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Abstract: The continuous decrease in the size of lithographic technology nodes has led to the
development of source and mask optimization (SMO) and also to the control of defocus becoming
stringent in the actual lithography process. Due to multi-factor impact, defocusing is always
changeable and uncertain in the real exposure process. But conventional SMO assumes the lithography
system is ideal, which only compensates the optical proximity effect (OPE) in the best focus plane.
Therefore, to solve the inverse lithography problem with more uniformity of pattern in different
defocus variations, we proposed a defocus robust SMO (DRSMO) approach that is driven by a
defocus sensitivity penalty function for the first time. This multi-objective optimization samples
a wide range of defocus disturbances and it can be proceeded by the mini-batch gradient descent
(MBGD) algorithm effectively. The simulation results showed that a more robust defocus source and
mask can be designed through DRSMO optimization. The defocus sensitivity factor sβ maximally
decreased 63.5% compared to conventional SMO, and due to the low error sensitivity and the depth of
defocus (DOF), the process window (PW) was further enlarged effectively. Compared to conventional
SMO, the exposure latitude (EL) maximally increased from 4.5% to 10.5% and DOF maximally
increased 54.5% (EL = 5%), which proved the validity of the DRSMO method in improving the
focusing performance.

Keywords: computational lithography; source and mask optimization (SMO); defocus robustness;
process window enhancement; multi-objective optimization

1. Introduction

With the shrink in critical dimension (CD), the impact of the optical proximity effect (OPE)
become obvious, it causes distortion in the exposure pattern and reduction of pattern fidelity and
contrast, so that it must be corrected effectively. Besides, continuous shrinking also allows for control
of the defocus in lithography to become increasingly stringent. In actual lithography processes,
defocus is always uncertain at the wafer level, because of the unevenness of the wafer surface [1].
In addition, aberrations, thermal aberrations [2], thermal mask effects [3], and thick mask effects [4] all
inevitably cause best-focus plane constant shift and further increase the OPE in off-focus conditions.
Meanwhile, the continuous shrinkage of technology nodes has promoted the introduction of resolution
enhancement technology (RET). Conventional RET, such as optical proximity correction (OPC) and
source and mask optimization (SMO), generate the best exposure conditions by optimizing mask or
simultaneously optimizing source and mask, respectively [5,6]. However, general RET methods assume
the lithography system is ideal, which only compensates the OPE in the nominal condition [7–9].
But, with CD shrinkage, it results in the imaging quality becoming more sensitive to defocus,
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thus requiring RET methods corresponding to off-focus conditions. Therefore, to tackle the focus
variation, an analytical defocus expansion function was derived to predict the defocus aerial image in
an inverse lithography technology (ILT) framework [10], so that a variational lithography model (VLIM)
is derived to take into account exposure dose and focus variations [11]. Meanwhile, we previously
proposed the source–mask-numerical aperture (NA) co-optimization (SMNO) method to extend the
depth of defocus (DOF) by fine-tuning the NA [12,13], but it inevitably sacrificed resolution due to the
reduction of NA. In addition, Peng et al. [14] also studied SMO methods to improve the pattern fidelity
in the case of an assigned defocus plane which operated at 100 nm defocusing, and our subsequent
works have drawn on this approach [15,16], but it is hard to ensure global fidelity in different defocus
variations. Thus, Jia et al. [17–21] proposed statistical variations-based OPC and SMO methods to
improve global fidelity at different defocus variations.

Unfortunately, the above methods found it hard to improve the uniformity of exposure patterns
within the DOF, so that the optimized system still had relatively high sensitivity to defocusing.
To eliminate changeable and uncertain defocusing due to the presence of multiple factors effectively,
it requires the reduction of defocusing sensitivity for optimized systems. Therefore, to the best
of our ability to minimize the defocusing sensitivity, we propose a defocus robust SMO (DRSMO)
approach that is driven by a new multi-objective optimization strategy. In our method, the total
cost function is composed of expectation fidelity and expectation sensitivity in different defocus
disturbances. In addition, the expectation sensitivity penalty function is introduced into an inverse
optimization framework for the first time to constrain the uniformity of aerial images to defocus in
different disturbances, so that more robust source and mask are designed through this optimization.
Compared to conventional SMO approaches, the simulation results confirmed that DRSMO can further
reduce defocus sensitivity and improve process robustness. The defocus sensitivity factor sβ maximally
decreased 63.5% compared to conventional SMO, and the DOF corresponding to EL = 5% maximally
increased 54.5%, EL maximally increased from 4.5% to 10.5% as well. It means that larger exposure
tolerances were in the actual lithography process via DRSMO. In addition, this paper also discusses
the established optimization problem which was solved by the stochastic gradient descent (SGD)
algorithm and mini-batch gradient descent (MBGD) algorithm. Optimization results show that due to
the wide sampling range of defocus disturbances, it is easy to fall into the local optimal solution by
SGD but converge well when introduced to MBGD.

