
Citation: Wang, H.; Li, H.; Fan, P.;

Kang, J.; Deng, S.; Zhu, X. PnV: An

Efficient Parallel Consensus Protocol

Integrating Proof and Voting. Appl.

Sci. 2024, 14, 3510. https://doi.org/

10.3390/app14083510

Academic Editors: George Drosatos,

Konstantinos Rantos and

Konstantinos Demertzis

Received: 26 February 2024

Revised: 9 April 2024

Accepted: 17 April 2024

Published: 22 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

PnV: An Efficient Parallel Consensus Protocol Integrating Proof
and Voting
Han Wang 1,2 , Hui Li 1,2,*, Ping Fan 3, Jian Kang 3, Selwyn Deng 3 and Xiang Zhu 3

1 School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School,
Shenzhen 518055, China; wanghan2017@pku.edu.cn

2 Pengcheng Laboratory, Shenzhen 518000, China
3 China United Network Communication Group Co., Ltd., Beijing 100140, China;

pingfan@chinaunicom.cn (P.F.); 18679401189@wo.com.cn (J.K.); ho-selwyndeng@chinaunicom.cn (S.D.);
zhuxiang@chinaunicom.cn (X.Z.)

* Correspondence: lih64@pkusz.edu.cn

Abstract: Consensus protocols, as crucial components of blockchain technology, play a vital role
in ensuring data consistency among distributed nodes. However, the existing voting-based and
proof-based consensus protocols encounter scalability issues within the blockchain system. Moreover,
most consensus protocols are serialized, which further limits their scalability potential. To address
this limitation, parallelization methods have been employed in both types of consensus protocols.
Surprisingly, however, novel fusion consensus protocols demonstrate superior scalability compared
with these two types but lack the utilization of parallelization techniques. In this paper, we present
PnV, an efficient parallel fusion protocol integrating proof-based and voting-based consensus features.
It enhances the data structure, consensus process, transaction allocation, and timeout handling
mechanisms to enable concurrent block generation by multiple nodes within a consensus round.
Experimental results demonstrate that PnV exhibits superior efficiency, excellent scalability, and
acceptable delay compared with Proof of Vote (PoV) and BFT-SMART. Moreover, at the system level,
the performance of the PnV-based blockchain system optimally surpasses that of the FISCO BCOS
platform. Our proposed protocol contributes to advancing blockchain technology by providing a
more efficient and practical solution for achieving decentralized consensus in distributed systems.

Keywords: consortium blockchain; consensus protocol; parallelization

1. Introduction

Blockchain, also referred to as distributed ledger technology, emerged from the cryp-
tocurrency system known as Bitcoin [1]. The ledger is collectively maintained by multiple
parties and enables consistent, immutable, and traceable data storage. In recent years,
owing to the rapid advancement of blockchain technology, its application has extended
to various domains, such as finance [2], education [3], healthcare [4], and logistics [5],
among others.

Blockchains achieve state consistency among distributed nodes through consensus
protocols, which can be traced back to the Byzantine generals problem [6]. Consensus
protocols in blockchain address Byzantine failures in two ways, where one is based on
voting, exemplified by Practical Byzantine Fault Tolerance (PBFT) [7] and BFT-SMART [8].
Voting-based consensus protocols rely on message interaction among nodes, ensuring that
each consensus round generates a single block without forks, thus demonstrating strong
consistency. The other approach is based on proof mechanisms such as Proof of Work
(PoW) [1] and Proof of Stake (PoS) [9]. Notably, these proof-based consensus protocols
possess an inherent potential for generating divergent blocks for individual nodes when
considering identical preceding blocks [10]. However, these conflicting blocks are subse-
quently reconciled by using specific resolution techniques to ensure final consistency [11].

Appl. Sci. 2024, 14, 3510. https://doi.org/10.3390/app14083510 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14083510
https://doi.org/10.3390/app14083510
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2654-2831
https://doi.org/10.3390/app14083510
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14083510?type=check_update&version=2

Appl. Sci. 2024, 14, 3510 2 of 16

As mentioned earlier, the performance bottlenecks of consensus protocols based on
voting and proof are primarily attributed to the limitations in communication resources
and computational capabilities of nodes, respectively. Consequently, each consensus type
possesses its own merits regarding support for node numbers and efficiency. This drives
the emergence of integrating both consensus types to leverage their respective advantages
and achieve extensive scalability. A notable example is Proof of Vote (PoV) [12,13], which is
a robust consensus protocol with high efficiency and strong security features. By combining
voting-based and proof-based characteristics through a delegated mechanism, PoV estab-
lishes committee members as the central cluster responsible for monitoring and verifying
block production via voting. Independence is ensured by an elected bookkeeper team
responsible for block packaging. Only bookkeeper candidates recommended by committee
members and who meet minimum participation and performance standards are eligible.
These standards include depositing funds and subjecting their work to ongoing supervision
and evaluation. This approach aims to select bookkeepers who demonstrate honesty and
reliability over multiple election cycles, thereby guaranteeing the safety and reliability
of team work. In addition, by leveraging implicit two-phase commit, PoV significantly
reduces communication complexity while ensuring fairness within the committee. Other
fusion consensus protocols include HotStuff [14] and Votes-as-a-Proof (VaaP) [15].

The proposal of fusion protocols effectively overcomes performance bottlenecks re-
lated to communication resources and computing power. However, the maintenance of
a single-chain structure presents an additional challenge to blockchain scalability, as it
necessitates the serialization of all concurrent blocks. To alleviate this limitation, an intuitive
approach involves parallelization methods instead of solely relying on a single chain for
achieving superior concurrency [16]. This idea has been implemented in various proof-
based consensus protocols, including parallel-chain structures [17,18] and Directed Acyclic
Graph (DAG)-based structures [19,20]. Additionally, DAG-based consensus protocols such
as DAG-Rider [21], Tusk [22], and Bull-Shark [23] have been proposed as viable scalable
voting-based solutions.

Unfortunately, while fusion consensus protocols have demonstrated greater scalability
compared with other consensus types [24], the incorporation of parallelization approaches
into them has not been thoroughly investigated.

Consequently, this paper aims to present PnV, an efficient parallel fusion protocol
integrating proof-based and voting-based consensus features. It enhances the data structure,
consensus process, transaction allocation, and timeout handling mechanisms to enable
concurrent block generation by multiple nodes within a consensus round. Here, the
letter P carries a dual meaning, i.e., parallelization and proof, whereas V denotes voting.
In our previously published conference version [25], PnV was referred to as PPoV, a
parallelization improvement of the PoV protocol. To enhance its practical functionality, we
additionally incorporate transaction allocation and timeout handling mechanisms in this
paper. Furthermore, we implement the proposed PnV protocol by using Golang [26] and
conduct both theoretical and experimental analyses for comprehensive evaluation.

The main contributions of PnV encompass a novel data structure called block group,
an innovative consensus process featuring parallel bookkeeping. Other crucial mechanisms,
including transaction allocation and timeout handling, further optimize the protocol. These
advancements empower the blockchain to facilitate simultaneous block generation by
multiple nodes within a consensus round, thereby significantly enhancing throughput with
an acceptable level of delay. Experimental results demonstrate that PnV achieves peak
throughput ranging from approximately five times higher than PoV and BFT-SMART in
the best-case scenario. In comparison with FISCO BCOS, a prominent enterprise-level
consortium blockchain platform, the PnV-based blockchain system exhibits an impressive
four-fold performance enhancement.

