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Abstract: With the increase in elevator usage, more and more elevator real-time monitoring equipment
is being applied to the operation of elevators. Traditional elevator monitoring equipment adopts
a multi-sensor decentralized installation and layout, and the monitoring accuracy is low, which
directly affects the effective alarm of the monitoring system; however, existing online monitoring
systems cannot quickly alarm for faults. Aiming to solve the above problems, an elevator online
monitoring system based on narrow-band Internet of Things (NB-IoT) is designed. The system is
highly integrated with an STM32 main control chip, a six-axis acceleration gyroscope sensor, and an
air pressure sensor to realize the edge calculation of the monitoring system. At the same time, this
paper eliminates the temperature drift of the pressure sensor by using a temperature compensation
algorithm and inputs the extracted characteristic parameters into the BP neural network for training
to eliminate the zero drift so as to obtain the real-time height data of the elevator. The six-axis
acceleration gyroscope sensor is used to calculate the posture so as to avoid the problem that a
three-axis acceleration sensor or a three-axis gyroscope sensor alone cannot obtain accurate posture
data. In order to further improve the monitoring accuracy, the peak-to-peak value of the signal
is calculated by using a 95% confidence interval algorithm to reduce the suppression of the high-
frequency components of the signal by noise and ensure that the signal has a large signal-to-noise
ratio so that the obtained elevator car posture and vibration operation data are more accurate. Finally,
the effectiveness of the proposed method is verified by experiments.

Keywords: NB-IoT; elevator monitoring; highly integrated; BP neural network

1. Introduction

According to statistics, there were 23 elevator accidents and 17 deaths nationwide in
2021, accounting for 20.91% of the total number of special equipment accidents in 2021 [1].
After an elevator is activated, routine maintenance of the elevator is very important. Along
with the growing length of time of an elevator’s use, the mechanical devices inside it are
bound to age. If the daily maintenance of an elevator is not in place, the elevator will
exhibit safety hazards, thus reducing the reliability of the elevator, and when the elevator is
not maintained for a long time or maintenance is not in place, it may also lead to serious
personal injury accidents. In order to avoid the occurrence of the above situation, elevator
maintenance companies should always be aware of the real-time operation of their elevators.
Currently, the main maintenance method is regular maintenance, and this is inefficient
for maintenance personnel. Using “Internet +” thinking, an elevator online monitoring
platform was designed, realizing the real-time status of elevator online monitoring, daily
maintenance unified scheduling, maintenance-task-centralized management, and fault
information emergency alarms [2] so that an elevator maintenance company can know
an elevator’s running status in real-time, check an elevator’s failure trend, improve the
efficiency of elevator maintenance, and reduce the occurrence of elevator accidents, and
after the occurrence of elevator accidents, the maintenance company can always know
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the real-time running status of the elevator and check the failure trend of the elevator.
This can improve the efficiency of elevator maintenance, reduce the incidence of elevator
accidents, allow personnel to arrive at the scene in time to deal with elevator accidents, and
scientifically arrange the repair method and maintenance time of each elevator. At present,
safety accidents in elevators are a very pressing issue, and it is necessary to design a set of
elevator condition monitoring systems for elevator mechanical failures.

Vibration and pressure pulsation peak-to-peak values are important indicators in
elevator condition monitoring and fault diagnosis. The main basis for the stable operation
of elevators is the peak-to-peak values of vibration measurement points in the national
standards GB/T 6075.5-2002 [3] and GB/T 11348.5-2002 [4] and the international standards
ISO 10816.5-2000 [5] and ISO 20816-5-2018 [6]. However, the above standards only provide
a peak-to-peak value calculation method without noise interference, but actual vibration
signals are inevitably affected by noise interference, and the relevant standards do not
explain how to calculate the peak-to-peak values in this case. Fei Zhang et al. [7,8] have
systematically summarized the problems related to the calculation of peak-to-peak values
under steady-state and transient operating conditions. At present, there is no doubt about
the selection of the number of cycles for peak-to-peak value calculation under steady-state
conditions, and the latest revised standards, GB/T 17189-2017 [9], IEC 60994 [10], and
ISO 20816-2017 [11], require that the number of calculation cycles not be less than 8 or
10, and Fei Zhang et al. [7] show that the number of cycles should not be less than 6
under steady-state conditions through a study of related cases. The literature shows that
the number of cycles should not be less than six under steady-state conditions through
relevant case studies. However, in the process of revising the existing standards, the
relevant experts’ disagreement mainly focuses on what confidence interval values are used
to calculate the peak-to-peak values, including three confidence intervals of 97.5%, 97%,
and 95%. Appendix E of the latest revision of ISO 20816 [6] recommends the use of 95%
confidence intervals, and this method is briefly validated using simulated and measured
signals. However, this validation is not perfect; for example, the signal-to-noise ratio of
the signal is not fully considered, and the signal is not obtained based on quasi-periodic
sampling. For the above problems, this paper adopts the 95% confidence interval algorithm
to calculate the peak-to-peak value of the signal in order to alleviate the suppression of the
high-frequency components of the signal by noise. At the same time, in order to avoid the
problem of using three-axis acceleration data for posture solving, which cannot be used
to obtain the heading angle, and the problem that the use of three-axis gyroscope data
for calculating the posture of the car alone requires the time integration of the angular
velocity, a six-axis acceleration gyroscope sensor is used to calculate the posture of the
cabin. The results obtained from the two calculations are complementarily fused, thus
further improving the monitoring of elevators by the designed system.