The remainder of the paper is organized as follows. In Section 2, the introduction of the forward
imaging model, the inverse optimization problem driven by the new multi-objective cost function,
and the multi-objective optimization process by different algorithms are described. In Section 3,
the simulation conditions and simulation results are presented.

2. DRSMO Modeling

Figure 1 illustrates the DRSMO optimization framework which is composed of the forward
calculation to evaluate pattern fidelity and the inverse optimization to update the source and mask
parameters. In current lithography processes, source and mask are freeform pixel-based configurations.
Therefore, both the source and mask can be represented by matrix form J and m, respectively.
Each source element Jxs,ys ∈ (0, 1) represent normalized light intensity and each mask element mrs is
subject to 0–1 binary distribution. To overcome the complexity of the constrained optimization problem,
a parameters transfer was made to convert Jk and mk to unconstrained sources mask parameters Ωk

J
and Ωk

M (see Appendix B and Equation (A9)) in the kth iteration, respectively [8].
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Figure 1. Forward calculation and inverse optimization process for defocus robust SMO (DRSMO).

As for the forward calculation process, the printed resist pattern was calculated by the given light
source and mask parameters through the corresponding physical process. Then, the printed pattern
was compared with the target resist pattern to evaluate the pattern fidelity and CD error. Under the
Abbe imaging principle, the aerial image that takes into account defocusing can be represented as
Ide f ocus(β). For the model-based SMO method, the scalar imaging model is inaccurate in hyper-NA
(NA > 1) immersion lithography systems [22]. Thus, we previously studied the vector imaging model
for aerial image calculation [16], and it can be formulated as

Ide f ocus(β) =
1

Jsum

∑
xs

∑
ys

Jxs,ys ×

∑
p=x,y,z

‖Ewa f er
p ‖

2
, (1)

where Jsum is the summation of all the source intensity and is used as a normalization factor. Ewa f er
p is

the electric fields (x-, y-, and z-directions) in the exposure plane which can be expressed as

Ewa f er
p = F −1{2π/nw ×R×C×V(xs, ys) �Uideal �De f
�F [Mnear(xs, ys)] � Ei(xs, ys)

}
,

(2)

where nw is the index of refraction, the magnification of R = 4 normally, V(xs, ys) is the vector matrix for
hyper-NA systems, C is the irradiance correction factor, Uideal is the ideal pupil filter, F [Mnear(xs, ys)] is
the mask diffraction near field, Ei(xs, ys) is the electric field of the source that is represented by a 2 × 1
vector. Operators �, F [ ], and F −1[ ] are represented by matrix entry-by-entry multiplication, forward
Fourier transform, and inverse Fourier transform, respectively.

It should be noted that the impact of defocusing on resulting aerial image Def can be described as
an aberration of a sort [23]. This causes a distribution of the phase change on the ideal aperture which
can be described as

De f = exp
[
j
2πnwβ(1− yi)

λ

]
, (3)

where yi is the direction cosine in the propagation direction and β is the defocus value.
Next, the resist image was adopted to the continuous derivable sig model [24], which can be

expressed as

Z(β) = sig
[
Ide f ocus(β)

]
=

1

1 + exp
{
−a

[
Ide f ocus(β) − tr

]} . (4)
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where a indicates the steepness of the sigmoid function, and tr is the threshold.

2.1. DRSMO Inverse Optimization Framework

As for the inverse optimization process in Figure 1, it is a continuous update source and mask
parameter to meet the final target resist pattern and overcome the OPE. The inverse optimization process
of DRSMO relies on the corresponding cost function establishment. In DRSMO, the multi-objective
cost function is composed of the statistics expected in plentiful defocus disturbances, and the total cost
function can be divided into two parts: the pattern fidelity part and defocus sensitivity part.

The pattern fidelity part is in light of Jia’s [19] approach, which is defined as the expectation of the
Euclidean distance between the target resistance pattern Z̃ and the resistance pattern Z(βi) in plentiful
defocusing disturbances. It can be formulated as

F = εβi

{
‖Z̃−Z(βi)‖

2
2

}
, (5)

where βi is a stochastic variable representing defocusing disturbances. It is subject to a certain range
of evenly distributed disturbances, namely, βi ∈ U(−α,α). β =

{
βi
}

represents the whole training set.
It should be noted that the sample range of ±α is selected according to the actual situation, larger α
can theoretically lead to wider DOFs, but too large a DOF will be beyond the potential of optimization
and Z̃, Z(βi) βi, respectively. ε{ } is the mathematical expectation.

