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Abstract: Accurately identifying human key points is crucial for various applications, including
activity recognition, pose estimation, and gait analysis. This study introduces a high-resolution
dataset formed via the VICON motion capture system and three diverse 2D cameras. It facilitates the
training of neural networks to estimate 2D key joint positions from images and videos. The study
involved 25 healthy adults (17 males, 8 females), executing normal gait for 2 to 3 s. The VICON
system captured 3D ground truth data, while the three 2D cameras collected images from different
perspectives (0◦, 45◦, and 135◦). The dataset was used to train the Body Pose Network (BPNET),
a popular neural network model developed by NVIDIA TAO. Additionally, a comparison entails
another BPNET model trained on the COCO 2017 dataset, featuring over 118,000 annotated images.
Notably, the proposed dataset exhibited a higher level of accuracy (14.5%) than COCO 2017, despite
comprising one-fourth of the image count (23,741 annotated image). This substantial reduction in
data size translates to improvements in computational efficiency during model training. Furthermore,
the unique dataset’s emphasis on gait and precise prediction of key joint positions during normal
gait movements distinguish it from existing alternatives. This study has implications ranging from
gait-based person identification, and non-invasive concussion detection through sports temporal
analysis, to pathologic gait pattern identification.

Keywords: human key point identification; high-resolution dataset; VICON motion capture system;
Body Pose Net (BPNET); NVIDIA TAO; COCO2017 dataset; gait recognition; pathologic gait patterns

1. Introduction

The estimation of human poses is a critical task in the field of computer vision, with a
multitude of applications across diverse fields, including healthcare, entertainment, and
robotics [1]. This process involves the analysis of images or videos in order to accurately
determine the positions and orientations of key points or joints within the human body. One
of the most crucial aspects of human pose estimation is the capacity to accurately identify
the key joint positions of the human body during various movements. By monitoring the
locations of these key points over time, researchers can analyze the kinematics of human
movements, including joint angles, joint velocities, accelerations, and trajectories. This can
provide valuable insights into a person’s movement pattern, which can assist clinicians in
diagnosing and treating a variety of musculoskeletal conditions [2]. This analysis yields
valuable information for the study of human motion, with implications for areas such as
sports performance, ergonomics, and rehabilitation. A variety of technologies have been
developed to track human key points during different human movements. Optical motion
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capture systems have emerged as the most popular, precise, reliable, and widely adopted
technology for capturing human movements in clinical settings [3]. This technology is
based on the attachment of reflective markers to the skin, a specialized camera system for
tracking marker movement, and a kinematic model that converts marker positions into
joint positions. However, the process of placing markers on subjects can be both laborious
and time-consuming. Furthermore, the marker-based system requires subjects to operate
within a confined environment, rendering it unsuitable for a multitude of other applications.
In the context of sports applications, alternative systems such as inertial measurement
units (IMUs) offer greater flexibility by not constraining subjects to closed environments.
Nevertheless, the attachment of sensors to the subject’s surface remains a necessary step,
which can be impractical and might not accurately represent natural movement conditions.
Consequently, the limitations of both marker-based and sensor-based technologies hinder
their practicality in clinical and sports settings, as well as in forensic applications such
as person identification, action classification, and anomaly detection in body movements
during rehabilitation.

The current developments in key point identification focus on marker-less and sensor-
less systems, with the objective of overcoming the limitations and challenges associated
with these approaches. These advancements leverage computer vision and machine learn-
ing techniques, specifically deep learning algorithms, to identify key points accurately
and robustly in the human body without the need for physical markers or sensors. These
techniques typically use convolutional neural networks (CNNs) to learn features from
2D images and then predict the positions of body joints and landmarks. This approach
has the potential to outperform traditional methods that rely on handcrafted features and
model-based algorithms [4]. A number of libraries have been developed and proposed
for the task of human pose estimation, including OpenPose [5], Dense Pose [6], Alpha-
Pose [7], HRNet [8], and others. These libraries use deep learning frameworks [9] for
developing, training, and deploying the model for the task. These frameworks provide
ease to researchers trying to validate the estimations and explore the potential of their
applicability in clinical or sports biomechanics. However, the accuracy of such trained
models is limited by the quantity and quality of the data available for training the model.
Only high-resolution and dedicated datasets are useful for developing the desired accurate
inference engine, which can be potentially implemented in biomechanical applications.