The remainder of the paper is organized as follows: Section 2 provides an overview
of related work. In Section 3, we establish a preliminary definition for both the node and
data model. The PnV consensus protocol is presented in detail in Section 4, followed

Appl. Sci. 2024, 14, 3510 3 of 16

by theoretical and experimental analyses in Sections 5 and 6, respectively. Finally, our
comprehensive conclusion is drawn in Section 7.

2. Related Work

This section provides a survey of relevant prior art regarding blockchain consensus
protocols. Specifically, Section 2.1 discusses existing blockchain consensus protocols that in-
tegrate voting-based and proof-based approaches, highlighting their scalability limitations.
Section 2.2 then examines existing solutions proposed to enhance blockchain scalability,
including parallelization methods.

2.1. Blockchain Consensus Integrating Voting and Proof

Blockchain consensus protocols can be categorized into voting-based and proof-based
protocols, and their fusion, as shown in Table 1. Strictly speaking, the first and third
types represent advancements over Byzantine Fault Tolerant (BFT) protocols in traditional
distributed theory, although the latter incorporates certain unique features of proof-based
consensus specific to blockchain systems.

Table 1. Categorization of consensus protocols.

Consensus Type Description Protocols

Voting-based

Rely on message interaction
and require each consensus
round to produce a single

block without forks.
Demonstrate strong

consistency.

PBFT, BFT-SMART, Algorand,
DAG-Rider, Tusk, and

Bull-Shark

Proof-based

Possess inherent potential for
generating divergent blocks

but reconcile conflicts through
resolution techniques to

ensure eventual consistency.

PoW, PoS, Monoxide, OHIE,
Conflux, and Phantom

Fusion

Integrate voting-based and
proof-based characteristics to
leverage advantages of both
while addressing individual

limitations.

PoV, HotStuff, VaaP, and PnV
(PPoV)

PBFT [7], as the most renowned BFT protocol, distinguishes between primary and
replica nodes, effectively reducing the algorithmic complexity from exponential to poly-
nomial level. The only primary node confirms and receives client requests, while replicas
confirm the primary node’s and each other’s information to ensure consistency. This ad-
vancement made BFT protocols practically applicable. BFT-SMART [8] shares similarities
with PBFT but offers enhanced reliability, modularity, and flexible programming inter-
faces. Due to its separation of tokens and high-speed verification capabilities, PBFT and
its variants have sparked extensive discussions within communities. The consensus delay
achieved is at a second-level magnitude, meeting real-time requirements while ensuring
high-throughput performance. However, it should be noted that the communication cost
scales with O

(
n2), implying that as the number of nodes (n) increases, there will be a

rapid growth in data volume leading to increased network burden. To support large-scale
networks, Algorand [27] employs a delegated mechanism wherein only a subset of nodes
can participate in a Byzantine agreement protocol called BA⋆ [28,29] for a transaction set
during a consensus round. Specifically, it utilizes a verifiable random function to enable
users to privately and demonstrably ascertain their successful election for the subsequent
consensus round.

In order to enhance blockchain scalability, researchers have proposed incorporating
proof-based consensus into voting-based consensus. The first fusion consensus protocol,

Appl. Sci. 2024, 14, 3510 4 of 16

known as PoV [12], adopts a delegated approach by assigning voting rights and bookkeep-
ing rights to voters and bookkeepers, respectively. Blocks are produced by bookkeepers and
determined based on the proofs derived from voting results among voters. PoV exhibits
linear communication complexity with O(3n). HotStuff [14] extends PBFT’s two phases to
three phases while utilizing threshold signatures to reduce proof data and enable pipelined
consensus process for improved throughput. Additionally, Sync HotStuff [30] presents
a simplified and intuitive synchronous version featuring a two-phase vote. However,
in scenarios involving multiple bookkeepers, these fusion protocols still face challenges
where non-leader bookkeepers remain idle, thereby impacting the complete resolution of
scalability issues.

2.2. Blockchain Scalability Solution

Currently, the utilization of a single-chain structure in most consensus protocols results
in a sequential block generation process, thereby constraining the throughput of blockchain
systems. To address this scalability issue and alleviate the limitations imposed by serialized
writing on a single chain, parallelization emerges as an effective approach.

It is a widely accepted notion to enable nodes to concurrently extend parallel chains
in order to enhance the throughput of the blockchain. In terms of proof-based consensus,
OHIE [18] serves as an example for parallel-chain schemes. It adopts a k-chain structure
comprising k parallel instances, each implementing a PoW consensus protocol. To establish
the serialization of blocks across these k chains, an additional tuple (rank, next_rank) is
included within each block. The blocks are then sorted based on ascending rank values.
Monoxide [17] divides workload encompassing communication, computing, and storage
into multiple independent and parallel consensus zones, with one blockchain dedicated
to each zone. On the other hand, in voting-based consensus mechanisms like VaaP [15], a
parallel chain operates on every node, aiming at improving scalability.

The scalability solution for blockchain extends beyond parallel chains to include a
DAG. Unlike parallel-chain protocols that have multiple independent genesis blocks during
initialization, DAG-based protocols only have one genesis block. Here, a genesis block
means the initial founding block of a chain. These consensus protocols transform the ledger
from a single chain into a DAG structure, enabling high concurrency support [31]. An
example of proof-based consensus is GHOST [32], which treats the candidate block set and
its reference relationship as a tree and selects the maximum weight subtree as the final
main chain. Building upon GHOST, Conflux [19] enhances throughput and transaction
confirmation speed by incorporating block references and explicit sequencing rules in its
design. In the context of voting-based consensus, DAG-Rider [21] is an asynchronous BFT
protocol that comprises two layers: a round-based structured DAG for reliable message
dissemination and a zero-overhead consensus protocol that enables nodes to independently
determine a total order of messages to commit without incurring additional communica-
tion overhead. Tusk [22] represents an enhanced version of DAG-Rider, which reduces
block generation round delays under normal circumstances. The synchronous variant
of Bullshark [23], built on top of Tusk, further minimizes latency while being easier to
implement. Meanwhile, the asynchronous edition of Bullshark incorporates fallback voting
mechanisms that endow it with comparable low-latency performance as its synchronous
counterpart in regular scenarios.

However, regardless of the parallelization method employed in a consensus protocol,
it often exhibits high latency due to the waiting time before a block is committed.

3. Node and Data Model

PnV is a consensus protocol specifically designed for consortium blockchains. This
protocol effectively classifies network nodes into five distinct roles, thereby segregating
bookkeeping rights from voting rights in an efficient manner. More precisely, designated
bookkeepers possess exclusive privileges to generate blocks while ensuring that each

Appl. Sci. 2024, 14, 3510 5 of 16

block undergoes meticulous verification by voters before its ultimate commitment in the
blockchain.

3.1. Role Model

PnV defines five distinct roles for nodes within the blockchain network: voter, book-
keeper, bookkeeper candidate, leader, and user. Let Nv represent the number of vot-
ers, Nb denote the number of bookkeepers, Nbc signify the number of bookkeeper candi-
dates, Nu indicate the number of users, and Nall represent the total count of nodes. With
exception of the genesis block group, each subsequent block group is generated by Nb book-
keepers. The term during which a node acts as a bookkeeper is referred to as Tb. At the
conclusion of a term, the next team of bookkeepers is elected among the pool of bookkeeper
candidates. Figure 1 illustrates in detail the specific transition relationship between node
roles. All transitions occur through special transactions at any time, which are processed by
a three-phase consensus (Section 4), similar to normal transactions such as account creation
and money transfer. The responsibilities of each role are described below.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 16

3. Node and Data Model
PnV is a consensus protocol specifically designed for consortium blockchains. This

protocol effectively classifies network nodes into five distinct roles, thereby segregating
bookkeeping rights from voting rights in an efficient manner. More precisely, designated
bookkeepers possess exclusive privileges to generate blocks while ensuring that each
block undergoes meticulous verification by voters before its ultimate commitment in the
blockchain.

