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Abstract: The Austin metropolitan area has experienced unprecedented economic and population
growth over the past two decades. This rapid growth is leading communities to settle in areas
susceptible to landslides, necessitating a comprehensive analysis of landslide risks and the develop-
ment of early warning systems. This could be accomplished with better confidence for slow-moving
landslides, whose occurrences could be forecasted by monitoring precursory ground displacement.
This study employed a combination of ground- and satellite-based observations and techniques to
assess the kinematics of slow-moving landslides and identify the controlling and triggering factors
that contribute to their occurrence. By closely examining landslide events in the Shoal Creek area,
potential failure modes across the study area were inferred. The findings revealed that landslide-
prone areas are undergoing creep deformation at an extremely slow rate (up to −4.29 mm/yr). These
areas lie on moderate to steep slopes (>22◦) and are predominantly composed of clay-rich units
belonging to the Del Rio and Eagle Ford formations. Based on the incidents at Shoal Creek, episodes
of intense rainfall acting on the landslide-prone areas are determined to be the main trigger for
landslide processes in the region.

Keywords: precursory deformation; slow-moving landslides; clay; early warning; rainfall; InSAR

1. Introduction

Landslide phenomena can cause significant economic, human, and environmental
losses. Landslides are categorized based on the materials involved and their rate of motion
downslope [1–4]. Weak materials, such as clay-rich zones, create favorable conditions for
initiating landslides, particularly slow-moving slides [5,6]. The velocities of slow-moving
landslides can range from a few millimeters to tens of meters per year [5,7]. The kinematics
of landslides with the latter displacement rates are mostly controlled by external factors,
such as rainfall and seismic activity. These factors lead to an exponential decline in the
shear strength of the landslide material, resulting in accelerated ground velocity that causes
slope failures [8,9].

Forecasting the occurrence of fast-moving landslides poses a significant challenge due
to their varying spatial scales, temporal patterns, modes of displacement, and complex
interactions between slope material and controlling factors [5,10,11]. Most studies and early
warning systems focus on applying various techniques to identify areas prone to all types
of landslides through susceptibility mapping [12,13]. Commonly used techniques include
heuristic, statistical, and deterministic methods [14–18]. Although several studies assessing
the accuracy of these models have reported reasonably acceptable validation scores [19,20],
these models suffer from limitations that constrain their accuracy and reliability. These
limitations include the unavailability of datasets representing the parameters assessed in the
susceptibility models, variations in the spatial resolution of multisource datasets requiring
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resampling procedures to generate pseudocompatible datasets during data fusion, and the
models’ tendency to focus on shallow parameters while overlooking deeper processes and
localized variations [20].

However, several studies have demonstrated the reliability of forecasting the failure
of slow-moving landslides through long-term monitoring of precursory failure indicators,
such as slow slope displacement processes, using data obtained from permanent or cam-
paign global navigation satellite system (GNSS) surveys, inclinometers, extensometers,
and other in situ instruments [21,22]. These studies have provided valuable insights into
understanding the pre-failure kinematics of landslides, enabling more accurate forecast-
ing of their occurrence [23–25]. However, the high cost of these instruments, coupled
with the extensive time and labor requirements, make their application in monitoring and
forecasting large-scale landslides impractical [26].

Fortunately, the growing capabilities of remote sensing instruments onboard satellite
and aerial platforms, along with the availability of freely accessible satellite data with vary-
ing spatial and temporal resolutions, have made it easier for the public to access and utilize
datasets and tools for investigating landslide processes [27]. Specifically, the use of interfer-
ometric synthetic aperture radar (InSAR) techniques applied to SAR datasets has proven
effective in detecting centimeter- to millimeter-scale deformation rates, indicating active
processes initiated by subsurface processes [28]. These techniques are widely employed
to monitor subtle pre-failure deformation rates, which serve as precursors for identifying
slow-moving landslides, enabling the development of early warning systems [29–33]. In
most cases, landslide forecast models derived from remote sensing techniques are inte-
grated with ground-based observations for calibration and validation, thereby improving
the quality and reliability of the resultant products [34,35].

This study integrated multisource ground- and satellite-based observations and tech-
niques to assess the kinematics of slow-moving landslides in Central Texas. Furthermore,
an examination of the controlling factors and triggers that induce slope failures in the
region was conducted by closely inspecting a site with a history of recurrent episodes of
such failures in recent years.