In addition, in the design of an elevator fault operation monitoring system, Liu
Songguo et al. [12] designed a microprocessor-based monitoring system that uses mul-
tiple independent sensors to collect an elevator’s operation status in real-time; Wang
Enliang et al. [13] proposed the design of an elevator remote monitoring system based on
a customized communication protocol; Chen Zhiping et al. [14] extracted characteristic
parameters for elevator car vibration data and diagnosed elevator faults through big data
analysis; Yang Yu et al. [15] designed a non-intrusive elevator operation state monitoring
method to complete the tracking of real-time elevator positions by using the traceless
Kalman filter algorithm, which integrates the synchronous positioning and map building
techniques; Min Zhang et al. [16] used a wireless radio frequency system that is able to
obtain and save an elevator’s operation data in real-time; Sun Yuguo [17] designed a WiFi
three-axis wireless vibration sensor that is able to directly transmit an elevator’s vibration
signals to the cloud platform to achieve remote data collection; Xu Jinhai et al. [18–20]
analyzed the vibration signals of an elevator through the collection of data after the use of a
variety of algorithms to monitor the elevator’s fault information; Nakanishi et al. [21] used
a GPS system and pressure sensor to calibrate the height signal; and Matyja et la. [22] used
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temperature and humidity to correct the pressure sensor. Although the above monitoring
techniques of an elevator’s operating status have achieved certain results, the barometric
pressure sensor applied in height monitoring is susceptible to data fluctuations due to
environmental influences, and the barometric pressure sensor may produce zero drift in an
environment with stable air pressure; if the use of other height monitoring techniques (GPS,
laser, and radar) is too expensive, they are rarely considered. This paper is based on BP
neural network training to eliminate the impact of the zero drift of a barometric pressure
sensor on the height error so as to make an elevator’s height monitoring more accurate
and effective.

In summary, fault diagnosis systems for traction elevators have been widely used
and have achieved remarkable results. However, previous studies are based on using
sensors to collect data and using cloud servers for fault diagnosis. In this paper, a non-
intrusive, online, height-integrated monitoring system for traction elevators, based on
NB-IoT (Narrow Band Internet of Things) and STM32, is designed. The 95% confidence
interval algorithm is used to calculate the peak-to-peak value of the signal and improve the
signal-to-noise ratio of the vibration signal, while a six-axis acceleration gyro sensor is used
to realize the complementary fusion of the posture solution; temperature compensation
and BP neural network model are used to eliminate the abnormal fluctuation of the data
when the barometric pressure sensor monitors the height. The system does not change the
existing structure of an elevator and does not use the elevator manufacturer’s interface.
The sensors are highly integrated and adapted to each manufacturer’s elevators, have
convenient installation, do not require additional wiring, and use low-cost features, thus
achieving remote monitoring of an elevator’s operation status and automatic alarm for
failures of an elevator.

2. Proposed Overall System Structure

A universal IoT system consists of three major parts, namely, the perception layer, the
network layer, and the application layer. Among them, the perception layer is the “five
senses” of an IoT system, which receives external information; transmits the perceived
information to the IoT system, mainly through the relevant sensors; and collects the data
required by the IoT system. The network layer is the host that transmits the information to
the cloud through the network, which is equivalent to a human body’s nerves; receives
the information coming from the lower layer; and transmits it to the corresponding cloud
according to the demand. The purpose of the application layer is to react according to the
data according to the application written after receiving various information, or to send
the corresponding commands on its own initiative, which is equivalent to the brain of a
human body.