3.1. Role Model
PnV defines five distinct roles for nodes within the blockchain network: voter,

bookkeeper, bookkeeper candidate, leader, and user. Let 𝑁 represent the number of vot-
ers, 𝑁 denote the number of bookkeepers, 𝑁 signify the number of bookkeeper can-
didates, 𝑁 indicate the number of users, and 𝑁 represent the total count of nodes.
With exception of the genesis block group, each subsequent block group is generated by 𝑁 bookkeepers. The term during which a node acts as a bookkeeper is referred to as 𝑇 .
At the conclusion of a term, the next team of bookkeepers is elected among the pool of
bookkeeper candidates. Figure 1 illustrates in detail the specific transition relationship be-
tween node roles. All transitions occur through special transactions at any time, which are
processed by a three-phase consensus (Section 4), similar to normal transactions such as
account creation and money transfer. The responsibilities of each role are described below.

V oter

Bookkeeper
C andidateU ser

Application

Quit

Election

End of term

Quit

Application

Jo
in

Bookkeeper

Leader

Randomly
selected

Recommendation

Figure 1. Role transition relationships.

Voter: Voters bear the responsibility of network supervision and are required to me-
ticulously verify each block to ensure the accuracy of the transactions contained within.
During a consensus round, each voter casts their vote in favor or against the blocks under
consideration. Only blocks that receive more than two-thirds approval can be deemed le-
gitimate. Furthermore, voters are entrusted with the crucial task of electing bookkeepers
by thoroughly evaluating their performance scores, thereby determining the next set of
bookkeepers once the current term concludes.

Bookkeeper: Bookkeepers are entrusted with the responsibility of conducting
bookkeeping activities within the blockchain system. Similarly to voters, there exist mul-
tiple bookkeepers in the network. The blocks generated collectively by all bookkeepers
during a consensus round constitute a block group. To ensure continuity and efficiency,
the bookkeeper team operates under a tenure system whereby they are required to pro-
duce a number of block groups within their designated term. Specifically, each
bookkeeper gathers relevant transactions from the network and stores them locally in
their pool. Subsequently, when a consensus round commences, every bookkeeper assem-
bles a set of transactions into a block and disseminates it across the network for verifica-
tion purposes.

Bookkeeper candidate: Bookkeeper candidates are not directly involved in the con-
sensus process, but they possess the necessary qualifications to be elected as new
bookkeepers by voters. In order to ensure an adequate number of bookkeepers, it is

Figure 1. Role transition relationships.

Voter: Voters bear the responsibility of network supervision and are required to
meticulously verify each block to ensure the accuracy of the transactions contained within.
During a consensus round, each voter casts their vote in favor or against the blocks under
consideration. Only blocks that receive more than two-thirds approval can be deemed
legitimate. Furthermore, voters are entrusted with the crucial task of electing bookkeepers
by thoroughly evaluating their performance scores, thereby determining the next set of
bookkeepers once the current term concludes.

Bookkeeper: Bookkeepers are entrusted with the responsibility of conducting book-
keeping activities within the blockchain system. Similarly to voters, there exist multiple
bookkeepers in the network. The blocks generated collectively by all bookkeepers dur-
ing a consensus round constitute a block group. To ensure continuity and efficiency, the
bookkeeper team operates under a tenure system whereby they are required to produce a
number of block groups within their designated term. Specifically, each bookkeeper gathers
relevant transactions from the network and stores them locally in their pool. Subsequently,
when a consensus round commences, every bookkeeper assembles a set of transactions
into a block and disseminates it across the network for verification purposes.

Bookkeeper candidate: Bookkeeper candidates are not directly involved in the consen-
sus process, but they possess the necessary qualifications to be elected as new bookkeepers
by voters. In order to ensure an adequate number of bookkeepers, it is imperative that the
number of bookkeeper candidates exceeds or equals that of the existing bookkeepers. Any
node has the right to apply for the role of bookkeeper candidate, and such candidates also
have the freedom to voluntarily relinquish their roles.

Appl. Sci. 2024, 14, 3510 6 of 16

Leader: During the consensus process, a single leader is selected from bookkeepers to
oversee the collection and tallying of block votes generated by voters. Typically, if all blocks
receive more than two-thirds of the votes, the leader generates a block group header and
disseminate it across the network. At the conclusion of each consensus round, a new leader
is randomly chosen based on information contained within the block group header. This
approach ensures fair and impartial leadership selection while maintaining transparency
throughout the voting process.

User: A newly added node initially lacks the authority to actively engage in any
consensus process. However, it can passively receive data from other nodes and publish
transactions. This type of node primarily operates as a user within the system, with its
joining or exiting having no significant impact on the overall network dynamics.

3.2. Data Structure

In classic blockchains, a single block serves as the consensus and storage unit within
each consensus round. These blocks are interconnected through hash values to form a chain,
with each block being assigned a unique height number. To facilitate parallel data consensus
and storage, we introduce the concept of a block group as the unit, as depicted in Figure 2.
Each consensus round generates a distinct block group comprising multiple blocks, along
with a corresponding block group header. The identification of each individual block within
a block group is based on the block group height (i) and block number (j). According to
the distinct transaction functions within block groups, we categorize them into three types:
genesis block group, ordinary block group, and special block group.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 16

imperative that the number of bookkeeper candidates exceeds or equals that of the exist-
ing bookkeepers. Any node has the right to apply for the role of bookkeeper candidate,
and such candidates also have the freedom to voluntarily relinquish their roles.

Leader: During the consensus process, a single leader is selected from bookkeepers
to oversee the collection and tallying of block votes generated by voters. Typically, if all
blocks receive more than two-thirds of the votes, the leader generates a block group
header and disseminate it across the network. At the conclusion of each consensus round,
a new leader is randomly chosen based on information contained within the block group
header. This approach ensures fair and impartial leadership selection while maintaining
transparency throughout the voting process.

User: A newly added node initially lacks the authority to actively engage in any con-
sensus process. However, it can passively receive data from other nodes and publish
transactions. This type of node primarily operates as a user within the system, with its
joining or exiting having no significant impact on the overall network dynamics.

3.2. Data Structure
In classic blockchains, a single block serves as the consensus and storage unit within

each consensus round. These blocks are interconnected through hash values to form a
chain, with each block being assigned a unique height number. To facilitate parallel data
consensus and storage, we introduce the concept of a block group as the unit, as depicted
in Figure 2. Each consensus round generates a distinct block group comprising multiple
blocks, along with a corresponding block group header. The identification of each indi-
vidual block within a block group is based on the block group height (𝑖) and block number
(𝑗). According to the distinct transaction functions within block groups, we categorize
them into three types: genesis block group, ordinary block group, and special block group.

...

...

...

B0

B1

B2

Bw+1

Block Group
Header

Genesis
Block

Ordinary
Block

...

Special
Block

Figure 2. Block group composition.