To the core ideal of DRSMO is introduced the defocus sensitivity penalty function, which aims
at minimizing the expected quadratic change ratio of the aerial image to defocusing and can be
formulated as

Y = εβi

{
‖∂Ide f ocus(βi)/∂βi‖

2
2

}
, (6)

This penalty function directly controls the change rate of the aerial image to the defocus, which
improves the consistency of the pattern and CD in different defocus disturbances. Therefore, it is
beneficial to optimize a more robust source and mask with a lower defocus sensitivity. Besides, due to
the improvement of process robustness for the optimized system, the PW will also enlarge. Appendix A
and Equation (A5) define the details about the analytical sensitivity penalty Yi, so that the total cost
function G consists of the weighted sum of F and Y.

minG = F +ωY. (7)

where ω is the weighting factor of the sensitivity part. Typically, ω = 0 means the optimization only
operates at the fidelity part F. In Section 3, we will discuss that the optimization results only operate at
the fidelity part or simultaneously operates at the fidelity part and sensitivity part.

2.2. DRSMO Optimization Algorithm

In our method, the DRSMO process can be regarded as a machine learning process, training
variable βi as a stochastic disturbance in the cost function to solve this multi-objective optimization
problem. Table 1 illustrates the optimization flow of the SGD and MBGD algorithm, respectively.
In our previous works [25,26], SGD was adopted to calculate the gradient in a single training sample
βi,k in each iteration with fast speed. However, due to the wider sample range of defocus disturbances,
the SGD algorithm could not guarantee each iteration was conducted in the global optimal direction.

In order to give consideration to both optimization speed and accuracy, mini-batch gradient descent
(MBGD) was proposed to traverse a part of the random defocus samples βi,k, βi+1,k, · · · , βi+lbatch−1,k in
each iteration, and lbatch is the batch number in each iteration [27]. Different from the SGD method,
MBGD updates part of the training set, thus leading to a relatively correct search direction, so it is
easier to converge to the global optimal solution.
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Both the SGD and MBGD algorithm need to calculate the analytic gradient expression of cost
function, which can be formulated as

∇JGi = ∇JFi +ω∇JYi, (8)

∇MGi = ∇MFi +ω∇MYi. (9)

where ∇J and ∇M are the gradient to the source parameter ΩJ and mask pattern ΩM, respectively.
We directed a large amount of study toward the derivation of the analytic gradient formula about
sensitive penalty ∇JYi, ∇MYi, and more details can be found in Appendix B, Equations (A11) and (A13).
Similarly, the expansion of ∇JFi, ∇MFi can be found in Appendix C, Equations (A19) and (A20).

Table 1. Stochastic gradient descent (SGD) and mini-batch gradient descent (MBGD) optimization procedure.

SGD procedure

1. Initialization: Assign the starting source parameter ΩJ , mask parameter ΩM, the source step size
sJ , the mask step size sM, the upper limit iteration number lsmo
2. Optimization: Simultaneously update the source and mask patterns:

While k ≤ lsmo
k← k + 1
Randomly generate the defocus value βi,k−1
Calculate the generate ∇JGk−1

i , ∇MGk−1
i , respectively;

Update the source and mask parameters

Ωk
J = Ωk−1

J − sJ
∇JGk−1

i

‖∇JGk−1
i ‖2

Ωk
M = Ωk−1

M − sM
∇MGk−1

i

‖∇MGk−1
i ‖2

end
3. Output: the optimized source and mask parameters.

MBGD procedure

1. Initialization: Assign the starting source parameter ΩJ mask parameter ΩM, the source step size
sJ , the mask step size sM, the upper limit iteration number lsmo, the batch number lbatch
2. Optimization: Simultaneously update the source and mask patterns:

While k ≤ lsmo
k← k + 1
Random generate a set of the defocus values βi,k−1, βi+1,k−1, · · · , βi+lbatch−1,k−1

Calculate the corresponding gradient of cost function ∇JGk−1
i ,∇JGk−1

i+1, · · · ,∇JGk−1
i+lbatch−1,

∇MGk−1
i ,∇MGk−1

i+1, · · · ,∇MGk−1
i+lbatch−1 respectively;

Update the source and mask parameters

Ωk
J = Ωk−1

J −
1

lbatch

∑i+lbatch−1
a=i sJ

∇JGk−1
a

‖∇JGk−1
a ‖2

Ωk
M = Ωk−1

M −
1

lbatch

∑i+lbatch−1
a=i sM

∇MGk−1
a

‖∇MGk−1
a ‖2

end
3. Output: the optimized source and mask parameters.

