMSE score for AD was 23, whereas ours was
17.75. The U-shaped relationship between complexity and disease severity might lead
to such differences in results [33]. Furthermore, the biological significance of LZC may
differ from that indicated by other microstate indicators [34]. For instance, in other studies,
MSLZC was found to be higher in patients with depression than in controls [35], and LZC
in patients with thalamic ischemic stroke has been found to be higher compared to the
controls [36].

Meanwhile, the CEEMD-enhanced MSNRI algorithm is more effective compared to
broad frequency domain scale analysis (Figures 10 and 12 and Table 3). In this study,
CEEMD was used to refine the frequency domain of EEG signals into multiple scales.
Compared to Fourier transform, CEEMD can analyze nonlinear and non-stationary signals.
Unlike wavelet transform, CEEMD does not select basis functions. It adaptively extracts the
intrinsic mode functions of the signal while simultaneously separating trend components
and noise, which helps capture patterns in the specific frequency scales of EEG signals from
patients with cognitive impairment disorders.

After the introduction of the CEEMD-based MSNRI and MSLZC indicators, compared
to traditional microstate temporal features (Figure 12a, R2 = 0.297, rMSE of 3.680, and
MAE of 2.877), the method integrating CEEMD-enhanced MSNRI and MSLZC shows a
significant improvement in the accuracy of predicting MMSE scores (Figure 12b, R2 = 0.940,
rMSE of 1.077, and MAE of 0.807). As shown in Table 6, this prediction performance
exceeds the results of previous studies of MMSE prediction using microstate or other EEG
characterization methods [20,37–41], while also confirming the potential of resting-state
EEG biomarkers as substitutes or supplements for MMSE.
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Table 6. Comparison with previous studies on the EEG-based prediction of MMSE scores.

Authors Subjects Methods Model Validation R2 r RMSE

Wei et al. (2024)
[37]

160 (MCI,
dementia)

Time/spectral-domain
features LASSO LOSO CV 0.230 -- 2.680

Jiao et al. (2023)
[20]

330
(AD)

Time/spectral/microstate
features

Random
forest

regression
10-fold CV 0.820 -- --

Doan et al. (2021)
[38]

122 (HC,
dementia) Spectral-domain features Linear

regression 5-fold CV -- 0.680 --

Jesus et al. (2021)
[39]

89
(AD) Spectral/coherence

Random
forest

regression
5-fold CV -- 0.348 1.682

Zorick et al. (2020)
[40]

20
(elderly)

Multifractal detrended
fluctuation analysis

Classification
and

Regression
Trees

LOSO CV -- 0.650 --

Si et al. (2023)
[41]

88
(HC, FTD,

AD)

Functional
connection

Multiple
linear

regression
LOSO CV -- 0.274 --

Our study

88
(HC, FTD,

AD)
CEEMD-
enhanced
microstate
dynamics

Multiple
linear

regression
LOSO CV

0.702 -- 3.340

59
(FTD, AD) 0.940 -- 1.077

r: Pearson correlation coefficients. LASSO: the least absolute shrinkage selection operator. CV: cross-validation.
RMSE: the root mean squared error.

This research also has several limitations. One notable limitation concerns the neces-
sary length of the data. Since we were analyzing pattern information within EEG microstate
transition sequences, the microstate sequences were reduced to transition sequences dur-
ing the analysis process. As a result, a relatively longer data length is required to obtain
sufficient information. In this article, we used a data length of 180 s. This is in contrast
to other methods that may only require several seconds or tens of seconds of EEG data
to complete feature extraction. Secondly, we employed a relatively small clinical dataset
(29 healthy individuals, 59 patients with dementia) for screening diseases. While this vali-
dated the effectiveness of the algorithm to some extent, further validation of its robustness
in cognitive disease screening applications requires larger datasets, which will be pursued
in future work. Additionally, in predicting cognitive test scores, we only utilized EEG
markers to predict MMSE scores. While MMSE exhibits acceptable accuracy for dementia
screening, its specificity and sensitivity are lower for milder cognitive impairments such
as mild cognitive impairment because some individuals with early cognitive decline can
still score within the normal range, meaning that it may not be sensitive enough to detect
subtle cognitive changes that occur in the early stages of MCI. Therefore, future work needs
to validate the ability of EEG markers to predict scores from other computerized tests
assessing early cognitive decline.

5. Conclusions

The proposed novel CEEMD-based MSNRI approach employs topographic space
compression, physics, and statistical linguistic tools to detect and quantify certain funda-
mental patterns embedded in EEG microstates beyond frequency bands. By leveraging
EEG datasets from HC, FTD, and AD participants, we validated our hypotheses. Our
findings revealed that healthy individuals exhibit more complex macroscopic structures
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and non-random spatiotemporal patterns of microstates, whereas dementia disorders lead
to the generation of more random spatiotemporal patterns of microstates.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/brainsci14050487/s1, Table S1: Detailed MMSE scores for each subject.
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