Genesis block group: Similar to the genesis block in classic blockchains, the genesis
block group serves as the initial block group responsible for ensuring the uniformity of
the initial variables across all nodes. The genesis block group comprises a single block
containing a transaction that typically records the public keys of bookkeepers, bookkeeper
candidates, voters, and the leader in the initial state while also establishing system param-
eters.

Ordinary block group: An ordinary block group comprises a fixed number of blocks
containing ordinary transactions, which is equivalent to the number of bookkeepers. Each
block is generated by a specific bookkeeper, and its block number corresponds to the re-
spective bookkeeper’s number. In other words, an ordinary block group of height 𝑖 can
be represented as in Equation (1), where 𝐻 is the block group header and 𝐵 refers to
an individual block with number 𝑗 ∈ {0,1, 2, … , 𝑁 − 1}, with 𝑁 being the total number
of bookkeepers. 𝐵𝐺 = 𝐻 , 𝐵 , … , 𝐵 . (1)

Special block group: To ensure the robust functioning of the blockchain and facilitate
voter oversight, it is imperative for voters to actively participate in electing the subsequent

Figure 2. Block group composition.

Genesis block group: Similar to the genesis block in classic blockchains, the gen-
esis block group serves as the initial block group responsible for ensuring the unifor-
mity of the initial variables across all nodes. The genesis block group comprises a single
block containing a transaction that typically records the public keys of bookkeepers, book-
keeper candidates, voters, and the leader in the initial state while also establishing system
parameters.

Ordinary block group: An ordinary block group comprises a fixed number of blocks
containing ordinary transactions, which is equivalent to the number of bookkeepers. Each
block is generated by a specific bookkeeper, and its block number corresponds to the
respective bookkeeper’s number. In other words, an ordinary block group of height i can
be represented as in Equation (1), where Hi is the block group header and Bij refers to an
individual block with number j ∈ {0, 1, 2, . . . , Nb − 1}, with Nb being the total number of
bookkeepers.

BGi =
{

Hi, Bi0, . . . , BiNb−1
}

. (1)

Special block group: To ensure the robust functioning of the blockchain and facilitate
voter oversight, it is imperative for voters to actively participate in electing the subsequent
bookkeepers upon the end of the term. The voting result will be securely recorded within
a dedicated transaction embedded in the final block group of that term, referred to as
a special block group. In other words, the special block group BGi = {Hi, Bi0} with
height i encompasses a block group header Hi and a block Bi0.

Appl. Sci. 2024, 14, 3510 7 of 16

In particular, although there is no direct connection among blocks within a given block
group, these groups are interconnected in an organized structure through hash values to en-
sure overall serialization. Apart from including the hash value of the previous block group
header in the newly generated one, each block also necessitates recording the hash value of
its preceding block group header in its own block header. Furthermore, within the block
group header, it is essential to include the leader’s number for the subsequent block group.
It can be obtained randomly by concatenating the hash values of all valid blocks in the
voting results and subsequently applying the modulus with respect to bookkeepers’ count.

4. PnV Consensus Protocol

This section provides a comprehensive elucidation of the three-phase process entailed
in generating append-only block groups within the PnV consensus protocol. With the
exception of the genesis block group, all subsequent block groups necessitate consensus
from both voters and bookkeepers. To enhance consensus speed, Nb bookkeepers engage
in parallel block generation during a consensus round, ultimately amalgamating into a
block group.

4.1. Three-Phase Consensus Process

The consensus process of a block group can be divided into three phases: propose,
vote, and commit, as shown in Figure 3.

1. Propose Phase

Each bookkeeper selects a limited number of transactions from their memory pools
based on the transaction allocation mechanism (Section 4.2) and generates a block. Subse-
quently, bookkeepers disseminate their respective blocks to the network. All nodes within
the network, including users, will receive and store these blocks. The detailed pseudocode
of the propose phase is in Algorithm 1.

Algorithm 1: Propose phase.

1: if do_propose = true do
2: h←getBlockChainHeight() + 1;
3: gen_block_group_num←h%(Bw + 1);
4: if gen_block_group_num = 0 and leader do
5: VoteForNextBookkeepers();
6: end if
7: block←GenerateBlock();
8: Msg_Block←GenerateBlockMsg(block);
9: for node in node_list do
10: SendMessage(node, Msg_Block);
11: end for
12: do_propose = false;
13: end if
14: return

2. Vote Phase

When a voter receives blocks published by bookkeepers, it conducts verification to
ensure the accuracy of transaction contents and key parameters such as block group height,
block number, and signature. Based on the verification results, the voter generates its
vote, VoteTicket, for the blocks and transmits it to the leader. The detailed pseudocode of
the vote phase is in Algorithm 2.

Appl. Sci. 2024, 14, 3510 8 of 16

Algorithm 2: Vote phase.

1: if do_vote = true do
2: received_block_num←getLen(received_block_set);
3: Nw←getBookkeeperAmount();
4: if received_block_num< Nw and Nepoch = 0 do
5: return
6: end if
7: Initial Vote_Ticket to a list with Nw {null, 0} elements;
8: for block in received_block_set do
9: block_num←getBlockNum(block);
10: header←getHeader(block);
11: hash←getHash(block);
12: opnion←VerifiedBlock(block);
13: Vote_Ticket[block_num]←Pair(hash,opinion);
14: end for
15: Msg_Vote←getVoteMsg(Vote_Ticket);
16: node←getLeaderNode();
17: sendMessage(node, Msg_Vote);
18: do_vote = false;
19: end if
20: return

3. Commit Phase

The leader gathers the votes cast by all voters and stores them in VoteList =<
VoteTicket1, VoteTicket2 . . . > . Once all votes are received or a timeout (Section 4.3) occurs,
a voting statistical rule is employed to generate the vote result, denoted as VoteResult.
Subsequently, the vote list and result are encapsulated within the block group header
before being disseminated across the network. The detailed pseudocode of the commit
phase is in Algorithm 3.

Algorithm 3: Commit phase.

1: if do_commit = true do
2: Can_Generated_Result, Result_List←VoteListStatistic(Vote_List);
3: if Can_Generated_Result = false do
4: return
5: end if
6: block_group_header←GenerateBlockGroupHeader(Vote_List, Result_List);
7: Msg_Block_Group_Header←getBlockGroupHeaderMsg(block_group_header);
8: for node in node_list do
9: sendMessage(node, Msg_Block_Group_Header);
10: end for
11: do_commit =false;
12: end if
13: return

Specifically, the voting statistical rule is as follows: The leader generates a final voting
result of length Nb, which corresponds to the number of bookkeepers. This result includes
the hash value of each numbered block and its corresponding approval, objection, or
no-opinion votes denoted by 1, −1, and 0, respectively.

As malicious nodes may distribute different blocks to various voters, it is possible
for a specific block number to have distinct hash values in each vote. Assume that the
vote for block p consists of m diverse hash values, which are sequentially numbered
as {1, 2, 3, . . . , m}. To represent the combination of the i-th hash value and its corresponding
count of votes for approval, objection, and no opinion, we employ a triple (hashi, ai, bi).

Before a timeout occurs, a voter is limited to voting either in favor of or against a block,
and there is no option for abstaining. Therefore, if any of the following conditions is met
with respect to block p, a vote outcome will be generated for it:

Appl. Sci. 2024, 14, 3510 9 of 16

Condition 1. If max
i

bi > Nv/2, block p will be marked as −1 to indicate objection.