There are three main parts in this system: the sensor part, the microcontroller part,
and the information management system part [23–25]. The system structure is shown in
Figure 1.
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Elevators may experience various failures during their everyday usage, such as compo-
nent wear causing changes in the original precision of the parts, foreign objects obstructing
elevator door components, and parts becoming loose due to external force impacts. There
are many types of elevator failures, including elevator personnel entrapment accidents,
elevator shearing accidents, elevator collision accidents, and elevator fall accidents. To
prevent such mechanical failures, it is necessary for companies to focus on monitoring
data, such as elevator door switches, elevator posture, and elevator height. This system
specifically focuses on monitoring elevator posture data and elevator height data. The
system is highly integrated with a six-axis acceleration gyroscope sensor, a barometric
pressure sensor, and an STM32 minimum system to obtain the vibration signal of an el-
evator car, as well as its height signal, and the edge calculation processing is carried out
by the microcontroller on the collected data so as to derive the relevant state information
of the elevator car, which completes the collection of the relevant state information and
ultimately realizes the diagnosis of the elevator’s abnormal behavior. After completing the
diagnosis, the basic information of the elevator and the diagnostic results are transferred
to the database [26] through NB-IoT technology, in which time stamps are automatically
added to the data for the subsequent visualization screen to retrieve the data according
to the time. After completing the data transfer, the data visualization screen reads the
data in the database, updates the data on the screen in real-time, and triggers an alarm
automatically when there is a fault message. When there is a need to view historical data,
the relevant data can also be retrieved and displayed on the visualization screen.

3. Hardware Design

According to the needs of the system, it is necessary to monitor the vibration accelera-
tion, speed, and height information of an elevator car; analyze the posture information of an
elevator car in real-time through the microcontroller system; carry out real-time monitoring
and judgment on any relevant faults that may occur in an elevator; send the information to
the Internet of Things platform through the Internet of Things module; and then carry out
the design of the relevant hardware in response to the above requirements.

The structure of the hardware part of the system is shown in Figure 2. The hardware
part of the device includes the STM32 main control chip, the barometric pressure sensor,
the three-axis acceleration sensor, the NB-IoT module, and the power supply part. The
barometric pressure sensor and the three-axis acceleration sensor collect the barometric
pressure and acceleration data of an elevator car, and the STM32 main control chip processes
the collected data and then packages the data to be transmitted to the IoT platform through
the serial port and the NB-IoT module communication. After processing the collected data,
the STM32 main control chip packages and transmits the data to the IoT platform through
the serial port and NB-IoT module.
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3.1. Introduction to the Main Controller Module

This system adopts an STM32F407VET6 MCU leverages ST’s NVM technology and
ART Accelerator™ as the main control chip (STMicroelectronics, Geneva, Switzerland).
The core uses a 32-bit high-performance Arm® Cortex®-M4 processor (Arm, San Jose, CA,
USA) with a clock frequency of up to 168MHz; supports FPU (floating-point arithmetic)
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and DSP instructions; has three low-power modes of sleep, stop, and standby; and has
abundant on-chip peripheral resources. The STM32 minimum system part includes an ISP
one-button download circuit, a crystal oscillator circuit, and an SD card storage circuit.

3.2. Data Acquisition Module Design
3.2.1. Barometric Acquisition Module Design

The chip used in the Barometric Pressure Acquisition Module is BMP280, which can
simultaneously acquire barometric pressure data and temperature data, and communicate
data with STM32 through the IIC communication protocol. Due to its small size and low
power consumption, it is suitable for application in watches, cell phones, and embedded
devices, with a relative accuracy of ±0.12 hPa and an absolute accuracy of up to ±1 hPa.
When the barometric sensor collects barometric data, it needs to be converted to altitude by
the relevant code. The peripheral circuit design of the BMP280 is shown in Figure 3. The
following notations are used: SDI—data signal; SCK—clock signal; C1 and C2 are filter
capacitors; R1, R2, and R3 are pull-up resistors; R4 is a pull-down resistor.
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Due to the barometric pressure being greatly affected by the environment, the size of
the barometric pressure value is related to the height, temperature, and other conditions;
with a change in temperature, the transformation of the barometric pressure will have a
large gap. The barometric pressure value measured under the same height at different
times of the day is converted to obtain the height difference, which can be up to hundreds of
meters, and the difference in the barometric pressure values measured in different seasons
will be even bigger, so it is necessary to introduce temperature data to correct the barometric
pressure values. In this thesis, the hypsometric formula is used to correct the barometric
pressure values by temperature, and compared with the barometric pressure–height for-
mula, the measured altitude values are more accurate and less affected by temperature
changes. The barometric pressure to altitude conversion formula is given below:

h =
[(P0/P)(1/5.257) − 1]× (T + 273.15)

0.0065
(1)

where P0 is the standard atmospheric pressure, P0 = 101.325 kPa, and T is the current air
temperature.