3. Simulation Results and Discussion

3.1. Simulation Conditions

We illustrate the DRSMO method in two test patterns as shown in Figure 2. The critical dimension
(CD) of each pattern was 45 nm. Resistance patterns and mask were represented by a 201 × 201
matrix with a resolution of 5.625 nm × 5.625 nm and 22.500 nm × 22.500 nm per pixel, respectively.
The imaging system parameters were set to be λ = 193 nm and NA = 1.2. The freeform source was
represented by a 21 × 21 matrix which uses TE-polarization illumination. In this paper, the whole
training set β =

{
βi
}

consisted of 900 random sampling points in the range of (−100 nm, 100 nm),
since this sample range was extremely larger than initial DOF, which was without optimization. Taking
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into account both optimization speed and accuracy, the batch number lbatch was set to be three per
iteration and 300 iterations totally.

To evaluate the imaging fidelity, pattern error (PAE) refers to the Euclidean distance between the
target pattern and the actual pattern in the resist. Generally, the smaller PAE means the higher fidelity
of the lithographic imaging. It can be formulated as

PAE = ‖Z̃−Z(β)‖
2
2, (10)

where Z̃ is the binary target resist pattern and Z(β) is the actual resistance pattern under defocus β.
Meanwhile, to evaluate the defocusing sensitivity quantitatively, we defined the defocus sensitivity
factor Sβ as the change ratio of PAE to defocusing

Sβ =
∂PAE
∂β

, (11)

Moreover, to evaluate the process robustness in the actual exposure process, the PW was introduced
to describe the restrictive relation between dose variation and focus variation. It was composed of
two parameters, DOF and exposure latitude (EL). Exposure latitude is the allowable range of dose
variation under a fixed defocus. Similarly, DOF is the largest acceptable defocus range under a fixed
dose. Thus, PW consists of all pairs of DOF and EL which satisfy the exposure quality specification.
Generally, taking the DOF when corresponding to ELs equal to 5% or 10% as process evaluation
standard. Meanwhile, the PW representative calculation positions are marked at yellow lines in
Figure 2.
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Figure 2. Two test patterns used in the simulation: (a) Test pattern 1; (b) Test pattern 2. The PW
calculation positions are marked at the yellow lines.

3.2. Optimization Results and Analysis

In order to illustrate the negative influence of defocus, Figure 3a–f shows the optimization
proceeded by initial SMO which merely operated at the best focus plane [7], and the evaluation of
the printed image was under different defocus planes. Figure 3a,b show the optimized source for
initial SMO and optimized mask for initial SMO, respectively. Figure 3c shows the printed image
at the best focus plane, and Figure 3d–f shows the printed image under 50 nm, 70 nm, and 100 nm
defocus, respectively. It clearly shows that the PAE increased extremely with an increase of defocus,
proving that the initial SMO could not compensate the defocus distortion because the cost function
was not involved in the defocus term. However, the defocusing error inevitably existed in the actual
lithography process, thereby it was necessary to gain a better and more robust defocusing via DRSMO.
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defocusing), and DRSMO with ω = 0.2, respectively.

Similarly, Figure 3g–l illustrates Peng’s [14] SMO method which merely operates at an assigned
defocus plane (100 nm defocusing). In this method, the established cost function can be formulated as
the weight sum of the nominal term and defocus term

F = ‖Z̃−Z(0)‖
2
2 +ω‖Z̃−Z(100)‖

2
2, (12)

Figure 3g,h show the optimized source and mask, respectively. Figure 3i–l shows the printed
image under 0 nm, 50 nm, 70 nm, 100 nm defocus, respectively. Compared to the initial SMO, lower
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distortion and PAE were acquired in each defocus plane. However, since this method merely operated
at an assigned defocusing plane, the global fidelity was not so good. In Figure 3j under 50 nm and
Figure 3k under 70 nm defocusing, apparent hot spots existed, shown in the center of the red circles.

Finally, the optimization results of the proposed DRSMO with ω = 0.2 are show in Figure 3m–r.
It clearly shows that the distortion and PAE further declined in each defocus plane, so that more
robust source and mask were designed through this optimization. Compare to SMO under an assigned
defocusing plane, the DRSMO guaranteed better global fidelity in a wide range of defocus.

To further prove a robust improvement, Figure 4 depicts the defocus–PAE curves in the evaluation
range of 0–100 nm for target 1 optimized systems. It should be noted that each weight factor ω
corresponds to a set of optimized source and mask. The slope of each curve reflected the process
robustness, and a lower slope meant lower sensitivity for the optimized systems to focus on shifting.
It should be noted that the slope of each curve gradual decreased in the order of initial SMO (blue curve),
DRSMO withω = 0 (green curve), DRSMO withω = 0.1 (red curve), DRSMO withω = 0.2 (azury curve),
and DRSMO with ω = 0.3 (purple curve). We concluded that DRSMO is beneficial to reduce defocusing
sensitivity and to gain a more uniform exposure pattern within a long range of defocusing, which
means a better system robustness against uncertain and changeable focus shifts in a real lithography
process. The core idea of the DRSMO is to introduce the defocusing sensitivity Y to constrain the
uniformity of printed patterns in different defocus variations. Thus, simulations further compare the
optimization performance of DRSMO, which merely operate at the fidelity part F (ω = 0) and DRSMO
driven by the sensitivity penalty (ω , 0). For instance, comparing the DRSMO with ω = 0 (green curve)
and DRSMO with ω = 0.1 (red curve) in Figure 4, the slope of the red curve is lower than that of the
green curve, which infers that the introduction of the sensitivity penalty Y can further improve pattern
uniformity with a wide range of defocus variations. It was proved that the validity of introduction
sensitivity penalty Y further improves the optimization performance. In brief, to maximize the DRSMO
optimization performance, both the fidelity part F and the penalty term Y must be introduced into the
optimization framework, and the weight factor ω must be chosen appropriately.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 17 