2. The Study Area

The study investigates sections of the city of Austin and its surrounding areas in
Travis County in Central Texas (Figure 1). The Greater Austin Metropolitan Area has
experienced unprecedented growth in the past decade and is currently inhabited by over
2 million people [36]. Like other regions worldwide facing rapid population growth and
urbanization, factors that amplify hazard susceptibility [37], the high rate of population
growth in the Austin metropolitan area has resulted in the expansion of communities into
naturally hazard-prone areas [36,38]. Moreover, the population and economic growth in the
metropolitan area have led to intensified anthropogenic activities and associated changes,
exacerbating the risks of natural hazards, particularly slope failures, on the community and
the environment. Two major landslide events that occurred near residential properties in
the same location in the Pease Park area of Austin, along Shoal Creek, in May 2018 and May
2019 (Figures 1 and 2) demonstrated the increasing susceptibility of communities to the
hazard [39]. Multitemporal imagery of the impacted area, accessible through the time-lapse
feature on the open-access Google Earth app (https://earth.google.com/, accessed on 20
November 2022), revealed that the area has undergone significant anthropogenic changes,
including new property development, expansion, modifications to existing properties, and
road construction over the past few decades. The landslides consequently caused damage
to both public and private property and the surrounding environment, which are projected
to cost the city substantial investment (more than $20 million) for repair and mitigation
efforts [39].

https://earth.google.com/
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Figure 1. Geographic and geologic setting of the study area. Also shown are Pease Park (light blue
pin), where recent landslides occurred, Shoal Creek and its watershed (blue and dashed black line,
respectively), the Colorado River, and the TXAU GNSS station (red triangle).

It is believed that this study is the first to attempt to investigate the kinematics of the
landslides in the study area and provide a comprehensive assessment of the factors that
contribute to their occurrence.
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Figure 2. Google Earth images of the Pease Park slope failure site (shown in dashed orange lines)
(a) before and (b) after the first slope failure event (2018).

Climatic and Geologic Settings

The climate of the study area is described as a humid subtropical climate, featur-
ing long, moderately hot summers and mild winters. The area experiences moderate
precipitation, with average annual values ranging from 810 mm to 910 mm [40].

The Balcones Fault Zone (BFZ) represents the main structural feature in the study
area. It consists of a system of normal faults that strike NE–SW and predominantly dip
southeastward (Figure 1). This fault zone, which is no longer active, occurs at the western
boundary of the study area and in areas close to Shoal Creek, exerting primary control over
the spatial distribution of rock formations (Figure 1) [41].

Within the study area, the predominant geological formations are sedimentary rocks,
ranging in age from the Early to Late Cretaceous (Figure 1). Additionally, unconsolidated
Quaternary sediments such as terrace and alluvial deposits are common. The rock forma-
tions found on the eastern, downthrown side of the fault zone (in the study area) are Upper
Cretaceous shales and chalks that dip gently to the east, including the Eagle Ford Shale and
Austin Chalk. The western, upthrown fault block is composed of Lower Cretaceous lime-
stones, including the Glen Rose, and the Edwards and Walnut formations (Fredericksburg
Group) (Figure 1). These limestones mainly consist of hard limestone layers interbedded
with softer marly/clay-rich layers [41–44].

The Del Rio, Buda, and Eagle Ford formations are of particular interest, as they consti-
tute the dominant formations in Shoal Creek and surroundings in general, including Pease
Park, where recent recurrent landslide events have been reported (Figure 2). Understanding
the geological conditions at the slope failure site is crucial, as it could provide valuable in-
sight into the mechanisms behind landslides throughout the entire investigated region. The
Del Rio Clay is a laminated, calcareous, and gypsiferous mudstone with varying amounts
of pyrite [45]. The clay in the Del Rio Formation exhibits a shrink–swell behavior and
is primarily composed of montmorillonite, smectite, and kaolinite, with minor amounts
of illite [43,46,47]. These minerals exhibit very low shear strength when saturated with
water [48].

Overlying the Del Rio Clay is the Buda Limestone, previously referred to as the “Shoal
Creek limestone” in early literature [49]. The Buda Limestone, which generally forms
steep slopes above the Del Rio Clay, is the dominant unit found on the high cliffs of Shoal
Creek [50] (Figure 1). It is characterized as a fine-grained, bioclastic, pyritiferous limestone
that is generally hard and brittle but exhibits less resistance in certain sections, particularly
in the lower part where bioerosion structures are more prevalent. The Buda Limestone
is relatively thin in the Central Texas region, ranging from 11 to 16 m in thickness within
the study area [45,46,51,52]. The Buda Limestone is capped by the Eagle Ford Shale which
also contains in its lower part siltstone, very fine sandstone, and a significant amount of
smectite clay [53].
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3. Materials and Methods

This study integrates multisource datasets and results generated through various
techniques applied to the datasets to accomplish two objectives: (1) detect slow-moving
landslides whose occurrences can be forecasted based on precursory displacement patterns
and (2) identify the controlling factors and triggers that govern the incidence of these
landslides in the study area.