Condition 2. If max
i

ai > Nv/2, block p will be marked as 1, indicating approval for generating

the block corresponding to the hash value with the number argmax
i

ai.

Condition 3. If the aforementioned two conditions are not met, block p will be marked as 0,
indicating an inability to generate a valid block.

Condition 4. If a timeout occurs, the leader must gather votes exceeding 2Nv/3 for each block
within the block group and generate statistical results. In this scenario, a block is deemed legal only
if it possesses a hash value that receives more than Nv/3 approval votes.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 16

bookkeepers upon the end of the term. The voting result will be securely recorded within
a dedicated transaction embedded in the final block group of that term, referred to as a
special block group. In other words, the special block group 𝐵𝐺 = {𝐻 , 𝐵 } with height 𝑖
encompasses a block group header 𝐻 and a block 𝐵 .

In particular, although there is no direct connection among blocks within a given
block group, these groups are interconnected in an organized structure through hash val-
ues to ensure overall serialization. Apart from including the hash value of the previous
block group header in the newly generated one, each block also necessitates recording the
hash value of its preceding block group header in its own block header. Furthermore,
within the block group header, it is essential to include the leader’s number for the subse-
quent block group. It can be obtained randomly by concatenating the hash values of all
valid blocks in the voting results and subsequently applying the modulus with respect to
bookkeepers’ count.

4. PnV Consensus Protocol
This section provides a comprehensive elucidation of the three-phase process en-

tailed in generating append-only block groups within the PnV consensus protocol. With
the exception of the genesis block group, all subsequent block groups necessitate consen-
sus from both voters and bookkeepers. To enhance consensus speed, 𝑁 bookkeepers en-
gage in parallel block generation during a consensus round, ultimately amalgamating into
a block group.

4.1. Three-Phase Consensus Process
The consensus process of a block group can be divided into three phases: propose,

vote, and commit, as shown in Figure 3.

Voters of
round r

Bookkeepers
of round r

Leader of
round r

Propose Phase Vote Phase Commit Phase

Figure 3. PnV consensus process in three phases.

1. Propose Phase
Each bookkeeper selects a limited number of transactions from their memory pools

based on the transaction allocation mechanism (Section 4.2) and generates a block. Subse-
quently, bookkeepers disseminate their respective blocks to the network. All nodes within
the network, including users, will receive and store these blocks. The detailed pseudocode
of the propose phase is in Algorithm 1.

Algorithm 1: Propose phase.
1: if do_propose = true do

Figure 3. PnV consensus process in three phases.

4.2. Transaction Allocation Mechanism

In a blockchain network, nodes typically broadcast their transactions to multiple
bookkeepers in order to increase the likelihood of their transactions being included in
a block. Consequently, there tends to be a significant number of identical transactions
present in the pools of different bookkeepers. In our proposed PnV protocol, multiple
bookkeepers simultaneously generate blocks. However, if these transactions are not filtered
properly, it is possible for the same transaction to be stored in multiple blocks within the
same block group.

To address this issue, we introduce a transaction allocation mechanism wherein each
transaction Tx is assigned an identifier j(j = 0, 1, 2, . . . , Nb − 1). The transaction identi-
fier j is computed as

j = Hash(digest(Tx))mod(Nb). (2)

Subsequently, only transactions whose identifiers as calculated in Equation (2) match
a bookkeeper’s identifier are allowed to be included in blocks generated by that book-
keeper. This ensures that there is no intersection between the transactions contained within
different blocks.

In addition to mitigating the issue of duplicate transaction storage, this can signif-
icantly enhance efficiency by constraining transaction packaging. For any user, as all
bookkeepers concurrently generate blocks, there is no necessity to transmit the transac-
tion to every bookkeeper for expediting transaction processing. Furthermore, even if a
transaction is dispatched to another bookkeeper, it will be disregarded.

4.3. Timeout Handling Mechanism

Due to the inherent volatility of real networks and potential machine malfunctions,
the blockchain system may experience stagnation or timeouts. To address this issue, we

Appl. Sci. 2024, 14, 3510 10 of 16

propose a timeout handling mechanism. In order to comprehensively analyze the impact
on the consensus process, we first focus on examining timeout failures related to three key
node roles: voter, bookkeeper, and leader.

1. Voter failure: The determination of the legality or illegality of blocks generated by
bookkeepers relies on the voting process conducted by voters. In case of voter failure,
both positive and negative votes for a block may fall below the threshold, resulting in
an inability to generate statistical results. Consequently, the leader will persistently
await the fulfillment of statistical conditions, while other nodes will also experience
prolonged waiting periods for the block group header.

2. Bookkeeper failure: Given that voters are required to receive all blocks from every
bookkeeper prior to voting, any failure on the part of a bookkeeper will result in
prolonged waiting times for voters as they await the arrival of these blocks.

3. Leader failure: In the event of a leader’s failure, all nodes will enter a state of waiting
for the block group header.

To address the failure of these nodes, we propose a timeout handling mechanism.
Assuming that an epoch represents the smallest unit of a consensus round, denoted by t0 for
its start time and Tcut for its duration, Nepoch signifies the number of epochs elapsed from
time t0 to the current time, t:

Nepoch = (t− t0)%Tcut. (3)

In a consensus round, the termination conditions for achieving consensus are as follows:

Condition 1. Receive the block group header.

Condition 2. Receive all legal blocks passed by voting.

If both conditions cannot be met during an epoch, the consensus process will surpass
the time limit and require timeout handling, which can be classified into two distinct cases.

Case 1. The legal block group header has been received. However, an insufficient number of legal
blocks have been collected.

In Case 1, the generation of the block group header signifies the completion of con-
sensus. The insufficiency in receiving legal blocks could potentially be attributed to net-
work failure. Consequently, it becomes imperative to solicit the missing blocks from
alternative nodes.

Case 2. The legal block group header has not been received.

In Case 2, the absence of block group header generation may be attributed to a
bookkeeper or leader failure. In such circumstances, it is necessary to proceed with the
following steps:

Step 1. All nodes initiate a request to obtain the blockchain height from all voters and
maintain an updated record of each voter’s online status. In the event that there exists a
voter whose blockchain height surpasses that of the local blockchain, a request is made
to acquire block groups from said voter while simultaneously ceasing timeout handling.
Conversely, if no such voter with a higher blockchain height is found, proceed with
Steps 2–4.
Step 2. Promptly execute the voting operation by all voters. In case a block has been
received, proceed with the conventional voting process. Otherwise, assign a value of 0
(indicating no opinion), and set the hash value as nil. Subsequently, transmit the vote to
the leader of the subsequent epoch.
Step 3. Upon receiving more than 2Nv/3 votes, the leader proceeds to tally the votes for
each block within the block group, thereby generating a statistical result. At this juncture,
if a block accumulates over Nv/3 votes for any given hash value, it is deemed a valid
block and assigned a vote result of 1; otherwise, it is classified as an invalid block with a
corresponding vote result of −1.

Appl. Sci. 2024, 14, 3510 11 of 16

Step 4. If Nepoch > 1, indicating multiple occurrences of timeout, it becomes imperative to
replace the leader. Assuming the bookkeeper number prior to this timeout to be denoted
by n, the subsequent leader’s number shall be determined by (n + 1)% Nb.

These steps ensure the eventual generation of a legal block group in a consensus
round. Consequently, the timeout handling mechanism serves as a crucial supplement and
enhancement to the PnV consensus protocol, thereby enhancing robustness and enabling
normal blockchain operation even under abnormal conditions.