 

to constrain the uniformity of printed patterns in different defocus variations. Thus, simulations 
further compare the optimization performance of DRSMO, which merely operate at the fidelity part 
F  (ω = 0) and DRSMO driven by the sensitivity penalty (ω ≠ 0). For instance, comparing the DRSMO 
with ω = 0 (green curve) and DRSMO with ω = 0.1 (red curve) in Figure 4, the slope of the red curve 
is lower than that of the green curve, which infers that the introduction of the sensitivity penalty Y  
can further improve pattern uniformity with a wide range of defocus variations. It was proved that 
the validity of introduction sensitivity penalty Y  further improves the optimization performance. 
In brief, to maximize the DRSMO optimization performance, both the fidelity part F  and the 
penalty term Y  must be introduced into the optimization framework, and the weight factor ω must 
be chosen appropriately. 

 
Figure 4. The defocus–pattern error (PAE) curves of target 1 for initial SMO (blue curve), the DRSMO 
with the weight factor ω = 0 (green curve), ω = 0.1 (red curve), ω = 0.2 (azury curve), and ω = 0.3 (purple 
curve). Optimizations were proceeded by the MBGD algorithm. 

In actual lithography processes, PW is one of the critical evaluation criteria which refers to the 
exposure error tolerance. Figure 5 shows the PWs for the conventional SMO (blue curve), the DRSMO 
with the weight factor ω = 0 (green curve), ω = 0.1 (red curve), ω = 0.2 (azury curve), and ω = 0.3 
(purple curve). It is illustrated that the PW of the proposed DRSMO was evidently larger than that of 
the initial SMO. For the initial SMO, the maximal EL was less than 5%, which was far below the actual 
exposure requirements. By using DRSMO, the EL maximal increased from 4.5% to 10.5%. Similar 
results were found when comparing the difference of DRSMO without the sensitive penalty and 
DRSMO with the sensitive penalty. For example, when comparing PW with ω = 0 (green curve) and 
ω = 0.1 (red curve), a wider PW was found for the red curve than the green curve. It is inferred that 
the sensitive penalty is helpful for improving system robustness so that it indirectly boosts PW. 
However, because the cost function does not involve terms which directly relate to EL and DOF, the 
relationship between weight factor ω and PW is uncertain and unclear. In this way, although DRSMO 
with ω = 0.3 had the best defocus robustness, the PW was shrunk because the weight factor was too 
large that it led to overfitting during the training process. This illustrates that a well-chosen weight 
factor ω is important to simultaneously improve robustness and PW. 
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(purple curve). Optimizations were proceeded by the MBGD algorithm.

In actual lithography processes, PW is one of the critical evaluation criteria which refers to the
exposure error tolerance. Figure 5 shows the PWs for the conventional SMO (blue curve), the DRSMO
with the weight factor ω = 0 (green curve), ω = 0.1 (red curve), ω = 0.2 (azury curve), and ω = 0.3
(purple curve). It is illustrated that the PW of the proposed DRSMO was evidently larger than that of
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the initial SMO. For the initial SMO, the maximal EL was less than 5%, which was far below the actual
exposure requirements. By using DRSMO, the EL maximal increased from 4.5% to 10.5%. Similar
results were found when comparing the difference of DRSMO without the sensitive penalty and
DRSMO with the sensitive penalty. For example, when comparing PW with ω = 0 (green curve) and
ω = 0.1 (red curve), a wider PW was found for the red curve than the green curve. It is inferred that the
sensitive penalty is helpful for improving system robustness so that it indirectly boosts PW. However,
because the cost function does not involve terms which directly relate to EL and DOF, the relationship
between weight factor ω and PW is uncertain and unclear. In this way, although DRSMO with ω = 0.3
had the best defocus robustness, the PW was shrunk because the weight factor was too large that it
led to overfitting during the training process. This illustrates that a well-chosen weight factor ω is
important to simultaneously improve robustness and PW.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 17 
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Figure 5. Process window (PW) of target 1 for the initial SMO (blue curve), the DRSMO with the
weight factor ω = 0 (green curve), ω = 0.1 (red curve), ω = 0.2 (azury curve), and ω = 0.3 (purple curve).
Optimizations were proceeded by the MBGD algorithm.