Currently, there is a scarcity of dedicated datasets in the existing literature that has
been specifically designed for the purpose of identifying the key joint positions of the
human body during normal gait movements [4]. Therefore, the primary objective of this
research was to address this gap by developing a comprehensive dataset that includes data
from various subjects performing their normal gait. Furthermore, the proposed dataset
was utilized to train a deep learning model, enabling the creation of a 2D estimator that
can infer the 2D key joint positions of a person from the 2D images captured using a
simple camera system. To achieve this objective, we utilized the VICON motion capture
system [10] to collect motion data from a diverse range of subjects in a controlled motion
capture environment while they performed normal gait. The objective of the dataset was to
encompass a wide range of gait motions and to capture the intricate complexities of human
gait in real-world scenarios.

The NVIDIA TAO’s BPNET (Body Pose Network), a deep learning framework specifi-
cally designed for key joint position identification of a person, was utilized as a part of this
research [11]. The selection of the NVIDIA TAO was driven by its extensive adoption and
recognition in the computer vision community. This deep learning toolkit is well-regarded
for its user-friendly interface and capability to facilitate rapid prototyping and deployment
of deep learning models on NVIDIA GPUs [12]. The objective of training the model with
our dataset was to validate the accuracy and robustness of the proposed dataset in identi-
fying the key joint positions during different gait movements. The general workflow and
entities of the proposed dataset have been demonstrated in Figure 1.
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Figure 1. General workflow (the proposed dataset consists of the 2D images captured in different
views and 2D key point position acquired from the transformation of VICON recordings, along with
the segmentations and bounding box discussed in Section 3.1).

To assess the effectiveness of our approach, we conducted a comparative analysis
between the performance of the BPNET trained on our dataset and a model trained on
the widely used COCO 2017 (Common Objects in Context) [13] dataset. The COCO
2017 dataset has been extensively utilized in computer vision research for a variety of
tasks, including object detection, segmentation, and human key feature identification
tasks [5,6,14]. By contrasting the performance of our model with that of the COCO-based
model, we evaluated the advantages and potential enhancements achieved through our
dataset and training methodology.

This paper’s contributions are as follows. Existing datasets for human pose estimation
frequently prioritize quantity over quality. While large-scale datasets, such as COCO
2017, have been instrumental in advancing pose estimation models, their focus on vast
image collections can introduce limitations. These limitations include inconsistencies
in annotation detail and lower image resolution, which can hinder the accuracy of key
point prediction for specific tasks such as gait analysis. Furthermore, existing datasets
may not fully encompass the intricacies of human movement as effectively as dedicated
motion capture systems. This study addresses these limitations by introducing a novel
high-resolution dataset specifically designed for accurate key point identification during
gait analysis. The dataset employs the precision of the VICON motion capture system to
capture detailed three-dimensional ground truth data in conjunction with high-resolution
images from multiple perspectives. This combination offers a more comprehensive and
accurate representation of human movement than is possible with existing datasets.



Appl. Sci. 2024, 14, 4351 4 of 19

2. Related Works

The field of determining human key joint positions has witnessed several notable
trends and advancements. Marker- and sensor-based technologies have been widely used
and established as the primary methods for capturing and analyzing human motion in
fields such as clinical biomechanics, animation, sports, and research [3,15–17].

However, these technologies come with limitations like high operation costs and
maintenance requirements, as well as the need for a controlled environment. In addition,
potential issues like occlusions and drifts can arise from poor marker and sensor place-
ments. These limitations have spurred researchers to develop more cost-effective and
reliable motion capture technologies [18,19]. The advantages, challenges, and limitations of
the marker-based and sensor-based motion capture systems have been discussed in [20].
To overcome these limitations, the latest advancements in the field implement machine
learning and computer vision techniques, particularly deep learning algorithms, to achieve
precise and reliable identification of key points in the human body [21]. This eliminates the
need for the physical placement of markers and sensors and does not require the subject to
be confined in a closed controlled environment.

Deep learning methods are at the forefront of the field of machine learning and have
taken over most industries, including manufacturing [22], finance [23], construction [24,25],
medicine [26], criminology [27], computer vision [28], and more. The application of these
methods for human key point estimation has also been extensively studied in biomedical
and computer-vision-based literature [29,30]. Zheng et al. provides a comprehensive review
of recent deep learning-based solutions for 2D and 3D pose estimation, systematically ana-
lyzing and comparing them based on their input data and inference procedures [4]. These
techniques have shown promising results and are being employed in various biomedical
research studies to assess their clinical viability [31–34]. However, these methods have not
yet been commercialized, and their implementation in human motion analysis continues to
be an active area of research.