3.1. Detecting Slow-Moving Landslides
3.1.1. Small Baseline Subset (SBAS) Interferometric Technique

The SBAS technique was chosen in this study to identify targets whose movement
could potentially be induced by slow-moving landslide processes. The SBAS method
involves stacking multiple interferograms created from multitemporal SAR imagery with
small spatial and temporal baselines. This stacking process produces a cumulative de-
formation rate [54–56]. Initially, the interferograms were multilooked to enhance their
signal-to-noise (SNR) ratios, unwrapped, and then stacked together. Pixels that exhibit
temporal coherence in all interferograms are inverted to estimate line-of-sight (LOS) ve-
locities [54,57]. In the subsequent step, the LOS velocities were geocoded and reprojected
to produce vertical displacement (VD) values. Positive and negative displacement rates
indicate movement of the target surface toward and away from the satellite in the repeat
observations, respectively [58].

Fifty-three interferometric wide (IW) swath mode level-1 single look complex (SLC)
SAR images acquired, along the ascending track, between March 2015 and January 2021 by
the Sentinel-1 mission (Figure 3) were used to quantify subtle deformation rates associated
with slow-moving landslides. The image acquired on 2 February 2019 was chosen as the
super reference scene (shown in yellow marker in Figure 3). This image served as a reference
for aligning all the other images to its geometry—a procedure referred to as coregistration.
Due to the limited availability of level-1 IW mode SLC images via the Alaska Satellite
Facility’s (ASF) data dissemination platform (https://vertex.daac.asf.alaska.edu/, accessed
on 2 February 2021), only the VD component of the landslide motion viewed from the
perspective of the ascending geometry was used in this study for analysis and interpretation.
The SBAS workflow within the SARscape Module of ENVI 5.5 was employed for data
processing and result generation.
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3.1.2. Calibration Using GNSS Data

Two GNSS datasets obtained through different geodetic techniques were utilized in
this study to calibrate and validate the SBAS results. The first set of geodetic data for the
study area was acquired from a permanent GNSS station (TXAU; red triangle in Figure 1)
that continuously measures displacement rates over a longer time scale and can detect
subtle (mm-scale) deformation rates. The analysis results of the TXAU permanent GNSS
station data, obtained from the Nevada Geodetic Laboratory data distribution platform [59],
were further analyzed in tandem with the SBAS analysis result for calibration purposes.
The TXAU station was chosen for this purpose due to its extensive daily position data
coverage from 1996 to 2021. Calibration of the SBAS rates was conducted using the average
vertical displacement rates from the TXAU station, following the procedures outlined by
Emil et al. (2021) and Haley et al. (2022) [60,61]. In this study, a 100-m radius buffer
surrounding the TXAU station was generated, and the mean deformation rates derived
using the SBAS method within the buffer polygon were obtained. The discrepancy between
the vertical deformation value of the mean SBAS pixels within the 150-m distance and the
TXAU deformation rates was utilized to correct the displacement rates of all pixels derived
using the SBAS technique.

Additionally, two GNSS displacement measurement campaigns were conducted in
August 2021 and March 2022. The sites for the survey were selected by identifying areas that
exhibited relatively low to moderate negative deformation rates (away from the satellite) in
the SBAS results. Sites immediately adjacent to the Pease Park landslide area (indicated by a
light blue pin in Figure 1) that met these criteria were chosen for the campaign investigation.
The data was collected using the Emlid Reach RS2 GNSS unit, consisting of the base station
and rover receivers and the real-time kinematic (RTK) GNSS survey approach [62].

3.2. Identifying Processes and Factors That Induce Slow-Moving Landslides
3.2.1. Thematic Datasets

Three thematic datasets and analysis results were assessed to identify the processes
and factors governing the occurrence of slow-moving landslides in the study area. The
datasets considered were slope gradient, local geology, and geological structures. These
parameters were overlaid on a deformation distribution (density) map to observe their
spatial correlation.

A light detection and ranging (LiDAR)-derived high-resolution (1 m) DEM dataset
obtained from the Texas Geographic Information Office (https://geographic.texas.gov/,
accessed on 20 November 2022) was utilized to calculate the slope. The slope values,
measured in degrees (◦), represented the maximum rate of vertical change between each
pixel and its neighboring pixels. The results were classified into five categories using the
Jenks optimization algorithm for visualization and result interpretation purposes: less than
4◦, 4–11◦, 11–22 ◦, 22–38◦, and greater than 38◦.

The stability of slow-moving landslides is strongly influenced by the lithologic
composition and tectonic setting of the area [63,64]. Therefore, special attention was
given to the geology and tectonic features in the study area. The impact of faults and
other geological structures on slope failures is twofold. First, stress buildup in active geo-
logical structures can induce slope instability by disturbing and weakening the cohesion
of geological materials, thereby reducing shear strength [5,65]. Second, geological struc-
tures can act as conduits for transferring water from the surface to deeper layers. The
interaction between water and these layers may initiate processes that ultimately lead
to slope failure [66]. Therefore, the proximity of geologic units to geological structures
increases the probability of slope failures [67]. Geological information for the study area
(Figure 1), including detailed descriptions of lithologic units and the spatial distribution
of tectonic features, was obtained from the United States Geological Survey [USGS]
online data distribution platform (https://www.usgs.gov/, accessed on 20 November
2022) and also adapted from a previous study [46]. Additionally, single Sentinel-1 (level-
1) data acquired during cloud- and rainfall-free tropospheric conditions (1 August 2021)