Table 2 summarizes the target 1 comparison of optimization results for conventional SMO, DRSMO
with ω = 0, ω = 0.1, ω = 0.2, and ω = 0.3, respectively. It should be noted that PAE sensitivity factor Sβ
declined significantly with the ω increase. Compare with initial SMO, the largest decrease of Sβ in
DRSMO with ω = 0.3 is 63.5%. Integrated consider the improvement of both Sβ and PW, ω = 0.1 is a
relative reasonable weight factor for maximize optimization performance.

Table 2. The target 1 optimized values of Sβ, depth of focus (DOF) (nm) corresponding to exposure
latitude (El) equal to 5% and 8% for conventional SMO, and DRSMO with ω = 0, ω = 0.1, ω = 0.2, and
ω = 0.3, respectively.

Method Sβ DOF (EL = 5%) DOF (EL = 8%)

Initial SMO 56.1 0 0
DRSMO (ω = 0) 36.6 102 87

DRSMO (ω = 0.1) 25.5 122 107
DRSMO (ω = 0.2) 23.8 138 105
DRSMO (ω = 0.3) 20.5 102 0

Target 2 consisted of a series of vertical and horizontal mixed lines. Figure 6 shows the defocus–PAE
curves in the evaluation range of (0 nm, 100 nm) for target 2; optimizations were proceeded by the
MBGD algorithm. It should be noted that the slope of the DRSMO with a ω = 0.2 (azury curve) lower
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than that of DRSMO with a ω = 0 (green curve) and initial SMO (blue curve) proved the effectiveness
of the sensitivity penalty.
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Figure 6. The defocus–PAE curves of target 2 for initial SMO (blue curve), the DRSMO with the weight
factor ω = 0 (green curve) and ω = 0.2 (azury curve), respectively. Optimizations were proceeded by
the MBGD algorithm.

Meanwhile, the improvement of PW for target 2 was still apparent for the DRSMO approach.
Figure 7 shows the PWs for the initial SMO (blue curve) and the DRSMO with the weight factors
ω = 0 (green curve) and ω = 0.2 (azury curve). It should be noted that the PW had no significant
improvement for the DRSMO with ω = 0 compared to the initial SMO, but due to the lower defocus
sensitivity, the PW of the DRSMO with ω = 0.2 was enlarged. It was apparent that the introduction of
the sensitivity penalty was beneficial for further improvement of the PW. Similarly, Table 3 summarizes
the comparison of the target 2 optimization results for the initial SMO and DRSMO with ω = 0 and
ω = 0.2, respectively. It shows that the DOF corresponding to EL = 5% maximally increased by 54.5%.
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Figure 7. PWs of target 2 for the initial SMO (blue curve) and the DRSMO with the weight factors
ω = 0 (green curve) and ω = 0.2 (azury curve), respectively. Optimizations were proceeded by the
MBGD algorithm.
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Table 3. The target 2 optimized values of Sβ, DOF (nm) corresponding to ELs equal to 5% and 8% for
the conventional SMO, and DRSMO with ω = 0, ω = 0.1, ω = 0.2, and ω = 0.3, respectively.

Method Sβ DOF (EL = 5%) DOF (EL = 8%)

Initial SMO 54.2 77 0
DRSMO (ω = 0) 40.3 82 0

DRSMO (ω = 0.2) 32.6 119 97

3.3. Comparison of SGD and MBGD Algorithm for DRSMO

We have previously used the SGD algorithm to solve multi-objective SMO [25,26] and it converged
well with fast speed. However, due to the wider sampling range of defocusing in the DRSMO
framework, it was hard for the SGD algorithm to search for the global optimal direction if each
iteration was only driven by one sample gradient in the training set. To compare the SGD and
MBGD optimization performance for the DRSMO in terms of speed and accuracy, we generated
the same training set with 900 sample points for both MBGD and SGD optimization processes (for
the MBGD algorithm, there were a total of three samples per iteration and 300 iterations. For the
SGD algorithm, there was a total of one sample per iteration and 900 iterations). Figure 8 illustrates
that the defocus–PAE curves for target 1 optimization in the case of the same weight factor, ω = 0.1,
was proceeded by the SGD and MBGD algorithms, respectively. It was demonstrated that the slope
of the DRSMO was proceeded by the MBGD (red curve), which was lower than that of the SGD
(jasper curve). It indicates the better optimization performance for the MBGD in the same training set.
Similarly, Figure 9 shows that the PWs with the same weight factor were proceeded by the SGD and
MBGD algorithms, respectively. It was the MBGD algorithm that provided a wider PW due to the
lower defocus sensitivity.
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Table 4 summarizes the comparison of the optimization performances for target 1 proceeded by
the MBGD and SGD, respectively. It clearly shows that the lower Sβ and larger DOF were improved by
MBGD optimization. Meanwhile, Table 4 shows the comparison of run times, although SGD had a
relatively weak optimization performance but was faster in regard to convergence rates. In addition,
all computations were carried out on a server with an Intel core i5 8400 CPU, 2.8GHz, 16.0 GB of RAM.
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Figure 9. PWs of target 1 for the DRSMO with the same weight factor ω = 0.1 that were proceeded by
the SGD algorithm (jasper curve) and MBGD algorithms (red curve), respectively.