A comparison of the calculated values of altitude without introducing temperature
compensation and with temperature compensation added for barometric pressure sensors
running for a long period of time is shown in Figure 4. When the barometric pressure sensor
is operated for one thousand seconds without introducing temperature compensation, the
barometric pressure value will change dramatically with the change in temperature at a
constant height, which, in turn, will cause errors in height readings, as shown in Table 1. In
the actual use of the elevator, the standard deviation and variance of the altitude sensor
readings without temperature compensation are much larger than when temperature
compensation is used, so the use of temperature compensation can effectively reduce the
reading error when the elevator is running for a long time.
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Table 1. Actual height sensor readings.

Average
Value

(Statistics)
Standard Deviation Variance (Statistics)

Use of temperature compensation 0.4371 0.0835 0.0069
Temperature compensation not used 0.5531 0.1491 0.0222

3.2.2. Design of Six-Axis Acceleration Gyroscope Acquisition Module

The design uses an InvenSense® (San Jose, CA, USA)’s MPU6050 chip, which integrates
a three-axis acceleration and three-axis gyroscope acquisition module, communicates with
the SMT32 through the IIC communication protocol, simultaneously outputs the operating
data of the three-axis acceleration and three-axis gyroscope, and utilizes the DMP module
(Digital Motion Processor) inside the MPU6050 chip to solve the sensor data, transmit
the posture data to the microcontroller, and reduce the computing power of the master
controller. The peripheral circuit design of the MPU6050 chip is shown in Figure 5. The
following notations are used: SDA—data signal; SCL—clock signal; C3, C4, C5 and C6 are
filter capacitors; R5 and R6 are pull-up resistors; R7 is a pull-down resistor.
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In this system, the MPU6050 chip is used to measure the elevator car posture, including
rotation around the x-axis (roll angle), rotation around the y-axis (pitch angle), and rotation
around the z-axis (heading angle yaw) [27,28]. Due to the use of the three-axis acceleration
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data alone for the posture solution, it is not possible to calculate the heading angle. And
the use of the three-axis gyroscope data to calculate the car posture alone, there is a need
to integrate the angular velocity over time, and the data results gradually shift with the
change in time; therefore, there is a need for the complementary fusion of the two calculated
results to ultimately obtain accurate data.

3.3. NB-IoT Module Design

NB-IoT is built on a cellular network and can be directly deployed on the GSM
network, UMTS network, or LTE network to reduce the deployment cost. This system
utilizes the Fruit Cloud GA7 chip and STM32 for data transmission through the serial
port, configures the NB-IoT module through AT commands, and directly connects to the
IoT platform using the MQTT communication protocol to send the collected data within
different subscription topics. NB-IoT technology can be utilized to link directly to the
IoT platform through the existing base station to achieve a low-power wireless link in
embedded devices. As the peripheral circuit of the IoT module has high signal transmission
requirements, it is necessary to filter the ripple in the rectified output voltage as well as
the electrostatic shielding, and it is necessary to complete the impedance matching of the
antenna part to prevent the high-frequency circuit signals from reflecting back to the source
point and to improve the energy efficiency. The peripheral circuit design of the NB-IoT
module is shown in Figure 6. The following notations are used: MCU_RX and MCU_TX
are used to connect to the serial port of the primary controller; SIM_VDD, SIM_DATA,
SIM_CLK, and SIM_RST are used to connect to the SIM card; C7 is used to ensure chip
voltage stability; C8 and C9 are filter capacitors; D1(Electro-Static discharge) prevents static
electricity from affecting signals.
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3.4. Power Supply Module Design

According to the requirements of the Technical Specification for Remote Monitoring
Devices for Elevators (Trial), the remote monitoring device should be equipped with an
emergency power supply, and the remote monitoring device should be capable of storing
and sending the status of the device before power failure, and at the same time, it should
ensure that an elevator’s image acquisition device works for at least one hour. Therefore,
the elevator monitoring device must be continuously powered by the main power supply
during normal operation and automatically switched to its own battery for continuous
power supply when an elevator power failure occurs. The power supply module consists
of three parts: a 12 V to 5 V step-down part, as shown in Figure 7a, F1 and D2 are used
to protect the circuit, R8 is used for voltage division to ensure the stability of the ‘5VOUT’
voltage in the figure, C10 and C11 are filter capacitors; a lithium battery boosting part,
as shown in Figure 7b, VBAT-IN—battery input, VBAT-OUT—battery output, L1 and
D3 guarantee voltage output, R9 and R10 are sampling resistors, C12 and C13 are filter
capacitors; and a dual power supply automatic switching circuit, as shown in Figure 7c,
three MOSFETs Q1, Q2 and Q3 are used to automatically switch power supply.
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battery boost circuitry; (c) dual power supply automatic switching circuits.