https://geographic.texas.gov/
https://www.usgs.gov/
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was analyzed using the open-source Sentinel Application Platform (SNAP v8.0) software
to complement the mapping of geological structures in the study area. This was done
to identify structures that may not have been detected using conventional methods
in previous mapping studies. The methodology outlined by Tagnon et al. (2020) [68]
was adopted for delineating linear structures associated with faults and fractures. In
this method, geological features were manually delineated by observing changes in
the backscatter intensity of SAR images after applying adaptive filters. These filters
removed speckles and other noises, enhancing the sharpness and details of the SAR
images to highlight lineaments that could be interpreted as fractures or faults. The
high-spatial-resolution DEM data of the study area was integrated into the delineation
exercise to further supplement and refine the SAR-based structural mapping technique.
Once the lineaments were identified, the newly mapped structures were overlaid on the
known structures to establish spatial correspondence. The underlying premise is that if
there is a spatial agreement between the existing faults in both maps (structures from
the geological map and the SAR-derived structural map), it validates the reliability of
the method and confirms the accuracy of the newly mapped structures.

3.2.2. Ancillary Data and Methods–3D Model from Unmanned Aerial Vehicle (UAV) Data

A close investigation of the geometry and geology of the recent failure site was pro-
posed in this study to comprehend the mechanisms behind the formation of the landslide
and validate the hypothesized mechanism of landslide formation in the study area pro-
posed in this research. Due to the large spatial scale of the landslide event in the Pease
Park area (>8000 m2 in surface area), coupled with its inaccessibility, observing the entire
area and gathering detailed information on the landslide’s geometry was not feasible.
However, a closeup investigation of the area became possible by generating a 3D model
of the landslide geometry, achieved through the application of the structure from motion
(SfM) algorithm to high-resolution imagery captured by the DJI Spark Unmanned Aerial
Vehicle (UAV). The SfM procedure was facilitated using the cloud-based DroneDeploy
software (v 2.0.44).

4. Results and Discussion

This section describes the results obtained using the datasets and methods outlined in
Section 3. Additionally, it provides an in-depth assessment of the displacement mechanisms
of potential landslide sites, controlling factors, and triggers. This is accomplished through
conceptualization of the processes and factors that led to the incidence of landslides at the
Pease Park (Shoal Creek) site.

4.1. Active Slow-Moving Displacement

The deformation rate obtained through the SBAS analysis technique was calibrated
using the deformation rate (−0.99 ± 0.55 mm/yr [1996–2021]) derived from the TXAU
permanent station (Figures 1 and 4) employing the method described in Section 3.1.2.
Following the calibration procedure, the ground deformation velocity values (99.8% of the
values) within the study area (Figure 4) ranged from +1.80 mm/yr to −4.80 mm/yr, with a
mean (and standard deviation, respectively) deformation rate of −1.7 ± 0.7 mm/yr.

The present study focuses on assessing negative deformation rates, which signify
movement of the slope material away from the satellite in a vertical direction, henceforth
simply called deformation, to identify various deformation patterns related to landslides
and other processes in the study area.
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The landslide site in the Pease Park (where multitemporal GNSS surveys were conducted), as well as
another site investigated during the field survey, is represented by black-outlined (A) and yellow-
outlined (B) polygons, respectively.