In conclusion, both the MBGD and SGD were beneficial for improving DOF and PW. However,
the massive samples taken from the defocusing disturbances made it hard for the SGD to converge to a
global search direction. Therefore, the MBGD algorithm was applied to the DRSMO multi-objective
optimization problem most effectively.

Table 4. The values of Sβ, DOF (nm) corresponding to ELs equal to 5% and 8% and run time (seconds)
for DRSMO proceeded by the MBGD and SGD, respectively.

Algorithm Sβ DOF (EL = 5%) DOF (EL = 8%) Run Time

DRSMO (ω = 0.1)
MBGD 25.5 122 107 22,072.7

SGD 34.3 111 92 14,846.5

4. Conclusions

In conclusion, we proposed the DRSMO to compensate for uncertain defocus and OPE in real
lithography processes. The inverse optimization framework was based on a new cost function that
constrained the uniformity of an aerial image in different defocus disturbances, and a more robust
lithographic source and mask with lower defocus sensitivities were designed. Using this method,
the robustness against focus shifting was dramatically improved and the DOF and PW were extremely
enlarged as well. It created a larger exposure tolerance in the actual lithography process and it was
especially applied to high fidelity exposures in cutting-edge technical nodes.
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Appendix A

For brevity, Equation (2), Ewa f er
p can be simplified as:

Ewa f er
p = Υ

xs ys
P ⊗Θde f ocus, (A1)

where
Υ

xs ys
P =

2π
nwR
F
−1{C×V(xs, ys) �Uideal �F [Mnear(xs, ys)] � Ei(xs, ys)

}
, (A2)

Θde f ocus = F
−1{De f

}
, (A3)

Similarly, according to our previous work [16], Ewa f er
p can also be simplified as:

Ewa f er
p = Hxs ys

p ⊗ (Bxs ys �M), (A4)

where M is the mask layout, Bxs ys is the mask diffraction matrix, and Hxs ys
p is the transfer function of

the project lens.
Then, discretize the sensitivity penalty Y in each defocus disturbance Yi. Based on the chain rule,

according to Equations (6) and (A1), the analytical sensitivity penalty Yi can be expressed as:

Yi =

(
‖
∂Ide f ocus(βi)

∂βi
‖

2

2

)2

=
∑
m,n

(
∂Ide f ocus

mn (βi)
∂Θrs

de f ocus

∂Θrs
de f ocus
∂βi

)2

=
∑
m,n

(
2

Jsum

∑
xs

∑
ys

Jxs,ys
∑
rs

( ∑
p=x,y,z

D1Re{Φ}+ D2Im{Φ}
))2

,

(A5)

where Ide f ocus
mn (βi) represents the m and nth sampling point in the aerial image matrix Ide f ocus(βi), and

Θrs
de f ocus represents the r and sth sampling point in matrix Θde f ocus as well. Details of D1, D2 and Φ can

be formulated as:

D1 =
∂Re

(
Θrs

de f ocus

)
∂β

= −Re
{
F
−1[ωrs sin(ωrsβ)]

}
− Im

{
F
−1[ωrs cos(ωrsβ)]

}
,

(A6)

D2 =
∂Im

(
Θrs

de f ocus

)
∂β

= −Im
{
F
−1[ωrs sin(ωrsβ)]

}
+ Re

{
F
−1[ωrs cos(ωrsβ)]

}
,

(A7)

and

Φ =
M∑

r=1

N∑
s=1

(
Υ

xs ys
P,m−r,n−sΘ

rs
de f ocus

)(
Υ

xs ys
P,m−r,n−s

)∗
, (A8)

Appendix B

In order to reduce the bound-constrained source and mask optimization problem, we apply
parametric transformation to realize unconstrained optimization such that [16]

Jxs,ys =
1 + cos Ωxs ys

J

2
, mkl =

1 + cos Ωkl
M

2
. (A9)
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Through this transformation, the entry values of Ωxs ys
J , Ωxs ys

M can be enlarged in the range of (−∞,

∞). According to Equations (A5) and (A9), the gradient of Yi to the source parameters Ωxs ys
J is