Among them, the 12 V to 5 V step-down circuit uses a 78M05 linear regulator, which
is able to reduce the 12 V power supply from the external DC power input to 5 V; due
to the 3.7 V lithium battery having different amounts of power, with a voltage range of
2.5 V–4.25 V, in order to ensure that it can stably output the 5 V voltage, the MT3608 power
supply chip is used to increase the voltage. The output voltage is between 5.14 V and
5.142 V, the test results are shown in Figure 8, the circuit can automatically switch between
the main and secondary power supplies when the two voltages are the same, and the main
power supply is used to power the main power supply when the main power supply V1 is
input, and when the main power supply V1 is disconnected, it is automatically switched to
the external power supply V2 for power supply.
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4. Algorithm Design
4.1. Car Posture Fusion Solution

Since a posture solution using three-axis acceleration data alone cannot be calculated
to obtain the heading angle, and using three-axis gyroscope data alone to calculate the
car posture requires time integration of angular velocity, and the results of the data are
gradually shifted over time, it is necessary to complement the results obtained from the
two calculations by fusing them together to finally obtain valid data.

4.1.1. Accelerometer Solved Posture

When the sensor is stationary, the sensor itself has no acceleration data and is only
affected by the acceleration of gravity; when the sensor’s z-axis is vertically upward, the x
and y directions are measured to obtain the value of 0. Only the z-axis is measured to obtain
the acceleration of gravity, g. When the sensor is tilted at a certain angle, the acceleration of
gravity will produce components in other directions, so the posture of the sensor can be
obtained by calculating the rotation of the x, y, and z axes, and the specific calculation is:ax

ay
az

 =

 − sin p
cos p · sin p
cos p · cos r

 · g (2)

Solving the above equations yields the roll and pitch angles. roll = arctan( ay
az
)

pitch = −arctan( ax√
a2

y+a2
z
) (3)

4.1.2. Gyroscope-Solved Posture

By measuring the angular acceleration of the three axes and integrating the angular
acceleration, the rotation angle of the three axes can be obtained. In this system, by
integrating the angular acceleration per unit of time, the amount of change in rotation
angle per unit of time can be obtained, and after accumulating with the initial amount, the
posture of the sensor can finally be obtained. The conversion relationship between angular
acceleration and angular velocity is given in the following equation:gx

gy
gz

 =

1 0 − sin p
0 cos r cos p · sin r
0 − sin r cos p · cos r

 ·


dr
dt
dp
dt
dy
dt

 (4)


dr
dt
dp
dt
dy
dt

 =

1 sin p·sin r
cos p

cos r·sin p
cos p

0 cos r − sin r
0 sin r

cos p
cos r
cos p

 ·

gx
gy
gz

 (5)

where gx, gy, and gz are the three-axis angular velocities obtained from the three-axis
gyroscope measurements.

4.1.3. Posture Fusion

Based on the above analysis, it can be concluded that the heading angle yaw cannot
be calculated using three-axis acceleration data alone, and using the three-axis gyro data
alone will result in a drift after a long period of measurement, so it is necessary to perform
posture fusion of the two sources of data.

roll = roll + (rollacc − rollgyro) · K
pitch = pitch + (pitchacc − pitchgyro) · K

yaw = yawgyro

(6)

where K is the scale factor, which needs to be adjusted according to the actual situation, in
this system, where K = 0.4.
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4.1.4. Acceleration Signal Pulse Peak-to-Peak Algorithm

Even though the elevator acquires an effective posture, the vibration data still play a
significant role in the smoothness of the elevator; therefore, during the process of acquiring
the elevator vibration signals using the triaxial acceleration sensors, the range of variation in
the vibration signals is reflected by the peak-to-peak values, which are calculated as shown
in Equation (7). The interval estimation of the peak-to-peak values of the vibration and
pressure pulsations under stable working conditions is as follows: For a given peak-to-peak
value sample data (x1, x2, xN), the mean value of the peak-to-peak value µ and standard
deviation σ are calculated. For a given sample of peak values, the mean value and standard
deviation of the peak values are given as (µ − 1.96σ, u + 1.96σ). That is, the probability
that the peak value falls within the interval (µ − 1.96σ, u + 1.96σ) is 95%.

xp−p = max(xi)− min(xi) (7)

The condition monitoring in this paper utilizes quasi-periodic sampling, where the
number of fixed sampling points in a rotational cycle is usually 2n, where n ∈ N. n
is between 6 and 12. For steady-state conditions at a fixed rotational speed, there is
no significant difference between the data obtained from quasi-periodic sampling and a
fixed sampling rate. To fully assess the applicability of the peak-to-peak algorithm, in
the field test signals, the vibration of the unit obtained by the speed sensor contains a
high-frequency component, the pendulum signal is generally low-frequency as the main
frequency, and the pressure pulsation signal is rich in frequency components. According
to the above method, the measured signals are sampled, the peak-to-peak values are
calculated, and the results obtained are shown in Figure 9. In the figure, N indicates the
number of points calculated per cycle, C indicates the number of cycles used, and P is the
peak-to-peak value. By observing the figure, it can be found that the maximum values
in the peak-to-peak calculation results are 99.73, 100.1, 100.06, 100, and 100, and there is
no difference between the peak-to-peak calculation and the peak-to-peak calculation of a
single-frequency sinusoidal signal without interfering noise, which indicates that the use
of a larger confidence interval in the case of a large signal-to-noise ratio can yield more
accurate results.
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4.2. Barometric Sensor Zero Drift Height Error Compensation