The majority of the study area (~68%) exhibits deformation rates ranging from
−2 mm/yr to +1.8 mm/yr (Figure 4). These rates correspond spatially with the distribu-
tion of the Lower Cretaceous Edwards and Glen Rose limestones as well as the Upper
Cretaceous Austin Chalk (Figures 1 and 4). Relatively moderate rates of hillslope defor-
mation (−2 to −3.91 mm/yr) were observed at several locations along the cliffs of Shoal
Creek, primarily composed of the Del Rio Clay (indicated by the dashed brown polygon
in Figure 4) with a thin overlay of Buda Limestone. Pockets of relatively high deforma-
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tion rates (up to −4.29 mm/yr; Figure 4) were observed in the cliffs opposite Shoal Creek
(near North Lamar Boulevard), where the dominant geological formation is the Eagle
Ford, overlaying the Buda Formation (indicated by the dashed black polygon in Figure 4).
Deformation rates up to −4.4 mm/yr were observed in the central/downtown Austin
City area. This area is underlain by the Eagle Ford Formation and Buda Limestone,
containing clastic and clay layers (Figures 1 and 4). As observed in many urban settings
underlain by clastic/recent sediments and weak units, the relatively moderate to high
deformation rates observed in these areas could be attributed to compaction-induced
deformation (or changes in the morphology of weak units) resulting from increased
stress and loading applied to the ground surface from buildings and other artificial
structures [69]. Small clusters (some as small as under 100 m²) exhibiting relatively high
deformation rates (up to <−4.8 mm/yr) (Figure 4) were detected in the northeastern and
central parts of the study area. During field investigation of several randomly chosen
sites located outside the Shoal Creek area and undergoing relatively high deformation
rates (e.g., area depicted by the white-outlined polygon in Figure 4), it was observed
that new property development was ongoing or recently completed, as evidenced by
time-lapse imagery of an area in Google Earth Pro from 2017 to 2021 (Figure 5). The
observed relatively high deformation rates in these areas may be linked to accelerated
compaction of newly added soil material for construction projects. These findings sug-
gest that not all displacement signals shown in Figure 4 can be solely attributed to active
landslide processes.
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Studies indicate that deformation rates exceeding −2 mm/yr do not significantly
contribute to the incidence of landslides. The value also represents the noise threshold
of the accuracy of displacement estimate using InSAR techniques [30,70,71]. Hence, this
research used deformation rates of −2 mm/yr and lower as a potential indicator/metric
for identifying active or reactivated slow-moving landslides in the study area. Bianchini
et al. [30] argued that using lower thresholds ensures that active or reactivated landslides
undergoing deformation at a very slow rate but that could eventually transition into
devastating landslides are identified. For instance, several studies used <−1.5 mm/yr
threshold to identify slow-moving landslides in Italy [72,73].
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In the following sections, various controlling factors and triggers for the incidence
of landslides in the study area are discussed at length, focusing on the Shoal Creek area,
particularly Pease Park, where recent events have transpired. The goal is to provide a
conceptual model of the kinematics and mechanisms of slope failure in the study area and
determine the driving factors.

Landslide Activity at Shoal Creek

A segment of Shoal Creek, specifically a site in the Pease Park area (shown in
blue pin in Figure 4), has experienced two consecutive rotational landslide events in
recent years following heavy rainfall episodes [74,75]. The first event, which caused
significant displacement approximately 300 feet in length [74], occurred in May 2018,
followed by a minor debris movement the following year in May 2019 [75]. The daily
precipitation records for May in both 2018 and 2019 (Figure 6), obtained from a station (ID:
GHCND:US1TXTV0044; source: National Environmental Satellite, Data, and Information
Service (https://www.ncei.noaa.gov/, accessed on 1 March 2024) located near Pease
Park in the Shoal Creek area, indicate the prevalence of relatively high daily rainfall totals
(up to 101 mm in the case of the May 2018 event) before the onset of debris movement
along Pease Park (Figure 6). Historical records also provide evidence of similar slope
failures occurring in various sections of the Shoal Creek area decades before the recent
events [76].
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Figure 6. Graph showing the daily precipitation records for May 2018 (shown in yellow) and May
2019 (shown in green). Also shown are the onset times of the landslide events (events 1 and 2).

Although the SBAS analysis did not detect active displacement on the cliff of the recent
failure site of the creek due to the expected loss of interferometric coherence resulting from
changing surface conditions following the landslide event [77], deformation rates from
the surrounding pixels (black-outlined polygon (label A) in Figure 4) indicate an active,
though extremely slow (−2.24 ± 0.19 mm/yr) per the classification by Cruden and Varnes
(1996) [78], hillslope deformation process. This indicates that the landslide at the recent
site was the result of very slow slope displacement activity that gradually morphed into
slope failure due to triggering factors and conducive settings for slope failure (discussed
below). Furthermore, other physical indicators observed during the field investigations
(discussed below) also support the assessment that the ground surface in the Pease Park
area is continuously in motion. To further validate this active designation of the Pease
Park slope, and since there are no permanent GNSS stations near the recent failure site
(in Pease Park (Figure 4)), deformation activity and rates over the flanks of the failure site

https://www.ncei.noaa.gov/
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(Figures 1 and 4) were estimated using the RTK GNSS measurement technique during
two field campaigns: one in August 2021 and another in March 2022. The analysis of the
multitemporal campaign GNSS data indicated that the hillslope is undergoing active and
relatively high deformation activity (up to −17 mm/month). It is important to note that
the March 2022 RTK GNSS campaign was conducted under dense cloud cover conditions
and following an intense rainfall event the previous day, which caused slight movement
of the landslide debris downslope and resulted in accessibility issues at all but one of the
sites from the August 2021 RTK GNSS campaign. The results showed a relatively higher
deformation rate (up to −17 mm/month) than that reported by the SBAS analysis (of nearby
pixels); however, this can be attributed partially to the effect of clouds or precipitation on
the GNSS signal [79] during the second measurement, a displacement rate accelerated by
the intense precipitation episode in the days before the field visit, or the relatively short
duration of the investigation. Nonetheless, these results demonstrated ongoing activity in
the area, as depicted by the SBAS pixels from nearby sites (Box A in Figure 4).