∂Yi
∂Ωxs ys

J
= ∂Yi

∂Jxs ,ys
∂Jxs ,ys

∂Ωxs ys
J

=
∑
mn

− sin Ωxs ys
J

Jsum

∑
p=x,y,z

∑rs

 Re
{(

Ewa f er
p

)
mn

D1
(
Υ

xs ys
P,m−r,n−s

)∗}
+Im

{(
Ewa f er

p

)
mn

D2
(
Υ

xs ys
P,m−r,n−s

)∗} 


2

,
(A10)

Thus, simplify the matrix of Equation (A10) to form

∇JYi =
− sin Ωxs ys

J

Jsum
� 1T

N×1

 ∑
P=x,y,z

 Re
{(

Ewa f er
p

)
�

(
D1 ⊗Υ

xs ys
P

)∗}
+Im

{(
Ewa f er

p

)
�

(
D2 ⊗Υ

xs ys
P

)∗} 
21N×1, (A11)

where 1N×1 is the one-valued vector.
Similarly, according to Equations (A5) and (A9), the gradient of Yi to the mask parameters Ωxs ys

M
can be formulated as

∂Yi
∂Ωkl

M
= ∂Yi

∂mkl

∂mkl
∂Ωkl

M

=
∑
mn

−2 sin Ωkl
M

Jsum
×

∑
xs

∑
ys

Jxs,ys
∑

p=x,y,z
{Xmn[

Re
{(

D1 ⊗Υ
xs ys
p

)∗
hxs ys

p,m−k,n−lb
xs ys
kl +

(
hxs ys

1p,m−k,n−lb
xs ys
kl

)∗(
Υ

xs ys
p ⊗Θde f ocus

)}
+

Im
{(

D2 ⊗Υ
xs ys
p

)∗
hxs ys

p,m−k,n−lb
xs ys
kl +

(
hxs ys

2p,m−k,n−lb
xs ys
kl

)∗(
Υ

xs ys
p ⊗Θde f ocus

)}]}
,

(A12)

Thus, simplify the matrix to form

∇MYi =
−2 sin ΩM

Jsum
�

∑
xs

∑
ys

Jxs,ys
∑

p=x,y,z

(
Re

{[(
X �

(
D1 ⊗Υ

xs ys
p

)∗)
⊗ hxs,ys

◦

p

]
� Bxs,ys

+
[(

X � Ewa f er
p

)
⊗ hxs,ys∗

◦

1p

]
� Bxs,ys∗

}
+ Im

{[(
X �

(
D2 ⊗Υ

xs ys
p

)∗)
⊗ hxs,ys

◦

p

]
� Bxs,ys

+
[(

X � Ewa f er
p

)
⊗ hxs,ys∗

◦

2p

]
� Bxs,ys∗

})
,

(A13)

where o rotates the matrix in the argument by 180◦, and * is the conjugate operator, respectively.
For brevity in the description, we simplified the above terms hxs ys

p , hxs ys
1p , hxs ys

2p , X, and can be expanded

hxs ys
p = Hxs ys

p ⊗Θde f ocus, (A14)

hxs ys
1p = Hxs ys

p ⊗D1, (A15)

hxs ys
2p = Hxs ys

p ⊗D2, (A16)

X =
∑

rs
Drs

1 Re{Φ}+ Drs
2 Im{Φ}, (A17)

Appendix C

Discretize the fidelity part F in each defocus disturbance. Actually, each gradient of fidelity part Fi
has already been derived in our previous work [16], the gradient of Fi to the source parameters Ωxs ys

J is

∂Fi
∂Ωxs ys

J
= ∂Fi

∂Zmn

∂Zmn
∂Jxs ,ys

∂Jxs ,ys

∂Ωxs ys
J

=
a sin Ωxs ys

J
Jsum

N∑
n=1

M∑
m=1

(
Z̃mn −Zmn

)
(1−Zmn)Zmn ×

∑
p=x,y,z

∣∣∣∣∣∣ N∑
r=1

M∑
s=1

Υ
xs ys
P,m−r,n−sΘ

rs
de f ocus

∣∣∣∣∣∣2,
(A18)
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Thus, simplify the matrix to form

∇JFi =
a sin ΩJ

Jsum
� 1T

N×1

[ ∑
p=x,y,z

‖Ewa f er
p ‖

2
�

(
Z̃−Z

)
Fi

�Z� (1−Z)]1N×1,
(A19)

Likewise, the gradient of Fi to the mask parameters Ωxs ys
M is

∇MFi =
2a sin ΩM

Jsum
�

∑
xs

∑
ys

Jxs,ys
∑

p=x,y,z
Re

{
Bxs ys∗ �

[
hxs ys∗

p ⊗Λp
]}, (A20)

where Λp = Ewa f er
p �

(
Z̃−Z

)
�Z� (1−Z).
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