Several deep learning frameworks have been developed that provide researchers
with sets of tools, algorithms, and abstractions to simplify the development, training, and
deployment of deep learning models of interest. The current state-of-the-art frameworks
include PyTorch [35], TensorFlow [36], Keras [37], etc. These frameworks can be trained
with different forms of datasets based on the purpose intended for the model. Various
libraries built on these frameworks intended for 2D and 3D human pose estimation have
been proposed in the literature. Openpose, DensePose, Alphapose, and HRNET (High-
Resolution Net) are among the most discussed libraries for the marker-less human pose
estimation system discussed in the literature [5–7,14]. These libraries have been used to
develop the prediction model by utilizing various publicly available datasets.

Various large-scale datasets for training such deep learning models have been pro-
posed and discussed widely in recent years. The state-of-the-art dataset called COCO has
proven to be significant for object detection, segmentation, and captioning tasks [13]. It
has features like object segmentation, context recognition, and super pixel stuff segmen-
tation. With over 330 K images, 1.5 million object instances, and 80 object categories, it
provides a diverse training resource and is utilized to build various popular neural network
models like OpenPose, DensePose, etc. Another popular dataset called MPII Human Pose
Dataset [38] contains around 25,000 images of people in various everyday activities. It
includes detailed annotations for body joint positions. Similarly, Human3.6m [39] stands as
a widely used benchmark dataset for 3D human pose estimation in recent years. It provides
accurate 3D joint positions for multiple subjects performing various activities. It includes
synchronized video and motion capture data, enabling accurate ground truth annotations
for human key point positions.

Another noteworthy dataset in the current literature that is specifically designed
for human gait movements includes HumanEva [40], Gait3D [41], and CASIA [42]. Hu-
manEva [40] consists of synchronized grayscale and color video sequences with corre-
sponding 3D body poses captured from a motion capture system, featuring four subjects
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performing six common actions, accompanied by error metrics for evaluating 2D and 3D
pose accuracy, as well as separate training, validation, and testing sets. Gait3D comprises
4000 individuals and encompasses over 25,000 sequences obtained from 39 cameras cap-
turing an unconstrained indoor environment [41]. CASIA, a collection of subsets, notably
CASIA-A and CASIA-B, offers gait data from diverse walking scenarios and viewpoints [42].
It includes RGB videos and depth maps, providing visual and depth information for gait
analysis. These extensive datasets have sparked significant advancements in 2D pose
estimation, resulting in modern motion capture techniques achieving an average error of
approximately 20 mm per joint [43].

However, many of these datasets consist of recordings of random images of human
actions and may not accurately represent normal human gait. These factors can impact the
accuracy of gait recognition models, highlighting the need for improvement in practical
applications. Gait-specific datasets like GAIT3D and CASIA, although valuable, still
leave room for enhancing the performance of trained frameworks. In a study by Zheng
et al. [4], various deep learning models trained with these datasets were explored and
discussed in detail. The study compiled several dedicated articles and summarized current
advancements in deep learning-based 2D and 3D human pose estimation and concluded
that the field suffers limitations of the dedicated database involving complex human
movements. Therefore, there is a need to address this gap by developing a comprehensive
dataset that includes high-resolution data from various subjects performing their normal
gait. Thus, the current study provides a comprehensive high-resolution dataset that was
specially prepared for gait analysis using high-resolution data captured using the VICON
motion capture system. This proposed dataset can be used to train different deep-learning
models for creating a 2D estimator capable of efficiently predicting the 2D key joint position
of the person from 2D images.

Furthermore, it is also equally important to consider the choice of deep learning
platforms for training the model with the dataset, as well as for model inference and
deployment. The selection of the appropriate deep learning platform plays a crucial role
in the success of biomedical research applications. These platforms provide flexibility to
be fine-tuned with custom datasets to improve accuracy and adapt to specific domains or
enhance performance. The results achieved by testing various deep learning models such
as OpenPose, MediaPipe, AlphaPose, and HRNet trained with different state-of-the-art
datasets have been widely discussed in the literature [5,13,20,34,41,42].

Recently, a study by W. Liu, et al. [44] has shown the mainstream and milestone ap-
proaches for these human body presentations since the year 2014 under unified frameworks.
In particular, it provides insightful analyses for the intrinsic connections and methods evo-
lution from 2D to 3D pose estimation and analyze the solutions for challenging cases,
such as the lack of data, the inherent ambiguity between 2D and 3D, and the complex
multi-person scenarios. Next, it summarizes the benchmarks, evaluation metrics, and the
quantitative performance of popular approaches. Finally, it discusses the challenges and
provides the deep thinking of promising directions for future research. We believe this
survey will provide the readers (researchers, engineers, developers, etc.) with a deep and
insightful understanding of monocular human pose estimation.