This assessment consolidates the notion that slope materials in the study area undergo-
ing deformation at a rate of less than −2 mm/yr, as indicated by the SBAS result (Figure 4),
are likely experiencing active slow-moving landslide activity. This activity could eventually
culminate in slope failure if triggering events occur and conditions for the controlling
factors are met.

4.2. Slope and Tectonic Features

A slope map, generated using the LiDAR DEM data (Figure 7), revealed gradient
angles ranging from 0◦ to 86◦. Elevations over 96% of the study area exhibit a maximum
slope gradient of 22◦. According to Highland and Bobrowsky [7] and Zhang et al. [80],
slow-moving landslides such as slides and creeps are common in slope angles ranging
approximately between 20◦ and 50◦. Hence, for examining the spatial relationship between
relatively moderate to steep slope topography and slow-moving landslides in the study
area, slope angles falling within the ranges of 22–38◦ and greater than 38◦ were isolated
from the classes of slope angles obtained using the natural break classification (Figure 7).
These categories constitute approximately 3.21% and 0.64% of the slope values within the
study area, respectively. Within the Shoal Creek Watershed, including Pease Park, more
than 81% of the area is characterized by the relatively moderate slope angle class (22–38◦).
North of the Balcones Escarpment (Figure 7), both relatively moderate and steep slope
values (exceeding 38◦) were observed. Steep slope gradients were also noted in certain
pockets along the Barton Creek area (southwestern part of the study area) and in proximity
to the Colorado River pathways (Figure 7).

The Balcones Faults, and smaller localized faults, are predominantly concentrated
in the southern part of the study area, adjacent to the Colorado River, with fewer oc-
currences to the north of the river (Figures 4 and 7). Some of these faults run parallel
to or intersect Shoal Creek (Figures 4 and 7). By utilizing the methodology described
in Section 3.2.1, the complementary mapping of faults revealed the existence of NE–SW
trending faults/lineaments in various areas, including Pease Park and other regions within
the study area (Figures 4 and 7). Notably, some of the delineated lineaments (indicated by
dashed pink lines in Figure 4) spatially overlap with tectonic features identified in previous
studies, such as a fault along the upper periphery of the BFZ near West Lake Hills (Figure 4).
This overlap serves to demonstrate the accuracy and reliability of the lineaments mapped
in this study.
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4.3. Landslide Type, Geometry, Kinematics, and Driving Factors

There is a spatial correlation between the (negative) VD deformation patterns, signi-
fying slow-moving active landslides (<−2 mm/yr), and moderate to steep slope values
(>22◦) in most terrains along Shoal Creek and to the north of the Colorado River in gen-
eral (Figure 6). However, not all terrain with moderate to steep slopes may potentially
experience slope failure incidents (Figure 7).

For example, the steep slope terrains north of the Balcones Escarpment (north of West
Lake Hills [Figure 7]) exhibit some of the highest slope gradient values observed in the



Geosciences 2024, 14, 133 13 of 19

study area (>60◦); however, they are not undergoing any significant and large-scale active
displacement, per the SBAS-based deformation assessment, as areas along the downstream
sections of the Colorado River (Figures 4 and 7).

Most of the moderately to steeply sloping terrains undergoing active displacement
in the study area are underlain by the Eagle Ford and the Del Rio formations (Figure 7)
and are dissected by or located proximal to faults belonging mostly to the Balcones Fault
System. These facts indicate that geology and tectonic features, coupled with moderate to
steep slope terrain conditions, are the leading controls for the incidence of landslides in the
study area.

Drawing from observations of landslide geometry in the Pease Park area and other
indicators across the Shoal Creek area, along with deformation patterns determined using
fused SBAS–GNSS methods, a combination of two landslide types in the study area was
identified. These types align with the landslide classification system by Highland and
Bobrowsky [7] and Hungr et al. [2]: rotational slide (slump) and (rock) creep landslide
types. A series of cascading events is thought to be the cause of slope failure at Pease Park
and may serve as an analog for possible failure modes across other parts of the study area:

• The role of tectonic features: it is hypothesized that tectonic features of the Balcones
Fault System and other faults cutting through the Buda Limestone acted as channels
for infiltrating water/precipitation from the surface to the Del Rio Clay. The delineated
lineament (dashed pink line in Figure 4) and other tectonic structures (discussed below)
in the Pease Park area may have served as preferential pathways for water to infiltrate
through the Buda Limestone.

• The role of local geology: water percolating through the fractured Buda and interacting
with the montmorillonite-, smectite-, and kaolinite-rich Del Rio Formation induced
clay swelling. This swelling translated to stress buildup at the landslide failure
plane. Due to the brittle nature of the overlying Buda Limestone, the added stress
resulted in the breaking up/fracturing of the Buda, subsequently leading to a decline
in shear strength.