Since barometric pressure sensors are susceptible to data fluctuations due to environ-
mental influences, and barometric pressure sensors produce zero drift in a stable barometric
pressure environment, in this paper, BP neural networks are trained to eliminate the effect
of zero drift on height error.

4.2.1. Modeling and Training of BP Neural Networks

A BP (back propagation) neural network is a multi-layer feed-forward neural network
trained according to the error back propagation algorithm, which is one of the most widely
used neural network models. A BP network can learn and store many input–output pattern
mapping relationships without revealing the mathematical equations describing such
mapping relationships beforehand, and it can classify arbitrarily complex patterns and has
excellent multi-dimensional function mapping ability.

A typical BP neural network topology consists of input, hidden, and output layers, as
shown below.

As shown in Figure 10, X1 to Xi are the data in the input layer, which are the inputs
of information and transmit the data to the subsequent hidden layer; ωij are the weights
of the input layer neurons transmitting the data to the hidden layer neurons; ωik are the
weights of the hidden layer neurons transmitting the data to the output layer neurons; and
Y1 are the activation functions of the output data hidden layer and output layer using tan-
sigmoid and purelin functions, respectively. The hidden layer can be single or multi-layer;
theoretically, if there are enough hidden neurons, the BP neural network can approximate
any nonlinear mapping.

According to the previous data, it can be seen that the data input to the BP neural
network contains two-dimensional feature vectors of time data and temperature data,
the input layer of the neural network is set to be two neurons, the barometric pressure
value under the current time is predicted by the neural network to compensate for the
temperature and the zero drift, the output value of the neural network is set to be the
barometric pressure value, and the output layer of the neural network is set to be one
neuron. Since the number of neurons in the hidden layer is very important for the final
training results of the neural network, and an inappropriate number of neurons in the
hidden layer will produce a large error in the training results of the neural network, the
reference value is, therefore, usually calculated by the empirical Formula (8), and then, the
number of neurons is finally determined by the experimental method.

h =
√

a + b + c (8)

where h is the calculated reference value, a and b are the number of neurons in the input
layer and the number of neurons in the output layer, respectively, and c is an adjustable
parameter in the range of 2–10.
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4.2.2. Neural Network Training

After many experiments, when the number of neurons in the hidden layer is eight, the
root-mean-square error of the training set is the smallest and the convergence speed is the
fastest; therefore, the best results can be achieved using a neural network with the structure
2-8-1, and the structure of the established neural network model is shown in Figure 11.
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Figure 11. Structure of BP neural network.

4.2.3. Analysis of Experimental Results

The best performance is obtained when the number of training sessions is two,
whereby the mean square error is 0.017321, as shown in Figure 12.

The test set samples are fed into the neural network to calibrate the training results
and the test results obtained, as shown in Table 2.

From the data in Table 2, it can be concluded that the error between the actual results
and the predicted results is small, and the proposed model can more accurately predict
the temperature drift and zero drift generated by the change in barometric pressure with
time and temperature, which can eliminate the influence of the two on the measurement
results of the sensor. Among them, Figure 13 shows the fitting effect of the training
set, validation set, and test set for the actual output, from which it can be seen that the
correlation coefficients R of the training set, validation set, and test set are 0.9812, 0.95389,
and 0.98928, respectively, and the overall correlation coefficient reaches 0.98003, which
shows that the completed BP neural network model has a better fitting degree, and the
time–temperature two-dimensional vector deduced from inputs is more accurate. The
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time–temperature two-dimensional vector inference for height data and the actual height
data deviation are small, indicating that the elimination of the barometric pressure sensor’s
zero drift error has a good effect.
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Table 2. Test sample output results.