One notable framework for refining key point detection is BPNET [11], developed
by NVIDIA TAO. Nvidia TAO (Train, Adapt, Optimize) is a platform for developing
and deploying custom artificial intelligence (AI) models in various domains, including
healthcare, retail, manufacturing, and robotics. It provides a suite of tools and libraries for
end-to-end AI development, from data preparation and model training to deployment and
inference. However, despite its popularity, there has been limited research on the potential
of NVIDIA TAO for 2D and 3D human pose estimation and its application in identifying
human key points and features and subsequent analysis. Furthermore, no evident literature
can be found that tested or validated the NVIDIA TAO’s BPNET model. In this study, the
proposed dataset was implemented to train BPNET for the creation of the 2D inference
engine capable to predicting the key joint positions of the person from the 2D images.
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BPNET trained with the proposed dataset was then compared with another BPNET model
that was trained using the COCO 2017 dataset for comparing the inference accuracy of the
proposed dataset.

3. Material and Methods
3.1. Acquisition of 3D Joint Positions

The VICON motion capture system (Nexus 2.14, Vicon Motion Systems Ltd., Oxford,
UK) [10] equipped with 16 high-speed, high-resolution cameras was used to acquire the
key joint positions of all the participants performing normal gait. A total of forty-eight
standard 14 mm reflective markers were placed and secured for all anatomical landmarks
provided in the guidelines of the Plug-in Gait (PIG) Full body model [45] in the VICON
system. A three-dimensional trajectory of major joint positions including (left and right)
L/R ankles, L/R knees, L/R hips, L/R shoulders, L/R elbows, L/R wrists, L/R shoulders,
and head was recorded and used for preparation of the dataset. Due to the limitation of the
PIG full body model, the position of the L/R eye, L/R ear, and nose was kept the same as
the center of mass of head positions.

Furthermore, the 3D trajectories obtained from Nexus 2.14, recorded at a sampling
frequency of 120 Hz, were downsampled to 60 Hz to match the frequency of the 2D
camera system. A MATLAB R2023a (MathWorks, Natick, MA, USA) spline interpolation
function [46] was implemented for this task to match the frame capture rate of 2D cameras
used in conjunction with the VICON motion capture system at 60 Hz.

3.2. Acquisition of 2D Images

Three different 2D cameras (C922 Pro HD Stream Webcams, San Jose, CA, USA) were
positioned at angles of 0, 45, and 135 degrees with respect to the subjects performing the
gait. These three camera systems were first calibrated and synchronized with the VICON
motion capture system before the recordings were captured. The detailed process of time-
synchronization and calibration is discussed in Section 3.3. Three different camera systems
recorded 2D video simultaneously at 60 Hz for every trial. The images were retrieved from
the recorded videos for dataset preparation.

3.3. Time-Synchronization and Camera Calibration

Accurately projecting the 3D ground truth trajectories obtained from the VICON mo-
tion capture system into the simultaneously captured 2D images was a crucial requirement
for this study. This task involved addressing two major challenges. The first challenge
was synchronizing the images from the camera system with the VICON motion capture
system. Open Broadcaster Software (OBS version 29.0.2) [47], an open-source software,
was employed to synchronize the three differently oriented 2D cameras. OBS allowed
for the simultaneous recording of multiple cameras using a single system, minimizing, or
eliminating time lapses between different recordings.

To ensure accurate synchronization between OBS and the VICON motion capture
systems, a trigger system was developed using Arduino Uno and VICON Lock Studio in
Python [48]. The VICON Lock Studio, an integrated hardware for synchronizing analog or
digital devices, delivered a digital signal as soon as the VICON system started recording.
Arduino Uno detected this signal and triggered the hotkeys to initiate the OBS recordings.
To further ensure precise synchronization, the code recorded the time stamp simultaneously
for both the VICON motion capture system and the 2D camera recordings. A schematic of
the trigger system is presented in Figure 2.
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The second challenge involved formulating an accurate transformation matrix for
converting 3D coordinates to 2D projection values. The calibration method suggested
by Zhang [49] was employed to calculate the required transformation matrix for each
respective synchronized 2D image. An 800 × 600 mm checkerboard (11 columns, 8 rows
spaced at 60 mm) was used during the calibration process. The 2D projection for all images
was determined by the following Equation (1):

s

u
v
1

=
 f x 0 cx

0 f y cy
0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz




Xw
Yw
Zw
1

 (1)

In the equation, (u, v) represents the projected points, (Xw, Yw, Zw) represents the
3D ground truth data from the VICON system, and s represents the scaling factor of the
captured images. The first part of the transformation matrix comprising fx, fy, cx, and cy
formulates the camera intrinsic matrix and denotes horizontal and vertical focal lengths
and camera principal point coordinates, respectively. The second part of the equation
comprised rij, and t formulates the camera extrinsic matrix. These parameters denoted the
relative rotation and translation of the images with respect to the desired global origin.