• Mechanisms of slope failure and driving factors: the Del Rio acted as a sliding surface,
causing slow vertical and lateral displacement of the Buda Limestone. We believe that
the area around Shoal Creek, which has undergone active deformation due to landslide
activity, is experiencing ongoing mass movement. This movement is slow to very slow
(creep), both vertically and laterally, with the Del Rio Formation acting as the sliding
surface and the overlying shallow and weakened Buda Limestone sliding slowly
downslope. The driving force and shear strength imbalance of the slope material
induced by extreme rainfall episodes triggered movements that initiated the transition
to rotational slumping on steep slopes. This scenario is supported by studies that show
that intense rainfall episodes can further compound stress buildup through added pore
pressure, leading to a decline in shear strength. In addition, changes in the saturation
level of the landslide material, particularly in loose soil and weathered geologic units,
compound the added stress applied to the slope material. These processes, in tandem,
contribute to the driving force acting on the slope to exceed the shear strength of the
material and, consequently, trigger landslides [81–83].

• Impact of anthropogenic land use–land cover changes: the loss of vegetation, that
could anchor the landslide material, due to anthropogenic land use-land cover changes
in the surrounding environment of Pease Park over the past few decades may have
worsened the conditions that led to occurrence of landslides. Such changes may con-
tinue to have negative impacts on the detected susceptible areas and could contribute
to the occurrence of landslides in the future.

A careful examination of the landslide geometry at Pease Park was made possible
through the utilization of a 3D model of the cliff and its surroundings, which was generated
using datasets acquired by UAV (Figure 8). The analysis revealed a curved and concave
rupture surface, scarp, crown, and various other features associated with slumps. Moreover,
it demonstrated a shallow failure zone, wherein the overlying Buda unit and underlying



Geosciences 2024, 14, 133 14 of 19

Del Rio unit were found to have shallow contact, indicating that the Del Rio Clay unit
functions as a slip surface. Additionally, the figure illustrates potential pathways (depicted
by red lines in Figure 8) that could have facilitated the infiltration of precipitation to the
underlying Del Rio mudstones during precipitation episodes.

Geosciences 2024, 14, x FOR PEER REVIEW 14 of 19 
 

 

the slope to exceed the shear strength of the material and, consequently, trigger land-
slides [81–83]. 

• Impact of anthropogenic land use–land cover changes: the loss of vegetation, that 
could anchor the landslide material, due to anthropogenic land use-land cover 
changes in the surrounding environment of Pease Park over the past few decades 
may have worsened the conditions that led to occurrence of landslides. Such changes 
may continue to have negative impacts on the detected susceptible areas and could 
contribute to the occurrence of landslides in the future. 
A careful examination of the landslide geometry at Pease Park was made possible 

through the utilization of a 3D model of the cliff and its surroundings, which was gener-
ated using datasets acquired by UAV (Figure 8). The analysis revealed a curved and con-
cave rupture surface, scarp, crown, and various other features associated with slumps. 
Moreover, it demonstrated a shallow failure zone, wherein the overlying Buda unit and 
underlying Del Rio unit were found to have shallow contact, indicating that the Del Rio 
Clay unit functions as a slip surface. Additionally, the figure illustrates potential pathways 
(depicted by red lines in Figure 8) that could have facilitated the infiltration of precipita-
tion to the underlying Del Rio mudstones during precipitation episodes. 

 
Figure 8. 3D model of the Pease Park (Shoal Creek) landslide. The inset on the right side provides a 
close-up view of the contact between the Buda Limestone and the Del Rio layer, which acts as a slip 
surface. Several fracture pathways within the Buda Limestone, through which surface water may 
have percolated into the subsurface and interacted with the Del Rio Clay layer, are depicted in red. 

Precursory surface geomorphic evidence of an active rock creep landslide process, 
such as holes and dips in the ground [84], had been observed by residents long before the 
slope failure in the Pease Park area [85]. This observation was further supported by the 
tilted or bent structure of trees (Figure 9a) encountered during the field investigation in 
the area. 

Figure 8. 3D model of the Pease Park (Shoal Creek) landslide. The inset on the right side provides a
close-up view of the contact between the Buda Limestone and the Del Rio layer, which acts as a slip
surface. Several fracture pathways within the Buda Limestone, through which surface water may
have percolated into the subsurface and interacted with the Del Rio Clay layer, are depicted in red.

Precursory surface geomorphic evidence of an active rock creep landslide process,
such as holes and dips in the ground [84], had been observed by residents long before the
slope failure in the Pease Park area [85]. This observation was further supported by the
tilted or bent structure of trees (Figure 9a) encountered during the field investigation in
the area.

Geosciences 2024, 14, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 9. Ongoing landslide process precursory indicators observed at (a) Pease Park and (b) an-
other area within Shoal Creek located nearly two miles from Pease Park (location shown in yellow-
outlined polygon in Figure 4). 