5. Theoretical Analysis
5.1. Resistance to Conflict Transactions

Let us consider a conflict transaction problem in the context of parallel and distributed
block generation by multiple bookkeepers in PnV. In this scenario, if there exist conflict
transactions within pools of bookkeepers, it raises the question of whether these conflict
transactions will be stored in separate blocks within the final block group.

Let us suppose that there are two bookkeepers participating in a consensus round,
publishing blocks A and A′, respectively, containing conflicting transactions. As per the
requirement for voters to verify all blocks within this block group height, they can only
vote for one of the blocks while voting against the other. Consequently, if block A receives
more than half of the votes as a valid block, it follows that block A′ will receive less than
half of the votes and thus be deemed invalid. Henceforth, it is impossible for two conflict
transactions to coexist within the same block group.

5.2. Performance Analysis

In terms of efficiency, PnV optimizes block generation through the implementation
of parallel processing, where multiple bookkeepers assume responsibility for producing
blocks simultaneously. This allows transaction processing to occur while awaiting the
block group header, effectively utilizing idle computing resources within each node and
enhancing transaction packaging speed. Consequently, this protocol significantly improves
overall throughput.

On the other hand, in terms of cost, the issue of transaction competition can be
fundamentally resolved due to each bookkeeper solely accepting and packaging a portion
of transactions. Consequently, each transaction only necessitates transmission to a single
bookkeeper, thereby diminishing superfluous communication while also reducing network
bandwidth consumption and node memory resource utilization.

6. Research Method and Experiment

In this section, we implement the proposed PnV protocol in a consortium blockchain
environment by using Golang [26]. We conducted our experiments on four ZTE R8500 G4
servers. Each server was equipped with 128 GB of memory and an Intel(R) Xeon(R) Gold
6248R Processor running at a speed of 2.3 GHz × 96. In order to eliminate any potential
impact from read–write disk operations, each node did not store the block group in the
database. Other parameter settings can be found in Table 2.

Table 2. Configuration of parameters.

Parameter Value

Transaction size 40 Bytes
Block header size 692 Bytes
Vote header size 400 Bytes

Vote size of a block 100 Bytes
Vote result header size 170 Bytes

Vote result size of a block 400 Bytes
Message header size 266 Bytes

Bandwidth 10 Gbps

Appl. Sci. 2024, 14, 3510 12 of 16

6.1. Consensus Throughput and Network Load

First, we set the number of voters to 4 (Nv = 4) to examine the influence of varying the
number of bookkeepers (Nb) and the number of transactions per block (K). By manipulating
both variables, we record the corresponding values for consensus throughput and network
load in each scenario.

The results depicted in Figure 4 demonstrate that the throughput of PnV exhibits
an initial increase followed by a subsequent decrease as the number of bookkeepers in-
creases. Moreover, the throughput experiences varying degrees of enhancement with an
escalation in the number of transactions per block. The peak throughput reaches over
350,000 transactions per second (tx/s). In terms of network load, it is inevitable for commu-
nication data between nodes to augment and consequently lead to an increase in network
load as the number of nodes increases. This can be attributed to the fact that both transmis-
sion time and processing time escalate alongside an increase in transaction volume. When
there are only a few nodes, the rate at which time consumption increases is lower than
that of transactions, resulting in an upward trend for throughput. Conversely, when there
is a large number of nodes, the pace at which time consumption grows surpasses that of
transactions, leading to a downward trend for throughput.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 16

Figure 4. Throughput and network load for PnV consensus protocol (𝑁 = 4).

6.2. Comparison from an Algorithmic Perspective
In this section, we present a comparative analysis of the throughput and delay per-

formance among PnV, PoV, and BFT-SMART [8]. We specifically chose these two proto-
cols, as PoV represents the first fusion consensus approach, while BFT-SMART serves as
a prominent example of voting-based consensus. To ensure comparability with BFT-
SMART, both PnV and PoV were configured with an identical number of voters to
bookkeepers (𝑁 = 𝑁 = 𝑛). The maximum number of transactions per block (𝐾) was set
to 10,000.

The experimental results are illustrated in Figure 5, showcasing the trend of PnV’s
throughput as initially increasing and then decreasing as the number of nodes increases.
In contrast, both PoV and BFT-SMART exhibit a gradual decline in throughput. Notably,
PnV achieves its peak throughput at 𝑛 = 20, which is approximately five times higher
than that of PoV and BFT-SMART. Furthermore, even in the worst-case scenario, PnV’s
throughput remains about twice as high as that of PoV and BFT-SMART. In terms of delay
performance, PnV demonstrates relatively favorable results when fewer nodes are in-
volved. Consequently, compared with PoV and BFT-SMART, PnV exhibits superior effi-
ciency, scalability, and acceptable delay in scenarios with a moderate number of nodes.

Figure 5. Throughput and delay for PnV, PoV, and BFT-SMART (𝐾 = 10,000).

Figure 4. Throughput and network load for PnV consensus protocol (Nv = 4).

6.2. Comparison from an Algorithmic Perspective

In this section, we present a comparative analysis of the throughput and delay perfor-
mance among PnV, PoV, and BFT-SMART [8]. We specifically chose these two protocols,
as PoV represents the first fusion consensus approach, while BFT-SMART serves as a
prominent example of voting-based consensus. To ensure comparability with BFT-SMART,
both PnV and PoV were configured with an identical number of voters to bookkeepers
(Nv = Nb = n). The maximum number of transactions per block (K) was set to 10,000.

The experimental results are illustrated in Figure 5, showcasing the trend of PnV’s
throughput as initially increasing and then decreasing as the number of nodes increases.
In contrast, both PoV and BFT-SMART exhibit a gradual decline in throughput. Notably,
PnV achieves its peak throughput at n = 20, which is approximately five times higher
than that of PoV and BFT-SMART. Furthermore, even in the worst-case scenario, PnV’s
throughput remains about twice as high as that of PoV and BFT-SMART. In terms of delay
performance, PnV demonstrates relatively favorable results when fewer nodes are involved.
Consequently, compared with PoV and BFT-SMART, PnV exhibits superior efficiency,
scalability, and acceptable delay in scenarios with a moderate number of nodes.

Appl. Sci. 2024, 14, 3510 13 of 16

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 16

Figure 4. Throughput and network load for PnV consensus protocol (𝑁 = 4).

6.2. Comparison from an Algorithmic Perspective
In this section, we present a comparative analysis of the throughput and delay per-

formance among PnV, PoV, and BFT-SMART [8]. We specifically chose these two proto-
cols, as PoV represents the first fusion consensus approach, while BFT-SMART serves as
a prominent example of voting-based consensus. To ensure comparability with BFT-
SMART, both PnV and PoV were configured with an identical number of voters to
bookkeepers (𝑁 = 𝑁 = 𝑛). The maximum number of transactions per block (𝐾) was set
to 10,000.

The experimental results are illustrated in Figure 5, showcasing the trend of PnV’s
throughput as initially increasing and then decreasing as the number of nodes increases.
In contrast, both PoV and BFT-SMART exhibit a gradual decline in throughput. Notably,
PnV achieves its peak throughput at 𝑛 = 20, which is approximately five times higher
than that of PoV and BFT-SMART. Furthermore, even in the worst-case scenario, PnV’s
throughput remains about twice as high as that of PoV and BFT-SMART. In terms of delay
performance, PnV demonstrates relatively favorable results when fewer nodes are in-
volved. Consequently, compared with PoV and BFT-SMART, PnV exhibits superior effi-
ciency, scalability, and acceptable delay in scenarios with a moderate number of nodes.