To acquire the desired calibration matrix, 50–100 images were captured in different
orientations and positions from all the synchronized three differently oriented (0, 45, and
135 degrees) 2D cameras and one additional camera centered at the global origin of the
VICON motion capture system. These images were then optimized to obtain proper
intrinsic and extrinsic matrices for 2D transformation. The optimization was carried out
using the software Calib.io (version v1.6.2a. Calib.io ApS, Svendborg, Denmark) [50].

3.4. Model Training

BPNET, part of the TAO (Train, Adapt and Optimize) Toolkit by NVIDIA, was trained
using the proposed dataset. BPNET, pre-trained on large-scale datasets, enables the model
to capture general representations of a human pose from a vast amount of data, reducing the
need to start training from scratch. Although it is unclear whether the network architecture
(including the number of layers) is publicly available, it provided a strong foundation
for further fine-tuning and adaptation to specific datasets or domains, saving time and
computational resources. The images and the respective 2D projections of the key joint
positions were used to train the images, and the new set of images and their respective
projections were used for the validation of the trained model. Therefore, for the proposed
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dataset, we used 23,741 as training images and 2224 as validation images, while for the
commonly used dataset—the Common Objects in Context (COCO) 2017, COCO dataset—
we used 118,287 as training images and 5012 as validation images, which included 80 object
categories of everyday settings such as people, animals, furniture, etc. [13]. The proposed
dataset consisted of approximately 24,000 images obtained from subjects’ normal walking
data. We excluded several images with occlusions for different key positions from the data
analysis. The training was accomplished using NVIDIA TAO Toolkit v. 4.0 with RTX A6000
GPU (NVIDIA, Santa Clara, CA, USA).

3.5. Model Evaluation and Performance Metric

Two trained models were compared based on the model evaluation and mean per
joint position error (MPJPE) values for their quantitative analysis. The model evaluation
results were based on the inference results from the selected validation results. TensorRT
(tensor runtime), a deep learning inference optimizer and runtime library developed by
the NVIDIA engine, was used to acquire the optimized inference results. It helped in
optimizing the inference process by applying various techniques such as layer fusion,
precision calibration, and kernel autotuning, resulting in reduced memory consumption,
increased throughput, and minimized latency during the inference [12]. The evaluation
results were compared based on average precision computed over the different thresholds
of IoU (intersection over union). These metrics are defined as

• Intersection over union (IOU): values range from 0 to 1, where a value of 1 indicates a
perfect match between the predicted and ground truth bounding boxes, while a value
of 0 indicates no overlap at all.

• Precision: measures the proportion of true positive detections out of all positive
predictions made by the system.

• Recall: measures the proportion of true positive detections out of all relevant items
present in the dataset.

Furthermore, mean per joint position error (MPJPE) values were computed for both
models based on the inference results for the test data sample. The mean per joint position
error (MPJPE) was calculated by using the formula [29].

EMPJPE ( f , S) =
1

Ns∑Ns
i=1 ||m

( f )
f , S(

i)− m ( f )
gt, S(

i)|| (2)

where Ns is the number of joints in skeleton S, mf,s is the ground truth position of the ith
joint, and mgt,s represent the estimated position of joint i. The inference results from the
model trained with the proposed dataset were then validated for its accuracy by comparing
with the results from the model trained with the COCO 2017 dataset. Two different trained
models shown in Section 3.4 were tested with the approximately 2510 number of images to
compute MPJPE that was selected from three subjects’ data for both two models.

4. Experiment
4.1. Participants

The experiment involved the participation of 25 healthy individuals, comprising
17 males and 8 females. All participants fell within the age range of 20 to 30 years and pro-
vided written informed consent before the study commenced. The experimental protocol
was approved by both the Institutional Review Board (IRB) and the university’s Graduate
Committee, ensuring adherence to ethical guidelines and research standards.

4.2. Data Collection

Prior to each trial, meticulous calibration and time synchronization of the three 2D
cameras and the VICON motion capture system were carried out. This calibration process
aimed to obtain an accurate transformation matrix, aligning the VICON coordinate system
with the camera coordinate system. The detailed process of camera calibration and time
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synchronization was discussed in Section 3.3. The images of the checkerboard were then
used to acquire the optimized camera calibration matrix using Calib.io. The general
workflow and experiment setup for the data collection process are demonstrated in Figure 3.
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(c) 2D ground truth data from VICON system; (d) BPNET is trained with the collected data; and
(e) BP inference outputs with 2D joint positions in 2D images.