Serial Number Actual Value Projected Value Inaccuracies

1 264.4232 264.6375 0.2143
2 264.3950 264.7516 0.3566
3 264.1141 264.2437 0.1296
4 263.8887 264.0049 0.1162
5 263.7196 264.3994 0.2797
6 263.8887 264.0553 0.1666
7 263.9450 264.1020 0.1570
8 264.2541 264.1422 −0.1119
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5. Main Program Design

The main program design of the microcontroller mainly includes reading the data from
the barometric pressure sensor, three-axis acceleration sensor, and three-axis gyroscope
sensor; solving the car posture, vibration data, and the height calculated by temperature
compensation through hardware DMP; completing the diagnosis of possible faults of the
elevator car; and transmitting the data to the IoT platform through the IoT module. A
flowchart of the program is shown in Figure 14.
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5.1. Data Transmission Component

The data transmission process of this program uses MQTT v3.1.1 as the transmission
protocol. MQTT is a client–server-based message publish/subscribe protocol, which is
characterized as lightweight, simple, open, and easy to implement, and therefore is widely
used in IoT devices. In MQTT protocol communication, the two sides of the communication
are divided into the server and the client, in which the MQTT server’s main function is
to receive information sent by the client and also send information to the MQTT client; in
addition, the server is also responsible for managing the MQTT client, which is needed to
ensure that the communication is smooth and that the information is correctly accepted and
accurately delivered. The client, on the other hand, is able to send information to the server
and also receive information from the server. The process in which the client establishes a
connection with the server includes creating a client, opening a client connection, creating
a connection, subscribing to topics, and publishing data.

5.2. Real-Time Elevator Speed Monitoring

The elevator running speed command curve is shown in Figure 15. It can be divided
into the following stages: the initial section of startup acceleration (AE section), the uniform
acceleration section (EF section), the end of startup acceleration (FB section), the section
of uniform motion (BC section), the initial section of deceleration motion (CF′ section),
the section of uniform deceleration (F′E′ section), and the end of deceleration motion (E
D). The main control board of the elevator actively sends elevator operation commands
to control the running speed of the elevator. When the elevator speed is abnormal, it will
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make the elevator operation deviate and lead to elevator leveling faults, so it is necessary
to monitor the running speed of the elevator, and when the real-time speed of the elevator
does not correspond to the commands, it is necessary to alert the faults to the cloud platform
according to the elevator running stage.
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5.3. Real-Time Data Transmission

Real-time data monitoring of the elevator is very important for the daily operation and
maintenance of the elevator. The sampling frequency of the sensor of this system is 100 hz;
in order to avoid the influence of the sensor’s error on the collected data, it adopts five
consecutive sampling points to seek the average value as a valid sampling point, which,
together with the filtering algorithm inside the sensor, greatly reduces the error of the
collected data of this system. The collected real-time speed data, front and rear offset of
the elevator car, left and right offset, the number of times the elevator goes up and down,
the elevator running distance, and other data are packaged and sent to the IOT platform
according to the frequency of once per minute.

6. Experimental Validation

In order to verify the procedures established in this paper, the production of the
equipment was completed through self-welding, as shown in Figure 16. The experiment
was conducted on an elevator manufactured by Xizi Otis Elevator Co., Ltd. (Hangzhou,
China), in Building C of the Beijing University of Civil Engineering and Architecture. This
equipment was purchased in Suzhou, Jiangsu Province, China.
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6.1. Validation of Six-Axis Acceleration Gyroscope Posture Monitoring

This system also monitors the posture of the elevator during operation. The data from
the running posture during elevator operation are very important. If the offset is too large
during the operation of the elevator, it will lead to excessive wear and tear of the elevator
guide rail, which will affect the normal operation of the elevator, and the vibration will be
increased during daily operation. As shown in Figures 17 and 18, the offset of the elevator
in the horizontal and vertical directions can be accurately detected during the operation of
the elevator.
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Figure 17. Horizontal offsets during elevator operation.
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Figure 18. Vertical offset during elevator operation.

In the monitoring process, from the data measured in Table 3, it can be seen that
during the monitoring process of vertical offset and horizontal offset, when the elevator
experiences sudden vibration, it can be monitored whether the elevator posture undergoes
a sudden change. The amplitude of vibration is less than 0.2◦. Through many experiments,
it can be obtained that the three-axis acceleration and three-axis gyroscope sensors monitor
the elevator car posture and meet the accuracy requirements, and the monitoring data are
stable, so it can be determined that there is no abnormal vibration in the elevator operation
process, and the elevator works normally.
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Table 3. Statistical results of front and rear offsets.