Additionally, a similar geomorphic pattern, although in the early stages of morphing 
into a rotational slump, was identified at a location within Shoal Creek (yellow-outlined 
box (label B) in Figure 4) through an indicator of landslide activity observed during the 
field investigation. At this site, tension cracks (depicted as dashed black lines in Figure 
9b), which are indicative of the initial phases of a shallow rotational slide [35,86], were 
observed. The site is situated on a moderate slope (~28°) and is experiencing deformation 
of up to −2.29 mm/yr based on the displacement rate of adjacent pixels. Similarly, the cliffs 
on the opposite side of Shoal Creek which are dominated by the smectite-rich Eagle Ford 
and dissected by faults (Figure 4) are potential sites of active slow-moving landslide pro-
cesses. The sites lie at moderate to steep slopes (>22°) and move at a VD rate of up to −4.29 
mm/yr (Figure 4). Several studies focusing on south and central Texas corroborate this 
assessment of the susceptibility of cliffs dominated by the Eagle Ford Formation to slow-
moving landslides [87–89]. 

5. Conclusions 
This study employed an integrated approach, combining multisource remote sensing 

and in situ datasets and analysis results to evaluate landslide-prone areas in Austin City 
and its surroundings. This was principally achieved by investigating the landslide occur-
rence at the recent failure site in Shoal Creek as an analog model representing the kine-
matics, mechanisms, and processes that trigger landslides in the study area. The results 
indicated that the potential landslide sites are undergoing deformation at an extremely 
slow rate (up to −4.29 mm/yr). These areas are lithologically dominated by a thin layer of 
Buda Limestone underlain by the Del Rio Clay, as well as the Eagle Ford Shale overlying 
the Buda Limestone. These units are intersected by numerous NE–SW trending faults 
from the Balcones Fault System. Water/precipitation percolation through the tectonic fea-
tures and interaction with the clay minerals at shallow depths are identified as factors that 
contribute to stress accumulation that leads to the reduction in shear strength. In this case, 
the clay layers act as a sliding surface, resulting in gradual (creep) vertical and lateral dis-
placement of the Buda Limestone and Eagle Ford Formations, eventually transitioning 
into a rotational landslide under favorable slope conditions (>22°) and triggered by epi-
sodes of intense rainfall. Considering the unprecedented population and economic 
growth of the Austin metropolitan area in recent years, understanding landslide-prone 
areas and identifying the triggering factors would facilitate the development of an early 
warning system for landslides in the region. 

Figure 9. Ongoing landslide process precursory indicators observed at (a) Pease Park and (b) another
area within Shoal Creek located nearly two miles from Pease Park (location shown in yellow-outlined
polygon in Figure 4).



Geosciences 2024, 14, 133 15 of 19

Additionally, a similar geomorphic pattern, although in the early stages of morphing
into a rotational slump, was identified at a location within Shoal Creek (yellow-outlined
box (label B) in Figure 4) through an indicator of landslide activity observed during the
field investigation. At this site, tension cracks (depicted as dashed black lines in Figure 9b),
which are indicative of the initial phases of a shallow rotational slide [35,86], were observed.
The site is situated on a moderate slope (~28◦) and is experiencing deformation of up to
−2.29 mm/yr based on the displacement rate of adjacent pixels. Similarly, the cliffs on
the opposite side of Shoal Creek which are dominated by the smectite-rich Eagle Ford and
dissected by faults (Figure 4) are potential sites of active slow-moving landslide processes.
The sites lie at moderate to steep slopes (>22◦) and move at a VD rate of up to −4.29 mm/yr
(Figure 4). Several studies focusing on south and central Texas corroborate this assessment
of the susceptibility of cliffs dominated by the Eagle Ford Formation to slow-moving
landslides [87–89].

5. Conclusions

This study employed an integrated approach, combining multisource remote sensing
and in situ datasets and analysis results to evaluate landslide-prone areas in Austin City and
its surroundings. This was principally achieved by investigating the landslide occurrence
at the recent failure site in Shoal Creek as an analog model representing the kinematics,
mechanisms, and processes that trigger landslides in the study area. The results indicated
that the potential landslide sites are undergoing deformation at an extremely slow rate
(up to −4.29 mm/yr). These areas are lithologically dominated by a thin layer of Buda
Limestone underlain by the Del Rio Clay, as well as the Eagle Ford Shale overlying the
Buda Limestone. These units are intersected by numerous NE–SW trending faults from the
Balcones Fault System. Water/precipitation percolation through the tectonic features and
interaction with the clay minerals at shallow depths are identified as factors that contribute
to stress accumulation that leads to the reduction in shear strength. In this case, the clay
layers act as a sliding surface, resulting in gradual (creep) vertical and lateral displacement
of the Buda Limestone and Eagle Ford Formations, eventually transitioning into a rotational
landslide under favorable slope conditions (>22◦) and triggered by episodes of intense
rainfall. Considering the unprecedented population and economic growth of the Austin
metropolitan area in recent years, understanding landslide-prone areas and identifying
the triggering factors would facilitate the development of an early warning system for
landslides in the region.
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