The actual data collection process began after the completion and verification of
the camera calibration process. Every experiment started with a collection of detailed
information regarding general anatomical features such as age, body mass, height, and leg
length, recorded for each participant, followed by the strategical placement of markers on
all anatomical landmarks following the guidelines provided by the PIG full body model
within the VICON system. These markers served as reference points for capturing precise
movement and positioning data during the experiment.

Once the preparation phase was complete, the participants were instructed to walk at
their usual speed within the designated workspace of the VICON system. Each participant
performed five distinct trials, with each trial lasting between 2 to 3 s. As a result, a
vast collection of 23,741 different view images was acquired throughout the experiment.
To ensure an unbiased and random distribution of data, a subset of 2224 images was
randomly selected for the purpose of model validation. This validation subset served as
an independent evaluation set, enabling the assessment of the model’s performance on
unseen data, as well as validating its ability to generalize effectively.
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4.3. Dataset Preparation and Model Training

The projections of 2D key joint positions were computed and collected systematically
alongside their corresponding 2D images using the optimized calibration matrix discussed
in Section 3.3. In addition to the key joint positions, to train the BPNET, a segmentation and
boundary box were required as essential parts of the dataset. These entities were acquired
by using an open-source application called Pixellib [51], which allowed for the retrieval
of the segmentation and boundary box coordinates from the batched images recorded in
the experiment. A sample of segmentation and boundary boxes obtained from Pixellib is
demonstrated in Figure 4. Following the validation of segmentation and boundary box
from the captured images, coordinates were acquired for every 2D image of the trial.
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Another critical factor to consider within the present data collection methodology was
the utilization of a different camera angle during various trials—specifically, a 135 degree
angle instead of the customary 90 degree angle. This was because the 90 degree view camera
system presented its own set of challenges, particularly in terms of camera calibration.
Subsequently, this calibration difficulty resulted in the unavailability of VICON ground
truth data for the 2D images captured with this camera configuration. Moreover, these
experiments were initiated prior to the currently proposed methodology, which includes
commercialized camera calibration using calib.io and time synchronization, as discussed in
Section 3.3.

To acquire accurate ground truth data for these 2D images, a solution was pursued
through the integration of an open-source code for human pose estimation called MediaPipe
Pose [52]. The coordinates extracted from the MediaPipe Pose framework were utilized as
a substitute for the absent VICON ground truth data, effectively providing an alternative
reference for the 2D images captured under the 135 degree camera angle configuration. This
strategic approach facilitated the continuation of the analysis despite the initial challenges
posed by the camera calibration constraints.
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5. Results

This study utilized three distinct datasets for training, validation, and testing. The
training dataset consisted of 23,741 images for the proposed model, in comparison to
118,287 images from the COCO 2017 dataset. The validation dataset comprised a total of
2224 images across three angles (0, 45, and 135 degrees) for performance evaluation, with
5012 images from the COCO 2017 dataset serving as the comparative evaluation. Finally, in
order to compute the MPJPE for these two models, we acquired the inference results with
the additional trial of three subjects, which corresponded to the 2510 images.

The two trained models, one trained with the proposed dataset and the other trained
with COCO 2017 dataset, were evaluated using the validation datasets that were set aside
during the training of each respective model. The sample inference results from the model
trained with the proposed dataset are depicted in Figure 5.
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Figure 5. Inference results from the BPNET trained with the proposed dataset.

The model trained with the COCO 2017 dataset achieved an average precision (AP)
of 0.547 and an average recall (AR) of 0.471 for all object sizes, as well as IoU (intersection
over union) thresholds between 0.50 and 0.95. This resulting value was significantly lower
than what was achieved with the model trained with the proposed dataset. The second
model trained with a proposed dataset achieved a higher overall AP of 0.565 and AR of
0.617 for all object sizes and IoU thresholds between 0.50 and 0.95.

Furthermore, for individual IoUs at 0.5 and 0.75, the model trained with the proposed
dataset recorded noticeably higher results than the COCO-trained dataset, except for the
AP at the 0.75 IoU threshold, which was slightly higher for the COCO-trained dataset
(0.692) than the proposed dataset (0.617). The evaluation results of two trained models are
depicted in Table 1.
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Table 1. Evaluation results between COCO (5012 images) and the proposed dataset (2224 images).