Figure 5. Throughput and delay for PnV, PoV, and BFT-SMART (𝐾 = 10,000). Figure 5. Throughput and delay for PnV, PoV, and BFT-SMART (K = 10, 000).

6.3. Comparison from a Systemic Perspective

In this section, we realize a PnV-based blockchain system that encompasses two
essential functionalities: account creation and money transfer. To evaluate the effectiveness
of our system, we conduct a comparative analysis with FISCO BCOS [33], an enterprise-
level financial consortium blockchain platform. Moreover, to ensure optimal performance,
we configure each block to accommodate 10,000 transactions.

From Figure 6, it is evident that the throughput of both the PnV-based blockchain
system and FISCO BCOS experience a decline with an increase in the number of nodes. No-
tably, when n = 4, both systems exhibit optimal performance; however, PnV outperforms
FISCO BCOS by approximately four times.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 16

6.3. Comparison from a Systemic Perspective
In this section, we realize a PnV-based blockchain system that encompasses two es-

sential functionalities: account creation and money transfer. To evaluate the effectiveness
of our system, we conduct a comparative analysis with FISCO BCOS [33], an enterprise-
level financial consortium blockchain platform. Moreover, to ensure optimal performance,
we configure each block to accommodate 10,000 transactions.

From Figure 6, it is evident that the throughput of both the PnV-based blockchain
system and FISCO BCOS experience a decline with an increase in the number of nodes.
Notably, when 𝑛 = 4, both systems exhibit optimal performance; however, PnV outper-
forms FISCO BCOS by approximately four times.

Figure 6. Throughput for PnV-based blockchain system and FISCO BCOS (𝐾 = 10,000).

7. Conclusions
In this paper, we propose the PnV consensus protocol, which facilitates concurrent

block generation by multiple bookkeepers within a consensus round. Moreover, we adopt
the block group as the fundamental unit of consensus. Blocks lacking logical sequence
relationships are stored in the block group, with their hash value being stored in the block
group header for constructing a serialized, chained structure. Our transaction allocation
mechanism prevents duplicate transactions from being stored within one block group,
while our timeout handling mechanism ensures termination of consensus.

Compared with other voting-based and fusion consensus protocols, PnV exhibits su-
perior performance in efficiency and scalability due to its parallel block generation and
optimized resource utilization. As demonstrated via our experiments, PnV achieves
throughput exceeding 350,000 txs/s, significantly outperforming serial alternatives.

While PnV inherits security, traceability, and assured inviolability properties from
consortium blockchain techniques such as cryptography, hashing, and Byzantine Fault
Tolerance, specialized designs are not proposed in this paper for those aspects. Going for-
ward, future work will involve developing customized solutions within PnV to advance
metrics like robustness, anonymity, and verifiability. Comprehensive testing in real-world
networks will also help validate PnV’s performance for diverse use cases.

Author Contributions: Conceptualization, H.W.; Methodology, H.W.; Software, P.F.; Validation,
X.Z.; Formal analysis, H.W.; Investigation, H.W.; Resources, H.L., P.F., J.K., S.D. and X.Z.; Data cu-
ration, J.K.; Writing—original draft, H.W.; Writing—review & editing, H.L.; Visualization, X.Z.;

Figure 6. Throughput for PnV-based blockchain system and FISCO BCOS (K = 10, 000).

7. Conclusions

In this paper, we propose the PnV consensus protocol, which facilitates concurrent
block generation by multiple bookkeepers within a consensus round. Moreover, we adopt

Appl. Sci. 2024, 14, 3510 14 of 16

the block group as the fundamental unit of consensus. Blocks lacking logical sequence
relationships are stored in the block group, with their hash value being stored in the block
group header for constructing a serialized, chained structure. Our transaction allocation
mechanism prevents duplicate transactions from being stored within one block group,
while our timeout handling mechanism ensures termination of consensus.

Compared with other voting-based and fusion consensus protocols, PnV exhibits
superior performance in efficiency and scalability due to its parallel block generation
and optimized resource utilization. As demonstrated via our experiments, PnV achieves
throughput exceeding 350,000 txs/s, significantly outperforming serial alternatives.

While PnV inherits security, traceability, and assured inviolability properties from
consortium blockchain techniques such as cryptography, hashing, and Byzantine Fault
Tolerance, specialized designs are not proposed in this paper for those aspects. Going
forward, future work will involve developing customized solutions within PnV to advance
metrics like robustness, anonymity, and verifiability. Comprehensive testing in real-world
networks will also help validate PnV’s performance for diverse use cases.

Author Contributions: Conceptualization, H.W.; Methodology, H.W.; Software, P.F.; Validation, X.Z.;
Formal analysis, H.W.; Investigation, H.W.; Resources, H.L., P.F., J.K., S.D. and X.Z.; Data curation,
J.K.; Writing—original draft, H.W.; Writing—review & editing, H.L.; Visualization, X.Z.; Supervision,
S.D.; Project administration, H.L.; Funding acquisition, H.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by National Keystone Research and Development Program
of China, grant number 2017YFB0803204; Foshan Innovation Team, grant number 2018IT100082;
Basic Research Enhancement Program of China, grant number 2021-JCJQ-JJ-0483; China Environ-
ment for Network Innovation, grant number GJFGW [2020]386, SZFGW [2019]261; Guangdong
Province Research and Development Key Program, grant number 2019B010137001; Guangdong
Province Basic Research, grant number 2022A1515010836; Shenzhen Research Programs, grants
number JCYJ20220531093206015, JCYJ20210324122013036, and JCYJ20190808155607340; Shenzhen
Fundamental Research Program, grant number GXWD20201231165807007-20200807164903001; ZTE
Funding, grant number 2019ZTE03-01; and Huawei Funding, grant number TC20201222002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: Authors Ping Fan, Jian Kang, Selwyn Deng and Xiang Zhu were employed
by the company China United Network Communication Group Co., Ltd. The remaining authors
declare that the research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

References
1. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 21260, 1–9. Available online:

https://bitcoin.org/bitcoin.pdf (accessed on 9 April 2024). [CrossRef]
2. Ariffin, N.; Ismail, A.Z. The design and implementation of trade finance application based on hyperledger fabric permissioned

blockchain platform. In Proceedings of the 2019 International Seminar on Research of Information Technology and Intelligent
Systems (ISRITI), Yogyakarta, Indonesia, 5–6 December 2019; pp. 488–493.

3. Liyuan, L.; Meng, H.; Yiyun, Z.; Reza, P. Eˆ2 c-chain: A two-stage incentive education employment and skill certification
blockchain. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July
2019; pp. 140–147.

4. Guo, H.; Li, W.; Nejad, M.; Shen, C.C. Access control for electronic health records with hybrid blockchain-edge architecture. In
Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 44–51.