Experiment Number Test Items Mean Value/◦ Peak/◦

First
Vertical offsets 1.021 1.122

Horizontal offsets −0.471 −0.381

Second
Vertical offsets 1.003 1.103

Horizontal offsets −0.483 −0.389

Third
Vertical offsets 1.032 1.135

Horizontal offsets −0.478 −0.392

6.2. Validation of the Method for Calculating Peak-to-Peak Values under Confidence Intervals

In order to verify the effectiveness of the peak-to-peak value algorithm proposed in
this paper under a 95% confidence interval with noise-containing conditions, 10 groups
of elevator car vibration signals were collected with personnel walking in the car. The
vibration signal was superimposed on Gaussian white noise at −1 dB. Figure 19 shows the
time-domain waveforms of one group of signals, blue waveforms for the clean vibration
signals, and red curves for the vibration signals superimposed on the noise, and it can be
observed that the peak-to-peak value is 0.165. The traditional method and the method
proposed in this paper are used to calculate the signal, as shown in Figure 20. The peak-to-
peak value is 0.165. The peak-to-peak value of the signal is calculated using the traditional
method and the method proposed in this paper, as shown in Figure 20, from which it
can be seen that the peak-to-peak value of the vibration signal fluctuates greatly under
noise interference and the credibility of the calculation result is low; based on the method
proposed in this paper, the peak-to-peak value is stable in a small interval, which proves
that this paper’s method has the ability to obtain an accurate peak-to-peak value under
noisy conditions. Thus, it can be inferred that the peak-to-peak value algorithm under the
95% confidence interval can accurately extract the vibration signal to judge the vibration
state of the elevator.
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Figure 20. Comparison between traditional peak-to-peak algorithm and peak-to-peak algorithm with
95% confidence interval.

6.3. Validation of Barometric Sensor Height Monitoring

Here, we verify the corrective effect of the BP neural network training model on
the barometric pressure sensor. Firstly, the air pressure sensor is used to measure the air
pressure value of the first floor, and the air pressure value of the first floor is used to zero.
Then, the height difference is obtained according to the subsequent measurement of the air
pressure value, the floor height is 3.5 m, and the measurement results are shown in Table 4.

Table 4. Statistical results of data.

Actual Floor Actual Relative
Height/m

Measured Relative
Height/m Height Error/m

1 - 0 0
2 3.5 3.3814 −0.1186
3 7 7.1359 +0.1359
4 10.5 10.6824 +0.1824

According to the experimental results, it can be obtained that the relative height
obtained after temperature correction and the actual height error is within ±20 cm, and the
leveling accuracy meets the design requirements of this system, and during the experiment,
all data are accurately transmitted to the cloud server.

6.4. Overspeed Monitoring Validation

By monitoring the displacement per unit time in the direction of the elevator Z-axis, the
height difference is used to carry out the calculation of real-time elevator speed. According
to GB/T 10058-2009 [29], the overspeed protection device of the elevator car should be
able to monitor the speed loss control of the car, the lower limit of which is 115% of
the rated speed of the elevator, so 115% of the rated speed of the elevator is set as the
threshold of overspeed of the elevator, and the test is carried out by using the elevator’s
fast-running gear, the rated speed of the elevator is 1.5 m/s. The elevator is found to be
able to effectively complete the fault determination of the elevator’s overspeed, and the
results of its monitoring and verification are shown in Table 5.

Table 5. Statistics on speeding monitoring.

Test Serial Number Actual Results/(m·s)−1 Ratio to Rated Speed Is It Speeding?

1 1.463 97% No
2 1.634 109% No
3 1.962 131% Yes



Appl. Sci. 2024, 14, 4346 19 of 20

7. Conclusions

In this paper, for the difficult problem of elevator fault monitoring, an NB-IoT-based
elevator online monitoring system is designed, which is highly integrated with the sensor
and microcontroller, to realize a low-cost, easy-to-install, and highly reliable elevator
monitoring solution, and at the same time, the system uses six-axis sensors for posture
determination and a high degree of error compensation for the zero-point drift in barometric
pressure sensors, thus realizing the accurate transmission of data, which reduces the
occurrence of false alarms for faults. The findings of this study mainly include the following:

(1) The related hardware design, including the MCU peripheral circuit design, sensor
peripheral circuit design, NB-IoT module peripheral circuit design, power supply, and
power switching circuit design, ensures that the edge monitoring equipment operates
stably for a long period of time, as well as continues to operate normally in the event
of a power failure.

(2) We use the complementary fusion of three-axis acceleration and three-axis gyroscope
sensors, as three-axis acceleration sensors cannot calculate the heading angles and
three-axis gyroscope sensors need to carry out time integration of the angular velocity,
to ensure monitoring accuracy; at the same time, the peak-to-peak value of the signal
is calculated using the 95% confidence interval algorithm to alleviate the suppression
of noise on the high-frequency components of the vibration signal, which has the
advantages of strong robustness and insensitivity to noise, ensuring that the signal
has a large signal-to-noise ratio, thus obtaining more accurate elevator car posture
and vibration operation data.

(3) By applying neural network model data training, the height error generated by the
zero drift of the barometric pressure sensor is eliminated, thus realizing the accurate
judgment of elevator height.

This system still needs to be perfected in terms of elevator monitoring, and further
research will be carried out in the future for the accurate judgment of the elevator switching
door status, the image processing of elevator monitoring, and the internal monitoring of
the elevator car.
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