COCO Dataset Proposed Dataset

IoU (Intersection Over
Union) Threshold Average Precision (AP) Average Recall (AR) Average Precision (AP) Average Recall (AR)

0.5 0.668 0.458 0.873 0.915

0.75 0.413 0.692 0.527 0.582

0.5:0.95 0.547 0.471 0.565 0.617

Secondly, the two trained models were tested using data collected for additional three
subjects performing normal gait inside the VICON workspace. The subjects performed
normal gait for 2~3 s, while the three different views camera recorded images of the subject.
The ground truth data were also simultaneously recorded using the VICON motion capture
system for comparison. The inference results from the model trained with the proposed
dataset are described in Figure 5.

For both the trained models, the Euclidean distance between the estimated joint posi-
tion and the ground truth joint position was computed for twelve major joints, namely, R/L
shoulder, R/L elbow, R/L wrist, R/L hip, R/L knee, and R/L ankle. A joint level MPJPE
was computed by taking the means of the distances across all frames. Any undetected or
falsely detected key joint position due to image quality and occlusions from the camera
view were discarded from the results before computing MPJPE. Consequently, approxi-
mately 2510 images were selected from both datasets for the purpose of computing the
MPJPE as the testing set.

The overall MPJPE values recorded for the COCO trained model were 3.759 mm
(±1.795), while the overall MPJPE values for the proposed dataset were 3.211 mm (±1.730),
as depicted in Figure 6.
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Figure 6. Comparison results for individual joints as MPJPE. Two different models trained with the
proposed dataset (23,741 images) vs. COCO 2017 (118,287 images) were tested with approximately
2510 images for calculating MPJPE. The abbreviations are as follows: L/A: left ankle, L/K: left knee,
L/H: left hip, R/A: right ankle, R/K: right knee, R/H: right hip, L/W: left wrist, L/E: left elbow,
L/S: left shoulder, R/W: right wrist, R/E: right elbow, R/S: right shoulder.
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On an individual joint level, the MPJPE values for the proposed dataset were compar-
atively lower than the COCO dataset, except for the left and right hip, with differences of
0.111 mm and 0.343 mm, respectively. Both models recorded comparatively higher MPJPE
values for upper body joints, with the highest error recorded for the left wrist with a value
of 5.364 mm for the model trained with the COCO dataset and 4.868 mm for the model
trained with the proposed dataset. For lower body joints such as the hip, knee, and ankle,
the proposed dataset was able to achieve an MPJPE value of 3.268 mm (±1.735), which was
lower by 0.265 mm compared to the COCO-trained model. The overall MPJPE value for
the lower and upper body is demonstrated in Table 2.

Table 2. Overall mean per joint position error (MPJPE). Two different models trained with the
proposed dataset (23,741 images) vs. COCO (118,287 images) were tested with approximately
2510 images for calculating MPJPE.

MPJPE (mm)

Dataset Upper Body Lower Body Overall

Proposed Dataset 3.154 ± 1.724 3.268 ± 1.735 3.211 ± 1.730
COCO Dataset 3.985 ± 1.823 3.533 ± 1.766 3.759 ± 1.795

Furthermore, the MPJPE values for images captured in different views were also
computed. The overall MPJPE values for the COCO-trained model were observed as being
higher by approximate values of 0.793 mm, 0.378 mm, and 0.624 mm than the model trained
with the proposed dataset for all 0, 45, and 135 degree views, respectively. However, at the
individual joint level, slightly higher MPJPE values were recorded for the left and right hip
at 45 and 135 degrees, respectively, and for the left knee at 45 degrees. The detailed MPJPE
value recorded is represented in Table 3 and Figure 7a–c.

Table 3. Mean per joint position error (MPJPE) for different camera view images. The MPJPE was
calculated by testing with approximately 2510 images for both models.

MPJPE (mm)

Views Upper Body Lower Body Overall

Proposed
0 3.210 ± 1.910 3.111 ± 1.638 3.160 ± 1.774

45 3.272 ± 1.578 3.457 ± 1.772 3.272 ± 1.578
135 3.211 ± 1.755 3.102 ± 1.584 3.156 ± 1.670

COCO
0 4.046 ± 1.769 3.861 ± 1.828 3.954 ± 1.798

45 3.650 ± 1.722 3.472 ± 1.758 3.457 ± 1.722
135 4.173 ± 1.911 3.387 ± 1.617 3.780 ± 1.764
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Figure 7. (a) Comparison results of MPJPE for different views between the proposed test images
at 0 degrees vs. COCO test images (both approximately, 830 images). (b) Comparison results of
MPJPE for different views between the proposed test images at 45 degrees vs. COCO test images
(both approximately, 830 images). (c) Comparison results of MPJPE for different views between
the proposed test images at 135 degrees vs. COCO test images (both approximately, 830 images).
The abbreviations are as follows: L/A: left ankle, L/K: left knee, L/H: left hip, R/A: right ankle,
R/K: right knee, R/H: right hip, L/W: left wrist, L/E: left elbow, L/S: left shoulder, R/W: right wrist,
R/E: right elbow, R/S: right shoulder.