5. Fu, Y.; Zhu, J. Operation mechanisms for intelligent logistics system: A blockchain perspective. IEEE Access 2019, 7, 144202–144213.
[CrossRef]

6. Lamport, L.; Shostak, R.; Pease, M. The byzantine generals problem. ACM Trans. Program. Lang. Syst. 1982, 4, 382–401. [CrossRef]
7. Castro, M.; Liskov, B. Practical byzantine fault tolerance. In Proceedings of the OSDI’99: Proceedings of the Third Symposium on

Operating Systems Design and Implementation, New Orleans, LA, USA, 22–25 February 1999; pp. 173–186.

https://bitcoin.org/bitcoin.pdf
https://doi.org/10.2139/ssrn.3440802
https://doi.org/10.1109/ACCESS.2019.2945078
https://doi.org/10.1145/357172.357176

Appl. Sci. 2024, 14, 3510 15 of 16

8. Bessani, A.; Sousa, J.; Alchieri, E.E.P. State machine replication for the masses with bft-smart. In Proceedings of the 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Atlanta, GA, USA, 23–26 June 2014; pp.
355–362.

9. King, S.; Nadal, S. Ppcoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake. Self-Published Paper, August 2012. Available
online: https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf (accessed on 9 April 2024).

10. Xiao, Y.; Zhang, N.; Lou, W.; Hou, Y.T. Modeling the impact of network connectivity on consensus security of proof-of-work
blockchain. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada,
6–9 July 2020; pp. 1648–1657.

11. Zhang, C.; Wu, C.; Wang, X. Overview of blockchain consensus mechanism. In Proceedings of the 2020 2nd International
Conference on Big Data Engineering, Shanghai, China, 29–31 May 2020; pp. 7–12.

12. Li, K.; Li, H.; Hou, H.; Li, K.; Chen, Y. Proof of vote: A high-performance consensus protocol based on vote mechanism &
consortium blockchain. In Proceedings of the 2017 IEEE 19th International Conference on High Performance Computing and
Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), Bangkok, Thailand, 18–20 December 2017; pp. 466–473.

13. Li, K.; Li, H.; Wang, H.; An, H.; Lu, P.; Yi, P.; Zhu, F. Pov: An efficient voting-based consensus algorithm for consortium
blockchains. Front. Blockchain 2020, 3, 11. Available online: https://www.frontiersin.org/article/10.3389/fbloc.2020.00011
(accessed on 9 April 2024). [CrossRef]

14. Yin, M.; Malkhi, D.; Reiter, M.K.; Gueta, G.G.; Abraham, I. Hotstuff: Bft consensus with linearity and responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, Toronto, ON, Canada, 29 July–2 August 2019;
pp. 347–356.

15. Fu, X.; Wang, H.; Shi, P. Votes-as-a-proof (vaap): Permissioned blockchain consensus protocol made simple. IEEE Trans. Parallel
Distrib. Syst. 2022, 33, 4964–4973. [CrossRef]

16. Xu, J.; Wang, C.; Jia, X. A survey of blockchain consensus protocols. ACM Comput. Surv. 2023, 55, 278. [CrossRef]
17. Wang, J.; Wang, H. Monoxide: Scale out blockchains with asynchronous consensus zones. In Proceedings of the 16th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 19), Boston, MA, USA, 26–28 February 2019; pp. 95–112.
18. Yu, H.; Nikolic, I.; Hou, R.; Saxena, P. Ohie: Blockchain scaling made simple. In Proceedings of the 2020 IEEE Symposium on

Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 90–105.
19. Li, C.; Li, P.; Zhou, D.; Yang, Z.; Wu, M.; Yang, G.; Xu, W.; Long, F.; Yao, A.C.-C. A decentralized blockchain with high throughput

and fast confirmation. In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC 20), Online, 15–17 July
2020; pp. 515–528.

20. Li, X.; Zheng, Y.; Xia, K.; Sun, T.; Beyler, J. Phantom: An efficient privacy protocol using zk-snarks based on smart contracts.
Cryptol. ePrint Arch. 2020, 2020, 156.

21. Keidar, I.; Kokoris-Kogias, E.; Naor, O.; Spiegelman, A. All you need is dag. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, Virtual Event, Italy, 26–30 July 2021; pp. 165–175.

22. Danezis, G.; Kokoris-Kogias, L.; Sonnino, A.; Spiegelman, A. Narwhal and tusk: A dag-based mempool and efficient bft consensus.
In Proceedings of the Seventeenth European Conference on Computer Systems, Rennes, France, 5–8 April 2022; pp. 34–50.

23. Spiegelman, A.; Giridharan, N.; Sonnino, A.; Kokoris-Kogias, L. Bullshark: Dag bft protocols made practical. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, CA, USA, 7–11 November 2022;
pp. 2705–2718.

24. Xie, M.; Liu, J.; Chen, S.; Lin, M. A survey on blockchain consensus mechanism: Research overview, current advances and future
directions. Int. J. Intell. Comput. Cybern. 2023, 16, 314–340. [CrossRef]

25. Bai, Y.; Zhi, Y.; Li, H.; Wang, H.; Lu, P.; Ma, C. On parallel mechanism of consortium blockchain: Take pov as an example. In
Proceedings of the 2021 the 3rd International Conference on Blockchain Technology, Shanghai, China, 26–28 March 2021; pp.
147–154.

26. Min-Group/pnv-Blockchain. Available online: https://github.com/MIN-Group/pnv-blockchain (accessed on 9 April 2024).
27. Gilad, Y.; Hemo, R.; Micali, S.; Vlachos, G.; Zeldovich, N. Algorand: Scaling byzantine agreements for cryptocurrencies. In

Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China, 28–31 October 2017; pp. 51–68.
28. Chen, J.; Micali, S. Algorand. arXiv 2016, arXiv:1607.01341.
29. Micali, S. Fast and furious byzantine agreement. In Proceedings of the Innovations in Theoretical Computer Science (ITCS)

Conference, Berkeley, CA, USA, 9–11 January 2017.
30. Abraham, I.; Malkhi, D.; Nayak, K.; Ren, L.; Yin, M. Sync hotstuff: Simple and practical synchronous state machine replication. In

Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 106–118.
31. Pervez, H.; Muneeb, M.; Irfan, M.U.; Haq, I.U. A comparative analysis of dag-based blockchain architectures. In Proceedings of

the 2018 12th International Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, 19–21 December
2018; pp. 27–34.

https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf
https://www.frontiersin.org/article/10.3389/fbloc.2020.00011
https://doi.org/10.3389/fbloc.2020.00011
https://doi.org/10.1109/TPDS.2022.3211829
https://doi.org/10.1145/3579845
https://doi.org/10.1108/IJICC-05-2022-0126
https://github.com/MIN-Group/pnv-blockchain

Appl. Sci. 2024, 14, 3510 16 of 16

32. Sompolinsky, Y.; Zohar, A. Secure High-Rate Transaction Processing in Bitcoin; Springer: Berlin/Heidelberg, Germany, 2015;
pp. 507–527.

33. Li, H.; Chen, Y.; Shi, X.; Bai, X.; Mo, N.; Li, W.; Guo, R.; Wang, Z.; Sun, Y. Fisco-bcos: An enterprise-grade permissioned blockchain
system with high-performance. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, Denver, CO, USA, 12–17 November 2023; pp. 1–17.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Blockchain Consensus Integrating Voting and Proof
	Blockchain Scalability Solution

	Node and Data Model
	Role Model
	Data Structure

	PnV Consensus Protocol
	Three-Phase Consensus Process
	Transaction Allocation Mechanism
	Timeout Handling Mechanism

	Theoretical Analysis
	Resistance to Conflict Transactions
	Performance Analysis

	Research Method and Experiment
	Consensus Throughput and Network Load
	Comparison from an Algorithmic Perspective
	Comparison from a Systemic Perspective

	Conclusions
	References