6. Discussion
High-Resolution Gait Dataset vs. COCO in BPNET Training

This study compares the performance of two BPNET models trained on distinct
datasets: the proposed high-resolution gait dataset and the widely used COCO 2017
dataset. The evaluation focused on the models’ accuracy in identifying key body joint
positions from 2D images. The findings revealed that the model trained on the proposed
dataset consistently achieved superior performance compared to the COCO-trained model.
This was evident in two key metrics, namely, average precision (AP) and average recall
(AR), across various intersection over union (IoU) thresholds. Notably, the proposed
dataset achieved higher AP and AR for most IoU thresholds, signifying its effectiveness
in pinpointing key joint locations. Moreover, the model trained on the proposed dataset
exhibited lower mean per joint position error (MPJPE) values for the majority of test
subjects, further substantiating its accuracy.

Upon closer examination of the MPJPE results, however, it became evident that
there were slightly higher error values for specific joints (left/right hips and left knee) at
particular camera angles (45 and 135 degrees). These elevated error rates can be attributed to
occlusions caused by the camera positioning at those angles. This observation highlights the
necessity for further improvement in the model’s and dataset’s ability to handle occlusions
effectively.
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The proposed dataset demonstrably outperformed the COCO dataset despite having
only a quarter of the image count. This highlights the significance of our research, as a
gait-focused dataset leads to substantial reductions in computational cost and training time.
The superiority of the proposed dataset stems from several factors:

• High-resolution VICON data: The proposed dataset leverages accurate 2D key joint
positions captured using the high-resolution VICON motion capture system. This
stands in stark contrast to the COCO dataset, where key point locations are manually
annotated, potentially leading to lower accuracy.

• Specificity for gait analysis: The proposed dataset focuses on controlled normal
gait patterns, minimizing external factors like occlusions, complex backgrounds, and
lighting variations prevalent in COCO. The controlled environment allows for a more
precise evaluation of BPNET, resulting in superior accuracy.

• Alignment with study objectives: The proposed dataset is specifically tailored to
capture human motion and gait, aligning directly with the study’s objectives of human
key point identification. In contrast, the diverse object categories and poses in COCO
make it less suitable for our specific research focus.

However, it is important to recognize the constraints inherent to the proposed dataset.
The dataset was primarily designed for normal gait motions and may not perform optimally
for other random and rapid human movements. Furthermore, the dataset’s recordings
are confined to controlled laboratory environments, which may result in the observed
results being sensitive to occlusions encountered in real-world settings. It is therefore
recommended that these limitations be taken into account when applying the dataset to
scenarios involving non-standard gait movements or settings with significant occlusions.

It is also important to note that the current dataset consists of two-dimensional images
and lacks actual ground truth data from the VICON motion capture system. To address this,
MediaPipe Pose was employed, as discussed in Section 4.3, in an attempt to compensate
for the lack of ground truth data. It is important to note that the absence of ground
truth data might have influenced the results. The dataset obtained through the current
methodology has the potential to enhance the accuracy of the model in future training and
model development.

7. Conclusions

This study presents a novel dataset for human gait analysis, meticulously gener-
ated using the VICON motion capture system. The dataset’s accuracy in capturing key
joint positions during various gait movements unlocks valuable contributions in human
pose estimation.

This research has significant implications for various domains. It offers a powerful
tool for biomechanics research, enabling more detailed analyses of human movement and
potentially informing advancements in areas like rehabilitation and prosthetics design.
Furthermore, the capacity to accurately identify key points during gait paves the way for
the exploitation of human biometrics for identification purposes, with potential applications
in privacy-preserving security measures.

The proposed framework also holds promise for non-invasive concussion detection
in sports by analyzing temporal changes in gait patterns. This could revolutionize athlete
safety protocols. Moreover, the dataset’s ability to capture subtle variations in gait patterns
could be instrumental in identifying pathological gait patterns associated with various
medical conditions, potentially improving patient outcomes.

In essence, this research provides a reliable and diverse dataset, opening the door to
more accurate analyses in gait analysis and related fields. The potential for real-world
applications, such as non-invasive concussion detection and privacy-preserving person
identification, further highlights the significance of this work. This study demonstrates the
power of deep learning frameworks for biomechanics research, paving the way for further
exploration and advancements in the field.
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